

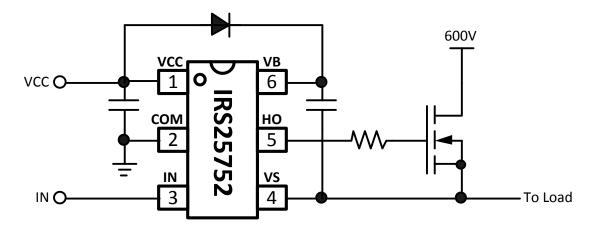
SOT-23 High-Side Gate Driver IC

Features

- Floating gate driver designed for bootstrap operation
- Fully operational to +600 V
- Excellent dv/dt immunity
- Excellent negative V_S transient immunity
- Wide V_{CC} range
- UVLO on low-side and high-side
- Schmitt-trigger input with internal pull-down
- Output in phase with input
- Excellent latch immunity on all inputs & outputs
- · RoHS compliant
- 6-pin SOT-23 package

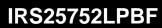
Applications

- High-side gate driver control
- Pulse transformer replacement
- General purpose switched mode power electronics


Description

The IRS25752 is a high-side, single-channel gate driver IC with 600V blocking and level-shifting capability. This allows for the gate driver to be connected directly to the gate of a high-side power MOSFET, while being controlled by the low-side, ground potential circuitry. The IRS25752 includes a wide $V_{\rm CC}$ supply range, UVLO protection, and excellent immunity to harsh dv/dt or $-V_{\rm S}$ switching environments. IR's HVIC technology allows for these functions and features to be realized in a 6-pin SOT-23 package.

Package Options



Typical Connection Diagram

Ordering Information

		Standar	d Pack		
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	
IRS25752LPBF	SOT-23-6L	Tape and Reel	3000	IRS25752LTRPBF	

Table of Contents	Page
Description	1
Ordering Information	1
Typical Connection Diagram	1
Absolute Maximum Ratings	3
Recommended Operating Conditions	3
Electrical Characteristics	4
Functional Block Diagram	5
Timing Diagram	6
Lead Definitions	7
Lead Assignments	7
Package Details: 6L-SOT23	9
Tape and Reel Details: 6L-SOT23	10
Part Marking Information	12
Qualification Information	13

2 <u>www.irf.com</u> © 2015 International Rectifier January 14, 2015

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any pin. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

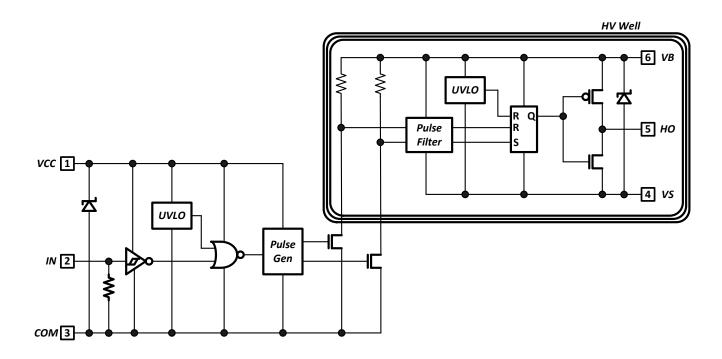
Symbol	Definition	Min	Max	Units	
V_{B}	High side floating absolute voltage		-0.3	620	
Vs	High side floating supply offset voltage		V _B - 20	V _B + 0.3	
V _{HO}	High side floating gate drive output voltage		V _S - 0.3	V _B + 0.3	
V _{cc}	Low side and logic fixed supply voltage		-0.3	20	V
V _{IN}	Logic input voltage		COM - 0.3	V _{CC} + 0.3	
СОМ	Logic ground		V _{CC} - 20	V _{CC} + 0.3	
dVS/dt	High side floating supply offset voltage slew rate			50	V/ns
RO _{JA}	Thermal resistance, junction to ambient 6L-SOT-23			151	°C/W
T _J	Junction temperature		55	150	
Ts	Storage temperature		55	150	٥C
T _L	IC Pin temperature (soldering, 10 seconds)			300	

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions.

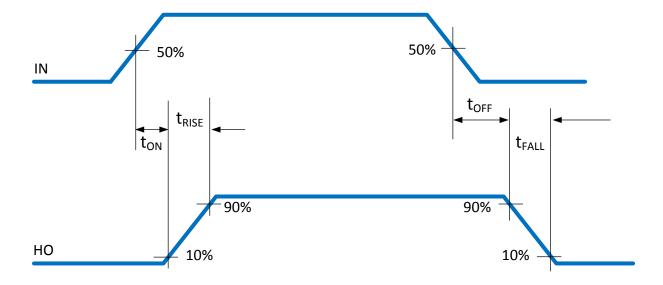
Symbol	Definition	Min	Max	Units
V_{B}	High side floating absolute voltage	V _S + 10	V _S + 18	
Vs	High side floating supply offset voltage	COM - 8 [†]	600	
V _{HO}	High side floating gate drive output voltage	Vs	V _B	V
V _{cc}	Low side and logic fixed supply voltage	10	18	
V _{IN}	Logic input voltage	СОМ	V _{CC}	
TJ	Junction temperature	-40	125	°C

[†] Logic operational for V_S of -8V to +600V. Logic state held for V_S of -8V to - V_{BS} .


Electrical Characteristics

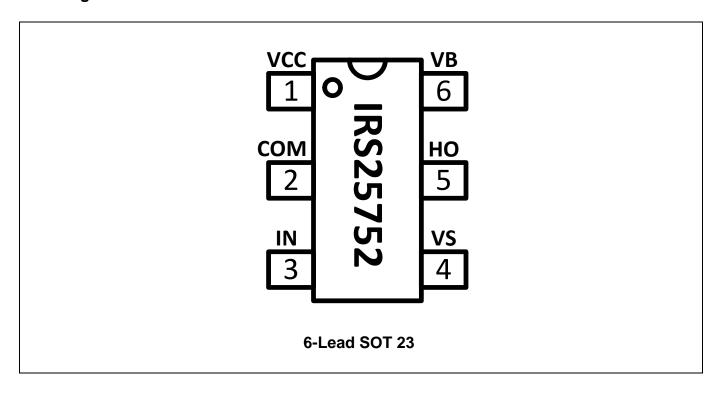
 $V_{\text{CC}}\!\!=\!\!15\text{V},\,V_{\text{BS}}\!\!=\!\!15\text{V},\,C_{L}\!\!=\!\!1000\text{pF},$ and T_{A} = 25 °C unless otherwise specified.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions	
Low Side Ch	naracteristics	•		•			
V _{CCUV+}	V _{CC} supply UVLO positive-going	8.0	9.0	10.0	V		
V _{CCUV} -	V _{CC} supply UVLO negative-going	7.0	8.0	9.0	V		
I _{QCC}	Quiescent V _{CC} supply current		100		μA		
V _{CC_CLAMP}	V _{CC} internal Zener clamp voltage		20.4			$I_{CC} = 5mA$	
V _{IH}	Logic "1" input voltage			2.2	V		
V _{IL}	Logic "0" input voltage	0.8			-		
I _{IN+}	Logic "1" input bias current		20	40		$V_{IN} = V_{CC}$	
I _{IN-}	Logic "0" input bias current			5	μA	V _{IN} = COM	
ligh Side C	haracteristics						
V _{BSUV+}	V _{BS} supply UVLO positive-going	8.0	9.0	10.0			
V_{BSUV}	V _{BS} supply UVLO negative-going	7.0	8.0	9.0			
V_{BS_CLAMP}	V _{BS} internal Zener clamp voltage		20.4		V	$I_{BS} = 5mA$	
V_{OH}	High level output voltage (V _B – HO)		0.8	1.4		1 - 2m1	
V_{OL}	Low level output voltage (HO – V _S)		0.3	0.6		$I_O = 2mA$	
I _{LK}	Offset supply leakage current			50		$V_{B} = V_{S} = 600V$	
I _{QBS}	Quiescent V _{BS} supply current		80		μA	$V_{IN} = V_{CC}$ or COM	
Gate Drive C	Characteristics						
t _{ON}	Turn-on propagation delay		140			V _S = 0V	
t _{OFF}	Turn-off propagation delay		215		no	V _S = 600V	
t _{RISE}	Turn-on rise time		85		ns	V _S = 0V	
t _{FALL}	Turn-off fall time		40				
I _{O+}	HO gate drive output source current		160		m ^		
I _{O-}	HO gate drive output sink current		240		mA		

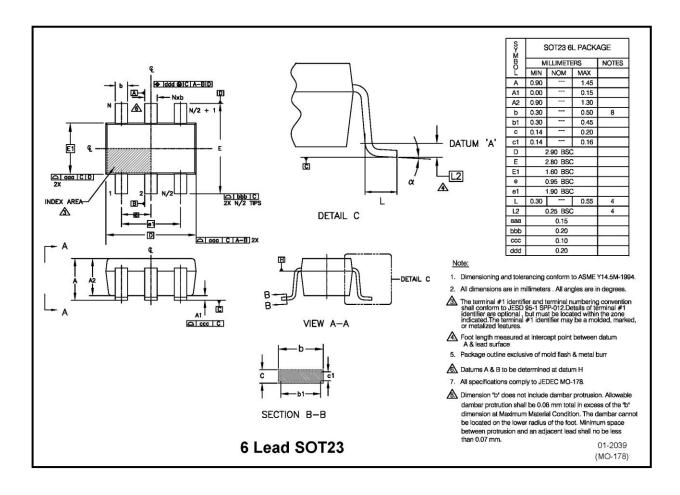


Functional Block Diagram

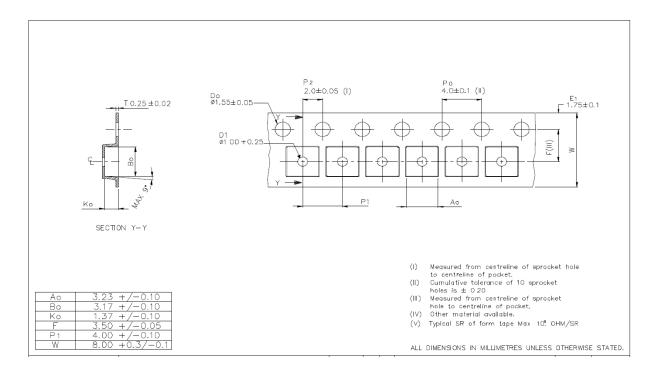
Timing Diagram

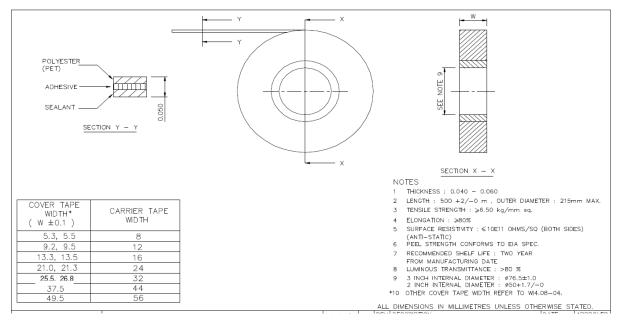


Pin Definitions

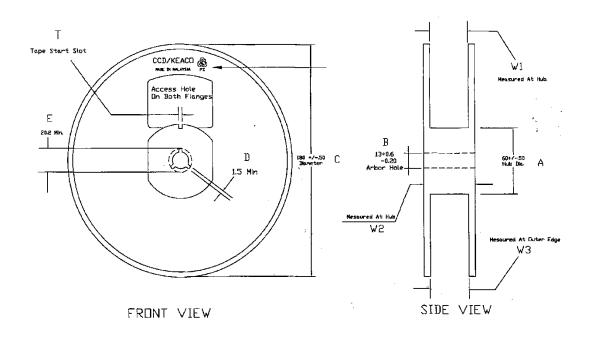

Pin	Symbol	Description		
1	vcc	IC supply voltage		
2	COM	IC power and signal ground		
3	IN	Logic input		
4	vs	High side floating supply offset voltage		
5	НО	High side gate driver output		
6	VB	High side floating supply voltage		

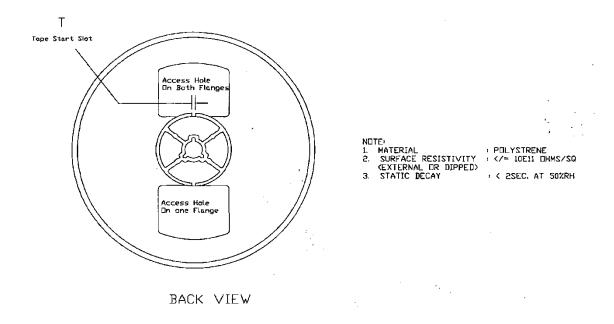
Pin Assignments




Package Details: 6L-SOT23

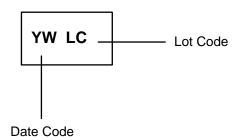
Tape and Reel Details: 6L-SOT23

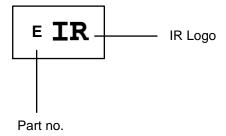




www.irf.com

Tape and Reel Details: 6L-SOT23





Part Marking Information: 6 Lead SOT23

Top Marking

Bottom Marking

Qualification Information[†]

			Industrial ^{††}				
		(pe	(per JEDEC JESD 47E)				
Qualification Level			Comments: This family of ICs has passed JEDEC's				
		Industrial qualification	Industrial qualification. IR's Consumer qualification level is				
		granted by extension	granted by extension of the higher Industrial level.				
Majatura Canajtivitu	l evel	22 722	MSL1 ^{†††}				
Moisture Sensitivity Level		SOT-23	(per IPC/JEDEC J-STD-020C)				
	Machine Model	Class B					
ESD	Machine Model	(per JEDEC standard EIA/JESD22-A115-A)					
E3D	Human Body Model	Class 1B					
		(per EIA/JEDEC standard JESD22-A114-B)					
IC Latch-Up Test			Class I, Level A				
			(per JESD78A)				
RoHS Compliant			Yes				

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

www.irf.com © 2015 International Rectifier January 14, 2015