Magneto-Resistance Element

For the availability of this product, please contact the sales office.

Description

The DM-111A is a highly sensitive magnetic resistance element, composed of an evaporated ferromagnetic alloy on a silicon substrate. The element can be used for detection of rotational speed and for detection of angle of rotation and as a detection of position.

Features

- Low power consumption

$$
38 \mu \mathrm{~W} \text { (Typ.) at } \mathrm{Vcc}=5 \mathrm{~V}
$$

- Low magnetic field and high sensitivity

$$
\begin{aligned}
& 75 \mathrm{mVp}-\mathrm{p} \text { (Typ.) at } \mathrm{Vcc=5V} \\
& \text { and } H=4000 \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

- High reliability

Ensured through silicon nitride protective filming

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage	Vcc	10	V
- Operating temperature	Topr	-40 to +80	${ }^{\circ} \mathrm{C}$
- Storage temperature	Tstg	-50 to +100	${ }^{\circ} \mathrm{C}$

Recommended Operating Condition 5

Electrical Characteristics

Recommended Operating Condition 5 V
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Total resistance	RT	$\mathrm{H}=4000 \mathrm{~A} / \mathrm{m}, \theta=45^{\circ}$	500	650	800	$\mathrm{k} \Omega$
Midpoint potential	Vc	Vcc $=5 \mathrm{~V}, \mathrm{H}=4000 \mathrm{~A} / \mathrm{m}$ Revoiving magnetic field	2.47	2.50	2.53	V
Output voltage	Vo	Vcc=5V,H=4000A/m Revoiving magnetic field	30	75		$\mathrm{mVp}-\mathrm{p}$

Equivalent Circuit

123

R_{A} : Resistance reduces as the magnetic field revolves.
RB: Resistance increases as the magnetic field revolves.

Introduction

1) Power supplying pin output pin

2) Sensitive direction vs. Midpoint potential

Changes occur to the output voltage at the saturation region of V - H curve according to the direction of magnetic flux.
These changes provide for the operation.

- With one rotation of magnetic flux, signals for 2 periods are obtained.

3) 0° Biasing magnetic field
(Switching use)

\longleftarrow Biasing Magnetic Field
§ Detected Magnetic Field

4) 45° Biasing magnetic field
(Analog use)

Applications

1. Detection of revolution

2. Position detecting

3. Angular detection of rotating wheel

4. Readind out of analog value

5. Position detecting of revolving element

Magnetic conductors

Circuits
2), 3), 5)

1), 2), 3), 5)

Bridge Circuits

(Biasing Magnet)

By coupling 2 pieces back to back and sticking item together in a bridge, the output voltage is doubled.

How to make a Biasing Magnetic Field

- Stick a rubber of ferrite biasing magemt
- Position an element between the poles of the permanent magnet.

Notes on Application

- Excute the solder of the lead line within 10 seconds at a temperature below $260^{\circ} \mathrm{C}$
- To fix the ELEMENTS: When glue is used, DO NOT apply mechanical stress to the elements.
- Do not use this element in the dewy condition.

Example Representative Characteristics

Output voltage vs. Magnetic fiels Intensity

Midpoint potential vs. Magnetic-flux Incidence

Package Outline Unit : mm

M-102

SONY CODE	$\mathrm{M}-102$
EIAJ CODE	-
JEDEC CODE	

PACKAGE WEIGHT	0.24 g

