

Size: 1.25in x 0.80in x 0.40in (31.8mm x 20.3mm x 10.2mm)

OPTIONS

- Input Voltage
- Output Voltage
- Single or Dual

APPLICATIONS

- Data Communication Equipment
- Mobile Battery Driven Systems
- Distributed Power Systems
- Telecommunication Equipment
- Mixed Analog/Digital Subsystems
- Process/Machine Control Equipment
- Computer Peripheral Systems
- Industrial Robot Systems

FEATURES

- Low cost
- RoHS Compliant
- 15000VDC Isolation
- Efficiency up to 84%
- MTBF > 1,000,000 Hours
- Industry Standard Pin-out
- Internal SMT Construction
- UL 94V-0 Package Material
- UL60950-1 Safety Approval
- Single and Dual Regulated Outputs
- Operating Temperature: -25°C~+71°C
- 2:1 and 4:1 Wide Input Voltages Ranges

DESCRIPTION

LAN K series of DC/DC converters provide 2~4 watts of continuous output power in a low profile DIP package. These converters operate over 2:1 input voltage ranges of 4.5~9VDC, 9-18VDC, 18-36VDC, and 36-75VDC and 4:1 input voltage ranges of 9-36VDC and 18-75VDC. This series also has standard single output voltages of 3.3, 5, 12, 15VDC and dual output voltages of ±5, ±12, and ±15VDC. Some features include continuous short circuit protection, 1500VDC I/O isolation, -25°C~+71°C operating temperature, and built-in filtering for input and output. The LAN K series is an excellent selection for a variety of applications some of which include data communication equipment, mobile battery driven systems, distributed power systems, telecommunication equipment, mixed analog/digital subsystems, process/machine control equipment, computer peripheral systems, and industrial robot systems.

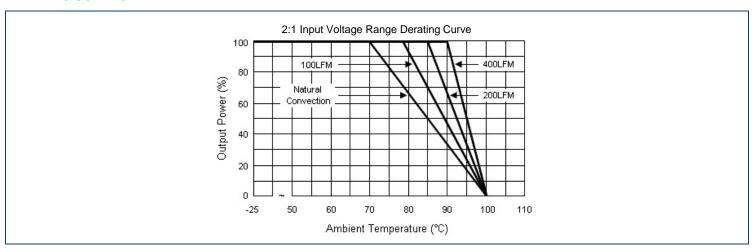
MODEL SELECTION TABLE				
2:1 Input Models				
Model Number	Input Voltage Range	Output Voltage	Output Current	Output Power
LANK53.3W2	5VDC	3.3 VDC	600mA	2W
LANK505W3		5 VDC	500mA	2.5W
LANK512W3		12 VDC	250mA	3W
LANK515W3	(4.5~9VDC)	15 VDC	200mA	3W
LANK505DW3	(4.5~9VDC)	±5 VDC	±250mA	2.5W
LANK512DW3		±12 VDC	±125mA	3W
LANK515DW3		±15 VDC	±100mA	3W
LANK123.3W2		3.3 VDC	600mA	2W
LANK1205W3		5 VDC	500mA	2.5W
LANK1212W3	12VDC	12 VDC	250mA	3W
LANK1215W3	(9~18VDC)	15 VDC	200mA	3W
LANK1205DW3	(9~16VDC)	±5 VDC	±250mA	2.5W
LANK1212DW3		±12 VDC	±125mA	3W
LANK1215DW3		±15 VDC	±100mA	3W
LANK243.3W2		3.3 VDC	600mA	2W
LANK2405W3		5 VDC	500mA	2.5W
LANK2412W3	24VDC	12 VDC	250mA	3W
LANK2415W3	(18~36VDC)	15 VDC	200mA	3W
LANK2405DW3	(18~30VDC)	±5 VDC	±250mA	2.5W
LANK2412DW3		±12 VDC	±125mA	3W
LANK2415DW3		±15 VDC	±100mA	3W
LANK483.3W2		3.3 VDC	600mA	2W
LANK4805W3		5 VDC	500mA	2.5W
LANK4812W3	48VDC	12 VDC	250mA	3W
LANK4815W3	(18~75VDC)	15 VDC	200mA	3W
LANK4805DW3	(10-73000)	±5 VDC	±250mA	2.5W
LANK4812DW3		±12 VDC	±125mA	3W
LANK4815DW3		±15 VDC	±100mA	3W

Wall Industries, Inc. • 37 Industrial Drive, Exeter, NH 03833 • Tel: 603-778-2300 • Toll Free: 888-597-9255 • Fax 603-778-9797

MODEL SELECTION TABLE					
	4:1 Input Models				
Model Number	Input Voltage Range	Output Voltage	Output Current	Output Power	
LANK243.3UW3		3.3 VDC	900mA	3W	
LANK2405UW3		5 VDC	660mA	3W	
LANK2412UW4	0.41/20	12 VDC	333mA	4W	
LANK2415UW4	24VDC (9~36VDC)	15 VDC	267mA	4W	
LANK2405DUW3	(9~30VDC)	±5 VDC	±300mA	3W	
LANK2412DUW4		±12 VDC	±167mA	4W	
LANK2415DUW4		±15 VDC	±133mA	4W	
LANK483.3UW3		3.3 VDC	900mA	3W	
LANK4805UW3		5 VDC	660mA	3W	
LANK4812UW4	48VDC (18~75VDC)	12 VDC	333mA	4W	
LANK4815UW4		15 VDC	267mA	4W	
LANK4805DUW3		±5 VDC	±300mA	3W	
LANK4812DUW4		±12 VDC	±167mA	4W	
LANK4815DUW4		±15 VDC	±133mA	4W	

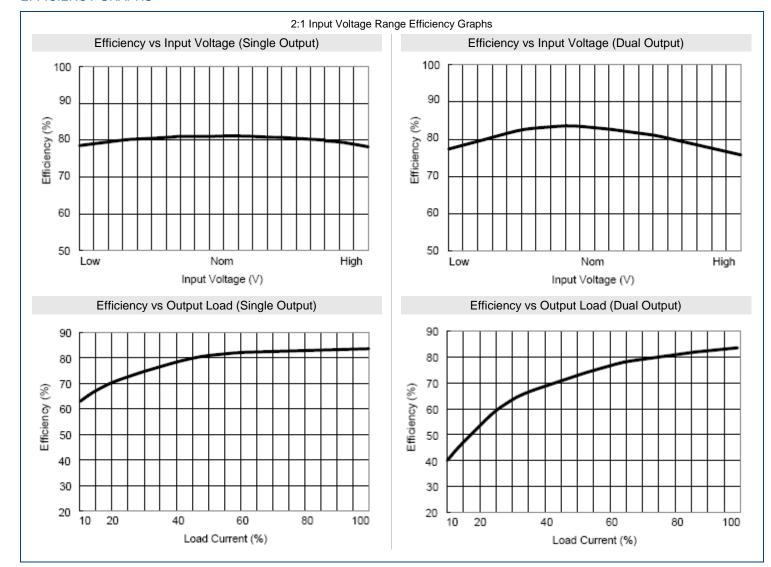
SPECIFICATIONS
All specifications are based on 25°C, Nominal Input Voltage, and Maximum Output Current unless otherwise noted
We reserve the right to change specifications based on technological advances.

SPECIFICATION	TEST CONDITIONS	Min	Тур	Max	Unit	
INPUT SPECIFICATIONS						
	5V input models	4.5	5	9		
Input Voltage Range (2:1 Input Models)	12V input models	9	12	18	VDC	
input voltage Range (2.1 input wodels)	24V input models	18	24	36		
	48V input models	36	48	75		
Input Voltage Range (4:1 Input Models)	24V input models	9	24	36	VDC	
input voltage Range (4.1 input Models)	48V input models	18	48	75	VDC	
Input Filter			Pi F	ilter		
OUTPUT SPECIFICATIONS						
Output Voltage			See	Table		
Output Voltage Balance			±0.5	±2.0	%	
Output Voltage Accuracy	Dual Output, Balanced Loads		±0.5	±1.0	%	
Line Regulation	Vin=Min. to Max.		±0.2	±0.5	%	
Load Regulation	Io=10% to 100%		±0.2	±0.5	%	
Output Power		See Table				
Output Current			See Table			
Ripple & Noise (20MHz bandwidth)			1%		mV_{pk-pk}	
Transient Recover Time	50% load step change		300	500	μS	
Transient Response Deviation	5% load step change		±3	±5	%	
Temperature Coefficient			±0.01	±0.02	%/°C	
PROTECTION						
Over Power Protection		120			%	
Short Circuit Protection			Conti	nuous		
ENVIRONMENTAL SPECIFICATIONS						
Operating Ambient Temperature		-25		+85	°C	
Operating Case Temperature		-25		+90	°C	
Storage Temperature		-40		120	∘C	
Lead Temperature	1.5mm from case for 10 seconds			260	°C	
Humidity	Non-Condensing			95	% RH	
Cooling		Free air convection				
MTBF	MIL-HDBK-217F @25°C, Ground Benign	1,000,000			hours	

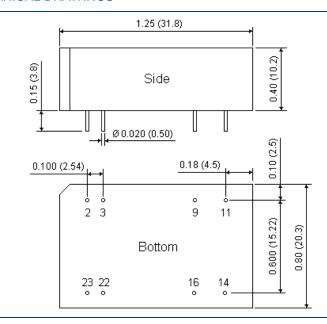


SPECIFICATIONS					
All specifications	s are based on 25°C, Nominal Input Voltage, and Maximum Out We reserve the right to change specifications based on technic		nerwise note	ed.	
SPECIFICATION	TEST CONDITIONS	Min	Тур	Max	Unit
GENERAL SPECIFICATIONS					
Efficiency			80		%
Switching Frequency			300		KHz
Isolation Voltage Rated	60 seconds	1500			VDC
Isolation Voltage Test	Flash Tested for 1 second	1650			VDC
Isolation Resistance	500VDC	1000			ΜΩ
Isolation Capacitance	100KHz, 1V		65	100	pF
Internal Power Dissipation				2500	mW
PHYSICAL SPECIFICATIONS					
Weight			0.44oz (12.4g)		
Dimensions (L x W x H)			1.25in x 0.80in x 0.40in (31.8mm x 20.3mm x 10.2mm)		
Case Material	2:1 Input Voltage Models	No	Non-Conductive Black Plastic		
Case Material	4:1 Input Voltage Models	Meta	Metal with Non-Conductive Base		
Flammability	UL94V-0				
SAFETY & EMC CHARACTERISTIC	S				
Conducted Immunity	UL60950-1				

NOTES


- (1) Transient recovery time is measured to within 1% error for a step change in output load of 50% to 100%.
- (2) The LAN K series requires a 10% minimum load on the output to maintain specified regulation. Operation under no-load conditions will not damage these devices, however they may not meet all listed specifications.
- (3) All DC/DC converters should be externally fused at the front end for protection.
- (4) Due to advances in technology, specifications are subject to change without notice.

DERATING CURVES -



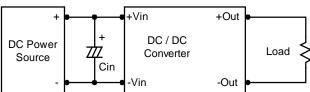
EFFICIENCY GRAPHS

MECHANICAL DRAWINGS

Pin	Single Output	Dual Output
2	-Vin	-Vin
3	-Vin	-Vin
9	No Pin	Common
11	NC	-Vout
14	+Vout	+Vout
16	-Vout	Common
22	+Vin	+Vin
23	+Vin	+Vin

 Tolerance: X.XX±0.01 (X.X±0.25) X.XXX±0.005 (X.XX±0.13)

2. Pin Tolerance: ±0.002 (±0.05)


DESIGN & FEATURE CONSIDERATIONS-

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR <1.0 Ω at 100 KHz) capacitor of 8.2 μ F for the 5V input devices, a 3.3 μ F for the 12V input devices, and a 1.5 μ F for the 24V and 48V devices.

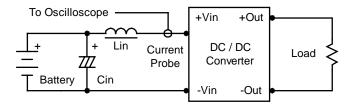
Maximum Capacitive Load

The LAN K series has a limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time.

For optimum performance we recommend $1000\mu F$ maximum capacitive load for dual outputs and $4000\mu F$ capacitive load for single outputs.

Over Current Protection

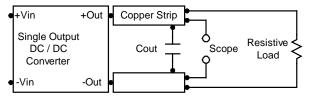
To provide protection in a fault (output over load) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specific range.

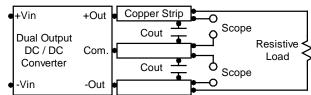

TEST CONFIGURATIONS

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with an inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 Ω at 100KHz) to simulate source impedance.

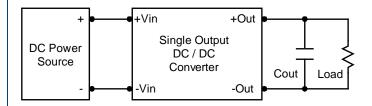
Capacitor Cin offsets possible battery impedance.

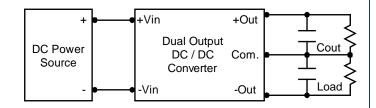

Current ripple is measured at the input terminals of the module. Measurement bandwidth is 0-500 KHz.



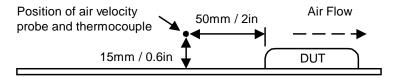
Peak-to-Peak Output Noise Measurement Test

Use Cout 0.47µF ceramic capacitor.


Scope measurement should be made by using BNC socket, measurement bandwidth is 0-20MHZ. Position the load between 50mm and 75mm from the Dc/DC Converter.



Output Ripple Reduction


A good quality low ESR capacitor placed as close as possible across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module, and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in an experimental apparatus.

COMPANY INFORMATION

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001-2008 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone: ☎(603)778-2300 Toll Free: ☎(888)597-9255 Fax: ☎(603)778-9797

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 37 Industrial Drive
Exeter, NH 03833