preliminary datasheet

Output Inverter Application

General conditions

3 phase SPWM	
$\mathbf{V}_{\text {GEon }}=15 \mathrm{~V}$	
$\mathbf{V}_{\text {GEoff }}=-15 \mathrm{~V}$	
$\mathbf{R}_{\text {gon }}=32 \Omega$	
$\mathbf{R}_{\text {goff }}=32 \Omega$	

Figure 1
Typical average static loss as a function of output current
$\mathrm{P}_{\text {loss }}=\mathrm{f}\left(\mathrm{l}_{\text {out }}\right)$

At
$\mathrm{Tj}=125^{\circ} \mathrm{C}$
Mi*cosfi from -1 to 1 in steps of 0,2
Figure 3
Typical average switching loss

At
$\mathrm{T}_{\mathrm{j}}=\quad 125 \quad{ }^{\circ} \mathrm{C}$
DC link $=600 \quad \mathrm{~V}$
fsw from 2 kHz to 16 kHz in 2 steps

Figure 2
Typical average static loss as a function of output current
$\mathrm{P}_{\text {loss }}=\mathrm{f}\left(\mathrm{l}_{\text {out }}\right)$

At
$\mathrm{Tj}=125^{\circ} \mathrm{C}$
Mi*cosfi from -1 to 1 in steps of $-0,2$

Figure 4

FRED
Typical average switching loss

At
$\mathrm{T}_{\mathrm{j}}=\quad 125 \quad{ }^{\circ} \mathrm{C}$
DC link $=600 \quad \mathrm{~V}$
fsw from 2 kHz to 16 kHz in 2 steps

Output Inverter Application

At

$\mathrm{T}_{\mathrm{j}}=$	125	${ }^{\circ} \mathrm{C}$
DC link $=$	600	V
fsw $=$	8	kHz

Th from $60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$

Figure 7

Typical available 50 Hz output current as a function of

At		
$\mathrm{T}_{\mathrm{j}}=$	125	${ }^{\circ} \mathrm{C}$
DC link $=$	600,00	V
$\mathrm{~T}_{\mathrm{h}}=$	80	${ }^{\circ} \mathrm{C}$

Typical available 50 Hz output current

At
$\mathrm{T}_{\mathrm{i}}=\quad 125 \quad{ }^{\circ} \mathrm{C}$
DC link $=600 \quad V$
Mi^{*} cosfi $=0,8$
Th from $60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$

Figure 8

Typical available 0 Hz output current as a function

At

$\mathrm{T}_{\mathrm{j}}=$	125	${ }^{\circ} \mathrm{C}$
DC		
link $=$	$600,00 \quad \mathrm{~V}$	
Th from $60^{\circ} \mathrm{C}$ to	$100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$	

Output Inverter Application

At
$\begin{array}{lll}\mathrm{T}_{\mathrm{j}}= & 125 & { }^{\circ} \mathrm{C} \\ \mathrm{DC}\end{array}$
$\mathrm{Mi}=1$
cosfi $=0,80$
fsw from 2 kHz to 16 kHz in 2 steps

Figure 11

Typical available overload factor as a function of
$\mathrm{Mi}=1$
cosfi $=0,8$
fsw from 1 kHz to 16 kHz in 2 steps
Th $=\quad 90 \quad{ }^{\circ} \mathrm{C}$
Motor eff $=0,85$

At

$\mathrm{T}_{\mathrm{j}}=$	125	${ }^{\circ} \mathrm{C}$
DC link $=$	600	V

$D C$ link $=600 \quad V$
motor power and switching frequency $\quad P_{\text {peak }} / P_{\text {nom }}=f\left(P_{\text {nom }}, f_{s w}\right)$

Typical efficiency as a function of output power
efficiency=f($\mathrm{P}_{\text {out }}$)

At

$\mathrm{T}_{\mathrm{j}}=$	125
DC link =	600

$\mathrm{Mi}=\quad 1$
cosfi $=0,80$
fsw from 2 kHz to 16 kHz in 2 steps

PRODUCT STATUS DEFINITIONS

Datasheet Status	Product Status	Definition
Target	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.
Final	Full Production	This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

DISCLAIMER

Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness
