

1 Form A 60V / 75mΩ DC MOSFET Output Solid State Relay

Description

The SMA4115 is a DC, single-pole, single-throw, normally open solid-state relay in a 4 pin single inline package. The relay consists of an AlGaAs LED, optically coupled to a high performance Photo Diode Array (PDA), which in turn drives one low on-resistance, rugged source-to-source enhancement type DMOS transistor. The SMA4115 has an extremely low on resistance of $50m\Omega$ (TYP) and a very high continuous load current rating of up to 3.4A. The combination of low on-resistance, small package outline and high load current capabilities make the SMA4115 a unique, unparalleled solid state relay.

The SMA4115 comes standard in a 4 pin SIP package.

Applications

- Multiplexers
- Meter reading systems
- **Data Acquisition**
- Medical Equipment
- **Battery Monitoring**
- Home/Safety Security Systems

Schematic Diagram

Features

- Low On Resistance (75mΩ MAX)
- High Continuous Load Current (3.4A)
- Low Input Control Power Consumption (2mA TYP)
- High Input-to-Output Isolation (up to 5kV MIN)
- Long Life / High Reliability
- RoHS / Pb-Free / REACH Compliant

Agency Approvals

UL/C-UL: File # E201932

VDF: File # 40035191 (EN 60747-5-2)

Absolute Maximum Ratings

The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability.

Storage Temperature	55 to +125°C
Operating Temperature	40 to +85°C
Continuous Input Current	50mA
Transient Input Current	500mA
Reverse Input Control Voltage	5V
Input Power Dissipation	40mW
Total Power Dissipation	1.2W
Solder Temperature – Wave (10sec)	260°C
Solder Temperature - IR Reflow (10sec)	260°C

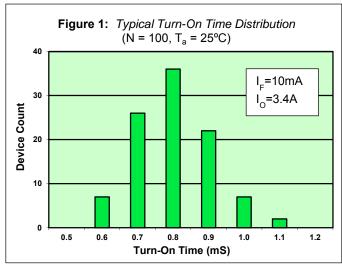
Ordering Information

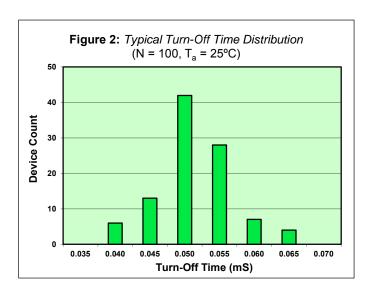
Part Number Description

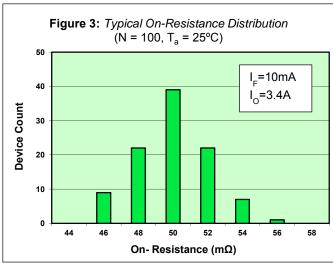
SMA4115 4 pin SIP, (25/Tube)

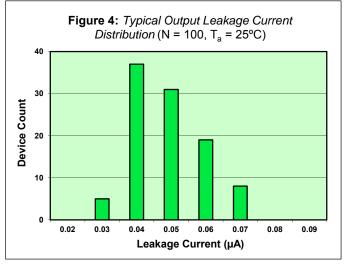
SMA4115-H 4 pin SIP, $V_{ISO} = 5kV$, (25/Tube)

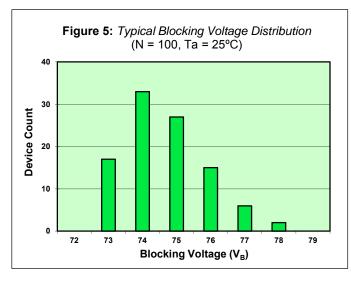
NOTE: Suffixes listed above are not included in marking on device for part number identification

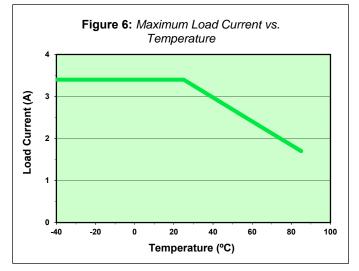


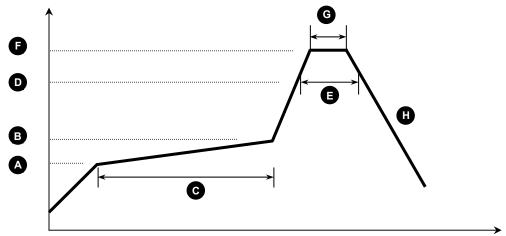

Electrical Characteristics, T_A = 25°C (unless otherwise specified)


Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	
Input Specifications							
LED Forward Voltage	V _F	-	1.4	1.8	V	I _F = 10mA	
LED Reverse Voltage	BV _R	5	-	-	V	I _R = 10μA	
Input Reverse Current	I _R	-	-	10	μА	V _R = 5V	
Turn-On Current	I _F	-	2	10	mA	$I_{O} = I_{O(MAX)}$	
Turn-Off Current	I _{FOFF}	-	1	-	mA	$I_{O} = I_{O(MAX)}$	
Output Specifications							
Blocking Voltage	V _B	60	-	-	V	$I_F = 0mA, I_O = 1\mu A$	
Continuous Load Current	Io	-	-	3.4	Α	I _F = 10mA	
On Resistance	R _{on}	-	50	75	mΩ	$I_F = 10$ mA, $I_O = I_{O(MAX)}$	
Leakage Current	I _{Oleak}	-	0.1	1	μА	I _F = 0mA, V _O = 60V	
Offset Voltage	V _{OFFSET}	-	-	0.2	mV	I _F = 10mA	
Coupled Specifications							
Turn-On Time	T _{ON}	-	1	5	mS	I _F = 10mA, I _O = I _{O(MAX)} , V _O = 20V	
Turn-Off Time	T _{OFF}	-	0.1	2	mS	$I_F = 0mA, I_O = I_{O(MAX)}, V_O = 20V$	
Coupled Capacitance	C _{COUPLED}	-	2	-	pF		
Contact Transient Ratio	-	2,000	7,000	0	V/μS	dV = 50V	
Isolation Specifications							
Isolation Voltage		3,750	-	-	.,	RH ≤ 50%, t=1min	
(-H Option)	V _{ISO}	5,000	-	-	V _{RMS}		
Input-Output Resistance	R _{I-O}	-	10 ¹²	-	Ω	V _{I-O} = 500V _{DC}	




SMA4115 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)





SMA4115 Solder Reflow Temperature Profile Recommendations

(1) Infrared Reflow:

Refer to the following figure as an example of an optimal temperature profile for single occurrence infrared reflow. Soldering process should not exceed temperature or time limits expressed herein. Surface temperature of device package should not exceed 250°C:

Process Step	Description	Parameter	
Α	Preheat Start Temperature (°C)	150°C	
В	Preheat Finish Temperature (°C)	180°C	
С	Preheat Time (s)	90 - 120s	
D	Melting Temperature (°C)	230°C	
E	Time above Melting Temperature (s)	30s	
F	Peak Temperature, at Terminal (°C)	260°C	
G	Dwell Time at Peak Temperature (s)	10s	
Н	Cool-down (°C/s)	<6°C/s	

(2) Wave Solder:

Maximum Temperature: 260°C (at terminal)

Maximum Time: 10s

Pre-heating: 100 - 150°C (30 - 90s)

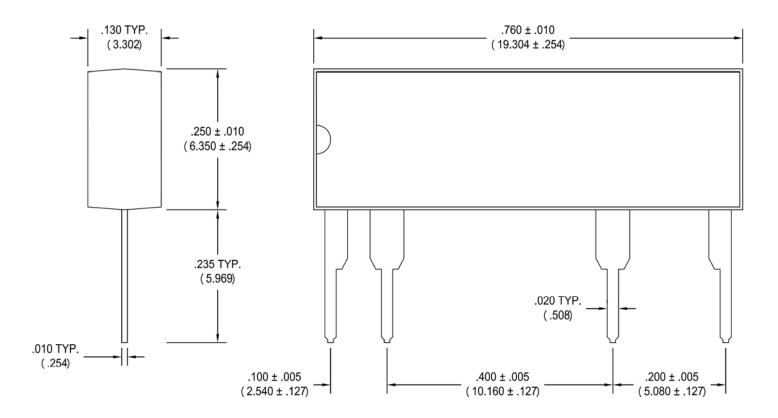
Single Occurrence

(3) Hand Solder:

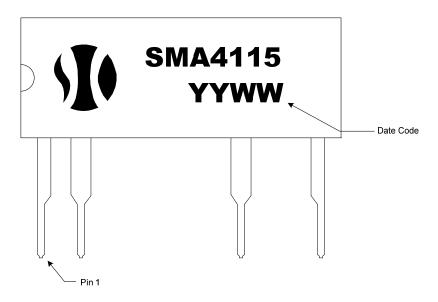
Maximum Temperature: 350°C (at tip of soldering iron)

Maximum Time:

Single Occurrence


3s

SMA4115 Package Dimensions


4 PIN SIP Package

Note: All dimensions in inches with millimeters [mm] in parenthesis ()

SMA4115 Package Marking

SMA4115 Package Weights

Device	Single Unit	Full Tube (25pcs)	Full Pouch (10 tubes)
SMA4115(-H)	0.88	35	370

Note: All weights above are in GRAMS, and include packaging materials where applicable

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notices.

SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.