

SAW Components

SAW Duplexer WCDMA / LTE Band 1 / CDMA 1x

Series/type: Ordering code:

B8635 B39212B8635P810

Date: Version: November 19, 2014 2.3

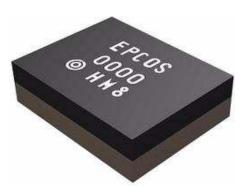
© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

B8635

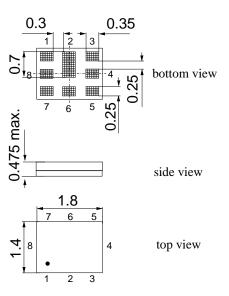
1950.0 / 2140.0 MHz

SAW Components

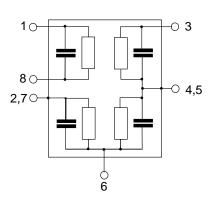

SAW Duplexer

Data sheet

SMD


Application

- Low-loss SAW duplexer for mobile telephone WCDMA / LTE Band 1 and CDMA 1x systems
- Low insertion attenuation
- Low amplitude ripple
- Usable passband 60 MHz
- Single-ended to balanced transformation in Antenna-Rx path
- Impedance transformation 50 Ω to 100 Ω in Antenna-Rx path
- High isolation between Tx and Rx


Features

- Package size 1.8 x 1.4 mm²
- Max. package height 0.475mm
- RoHS compatible
- Approximate weight 0.0038g
- Package for Surface Mount Technology (SMT)
- Ni terminals, Au-plated
- Balanced Rx port, unbalanced Tx port
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitive Level 3

Pin configuration

- 3 Tx input, unbalanced
- 6 Antenna
- 1, 8 Rx output, balanced
- 2, 4, 5, 7 To be grounded

SAW Components

SAW Duplexer

Data sheet

Characteristics

Temperature range for specification:
TX terminating impedance:
ANT terminating impedance:
RX teminating impedance:

 $\begin{array}{rcl} T &=& -30 \ ^{\circ}\text{C} \ \text{to} \ +90 \ ^{\circ}\text{C} \\ Z_{\text{Tx}} &=& 50 \ \Omega \\ Z_{\text{Ant}} &=& 50 \ \Omega \ || \ 2.7 \ \text{nH} \\ Z_{\text{Rx}} &=& 100 \ \Omega \ (\text{balanced}) \ || \ 10.0 \ \text{nH} \end{array}$

Characteristics T	x-Ant	enna			min.	typ. @ 25 °C	max.	
Center frequency	/			f _c		1950.0		MHz
Maximum insertie	on att	enuation		α_{max}				
1920.0		1980.0	MHz			1.5	2.0	dB
1922.4		1977.6	MHz	$\alpha_{WCDMA}^{1)}$		1.4	1.9	dB
Amplitude ripple	(p-p)			Δα				
1920.0		1980.0	MHz			0.6	1.1	dB
1922.4		1977.6	MHz	$\alpha_{WCDMA}^{(1)}$		0.5	1.0	dB
Error Vector Mag	nitud	е		EVM ²⁾				
1922.4		1977.6	MHz			0.7	2.0	%
TX port VSWR								
1920.0		1980.0	MHz			1.6	2.0	
ANT port VSWR								
1920.0		1980.0	MHz			1.4	2.0	

SMD

 Attenuation of WCDMA signal (Power Transfer Function). Please refer to page 8 of this document.

²⁾ Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141

3

SAW Components

SAW Duplexer

Data sheet

Characteristics

Temperature range for specification: TX terminating impedance: ANT terminating impedance:

RX teminating impedance:

T = -30 °C to +90 °C $Z_{Tx} =$ 50 Ω

SMD

 $Z_{Ant}^{'}$ = 50 Ω || 2.7 nH Z_{Rx} = 100 Ω (balanced) || 10.0 nH

Characteristics Tx-Antenna						typ.	max.	
						@ 25 °C		
Attenuation				α				
10.0		420.0	MHz		30	56		dB
420.0		494.0	MHz		44	54	—	dB
843.0		894.0	MHz		38	44		dB
1565.42		1573.374	MHz		39	42		dB
1573.374		1577.466	MHz		39	42	—	dB
1577.466		1585.42	MHz		39	43		dB
1597.5515		1605.886	MHz		39	43		dB
1605.886		1805.0	MHz		25	34	—	dB
1805.0		1865.0	MHz		25	31	—	dB
1865.0		1880.0	MHz		10	33		dB
2010.0		2025.0	MHz		19 ¹⁾	24		dB
2110.0		2170.0	MHz		42	45		dB
2112.4		2167.6	MHz	$\alpha_{WCDMA}^{2)}$	42	45		dB
2400.0		2500.0	MHz		30	35		dB
2620.0		2690.0	MHz		20	32		dB
3840.0		3960.0	MHz		19	23		dB
5150.0		5940.0	MHz		12	17		dB

1) Temperature range for this specification is +15 to +85 °C

²⁾ Attenuation of WCDMA signal (Power Transfer Function). Please refer to page 8 of this document.

4

SAW Components

SAW Duplexer

Data sheet

Characteristics

Temperature range for specification:
TX terminating impedance:
ANT terminating impedance:
RX teminating impedance:

 $T = -30 \degree C \text{ to } +90 \degree C$ $Z_{Tx} = 50 \Omega$ $Z_{Ant} = 50 \Omega \parallel 2.7 \text{ nH}$ $Z_{Rx} = 100 \Omega \text{ (balanced)} \parallel 10.0 \text{ nH}$

SMD

Maximum insertion attenuation α_{max} 2110.0 2170.0 MHz 2112.4 2167.6 MHz $\alpha_{WCDMA}^{1/1}$ Amplitude ripple (p-p) $\Delta \alpha$ 2112.4 2170.0 MHz 2110.0 2170.0 MHz 2112.4 2167.6 MHz $\alpha_{WCDMA}^{1/1}$ Error Vector Magnitude EVM2 ² ANT port VSWR	25 °C	max.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40.0		MHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Amplitude ripple (p-p) $\Delta \alpha$ 2110.0 2170.0 MHz — — 0 2112.4 2167.6 MHz $\alpha_{WCDMA}^{(1)}$ — 0 Error Vector Magnitude EVM2) EVM2) — 0 2112.4 2167.6 MHz — 0 ANT port VSWR — — — — —	1.9	2.2	dB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9	2.1	dB
2112.4 2167.6 MHz $\alpha_{WCDMA}^{(1)}$ — Error Vector Magnitude EVM ²) — — 2112.4 2167.6 MHz — ANT port VSWR — — —			
Error Vector Magnitude EVM ²⁾ 2112.4 2167.6 MHz — ANT port VSWR	0.3	0.7	dB
2112.4 2167.6 MHz —	0.3	0.7	dB
ANT port VSWR			
•	1.0	2.0	%
2110.0 2170.0 MHz —			
	1.6	2.0	
RX port VSWR			
2110.0 2170.0 MHz —	1.7	2.0	
Common Mode Rejection Ratio CMRR			
-	22	—	dB
IMD product level limits ⁴⁾			
at f _{Tx} =1950.0 MHz, f _{Rx} =2140.0 MHz			
	130	-110	dBm
	112	-104	dBm
Blocker 3 4090.0 MHz	117	-106	dBm

¹⁾ Attenuation of WCDMA signal (Power Transfer Function). Please refer to page 8 of this document.

²⁾ Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141

³⁾ A combination of 10° phase balance and 1 dB amplitude balance corresponds to 19.6 dB CMRR.

⁴⁾ IMD product level limits for power levels P_{TX}=21.5 dBm (antenna port output power) and P_{Blocker}=-15dBm (antenna port input power).

5

SAW Components

SAW Duplexer

Data sheet

Characteristics

Temperature range for specification: TX terminating impedance:

ANT terminating impedance:

RX teminating impedance:

T = -30 °C to +90 °C $Z_{Tx} = 50 \Omega$ $Z_{Ant}^{'}$ = 50 Ω || 2.7 nH Z_{Rx} = 100 Ω (balanced) || 10.0 nH

Characteristics A	min.	typ.	max.				
					@ 25 °C		
Attenuation			α				
10.0	 1920.0	MHz		35	58		dB
1920.0	 1980.0	MHz		45	57		dB
1922.4	 1977.6	MHz	$\alpha_{WCDMA}^{1)}$	45	57		dB
1980.0	 2025.0	MHz		15	37		dB
2255.0	 2400.0	MHz		15	44		dB
2400.0	 2484.0	MHz		30	44		dB
2484.0	 6000.0	MHz		35	45		dB

SMD

¹⁾ Attenuation of WCDMA signal (Power Transfer Function). Please refer to page 8 of this document.

6

SAW Components

SAW Duplexer

Data sheet

Characteristics

Temperature range for specification: TX terminating impedance: ANT terminating impedance: RX teminating impedance: $\begin{array}{rcl} T &=& -30 \ ^{\circ}\text{C} \ \text{to} \ +90 \ ^{\circ}\text{C} \\ Z_{\text{Tx}} &=& 50 \ \Omega \\ Z_{\text{Ant}} &=& 50 \ \Omega \ || \ 2.7 \ \text{nH} \\ Z_{\text{Rx}} &=& 100 \ \Omega \ (\text{balanced}) \ || \ 10.0 \ \text{nH} \end{array}$

Characteristics Tx-Rx						max.	
					@ 25 °C		
Differential mode isolation α							
	1977.6	MHz	$\alpha_{WCDMA}^{(1)}$	55	59	—	dB
	1980.0	MHz	-	55 ²⁾	59	—	dB
	1975.0	MHz		55	59	—	dB
	1980.0	MHz		53	59	—	dB
	2167.6	MHz	$\alpha_{WCDMA}^{1)}$	53	59	—	dB
	2170.0	MHz	-	53	59	—	dB
	3970.0	MHz		20	54	—	dB
	5950.0	MHz		20	49	—	dB
olati	on		α				
	1977.6	MHz	$\alpha_{WCDMA}^{(1)}$	47	50	—	dB
	1980.0	MHz		47	50	—	dB
	sola slati	solation 1977.6 1980.0 1975.0 1980.0 2167.6 2170.0 3970.0 5950.0 Diation 1977.6	solation 1977.6 MHz 1980.0 MHz 1975.0 MHz 1980.0 MHz 2167.6 MHz 2170.0 MHz 3970.0 MHz 5950.0 MHz blation 1977.6 MHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	α α α 1977.6 MHz $\alpha_{WCDMA}^{(1)}$ 55 59 1980.0 MHz 555 59 1975.0 MHz 55 59 1975.0 MHz 53 59 1980.0 MHz 53 59 1980.0 MHz 53 59 1980.0 MHz 53 59 2167.6 MHz $\alpha_{WCDMA}^{(1)}$ 53 59 2170.0 MHz 20 54 3970.0 MHz 20 54 5950.0 MHz $\alpha_{WCDMA}^{(1)}$ 47 50

SMD

 Attenuation of WCDMA signal (Power Transfer Function). Please refer to page 8 of this document.

²⁾ Valid for room temperature at 25°C.

7

B8635

1950.0 / 2140.0 MHz

SAW Components

SAW Duplexer

Data sheet

SMD

Annotation for characteristics section

Attenuation of W-CDMA signal (Power Transfer Function, α_{W-CDMA}) is determined by

$$\int_{-\infty}^{\infty} \left| S_{ds21}(f) H_{RRC}(f - f_{Carrier}) \right|^2 df$$

with $\rm f_{Carrier}$ according to 3GPP TS 25.101 (e.g. for UMTS pass band, $\rm f_{Carrier}$ ranges from 1922.4 MHz (lowest Tx channel) to 1977.6 MHz (highest Tx channel)). Here, $\rm H_{RRC}(f)$ is the transfer function of the root-raised cosine transmit pulse shaping filter according to 3GPP TS 25.101 with the following normalization:

$$\int_{-\infty}^{\infty} \left| H_{RRC}(f) \right|^2 df = 1$$

1950.0 / 2140.0 MHz

SAW Components

SAW Duplexer Data sheet

SMD

Maximum ratings

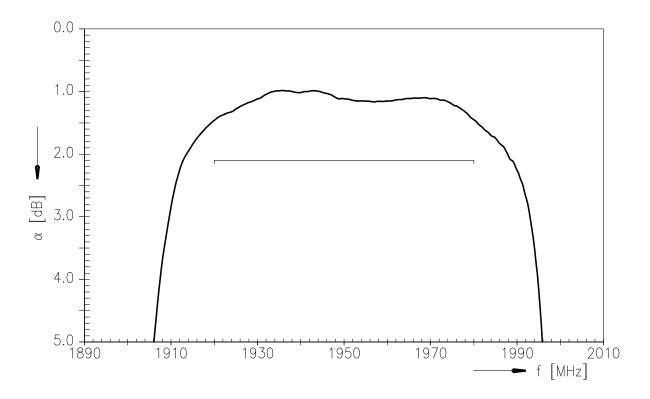
Storage temperature range	T _{stg}	-40/+85	°C	
DC voltage	V _{DC}	5 ¹⁾	V	
ESD voltage	V _{ESD}	50 ²⁾	V	Machine Model
		250 ³⁾	V	Human Body Model
		600 ⁴⁾	V	Charged Device Model
Input power at				
1920.0 1980.0 MHz	P _{in}	29	dBm	continuous wave
elsewhere	P _{in}	10	dBm	J $T = 50 ^{\circ}\text{C}, 5000 \text{h}$

¹⁾ 168h Damp Heat Steady State acc. to IEC 60068-2-67 Cy

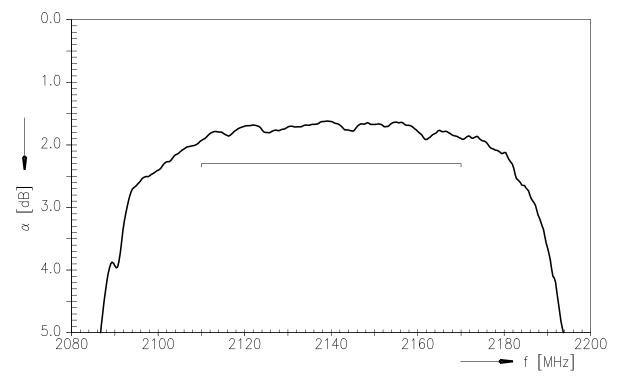
²⁾ acc. to JESD22-A115B (MM - Machine Model), 10 negative and 10 positive pulses.
 ³⁾ acc. to JESD22-A114F (HBM - Human Body Model), 1 negative and 1 positive pulses.

⁴⁾ acc. to JESD22-C111C (CDM - Charged Device Model), 3 negative and 3 positive pulses.

1950.0 / 2140.0 MHz


SAW Components

SAW Duplexer

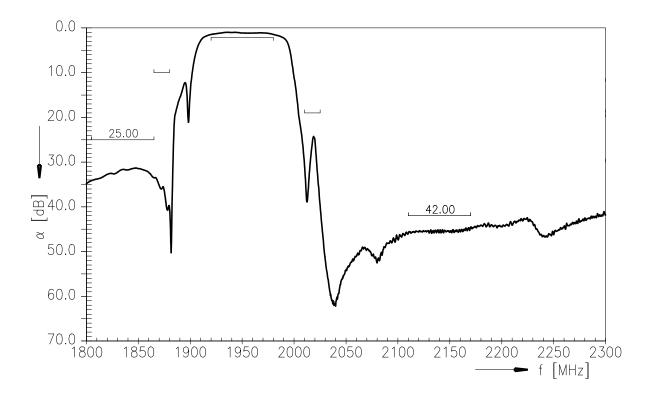

Data sheet

SMD

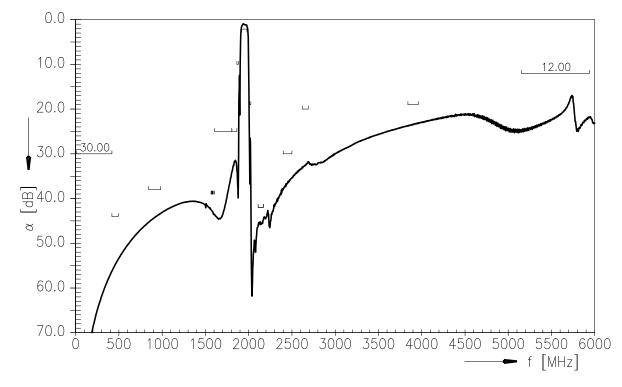
Frequency Response TX-ANT

Frequency Response RX-ANT

1950.0 / 2140.0 MHz


SAW Components

SAW Duplexer


Data sheet

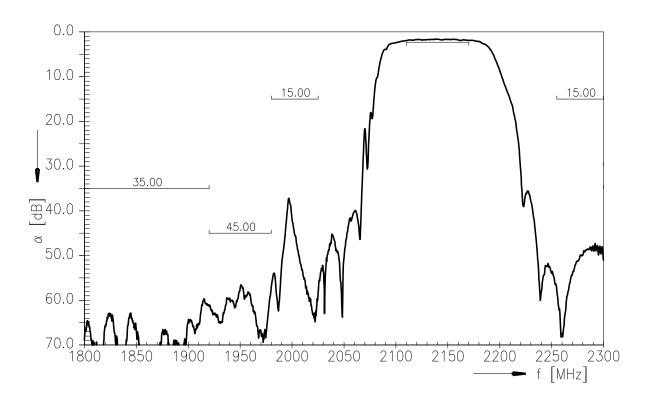
SMD

Frequency Response TX-ANT

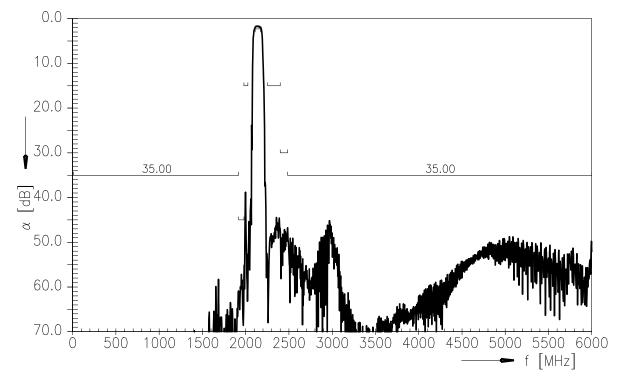
Frequency Response TX-ANT (wideband)

B8635

1950.0 / 2140.0 MHz


SAW Components

SAW Duplexer

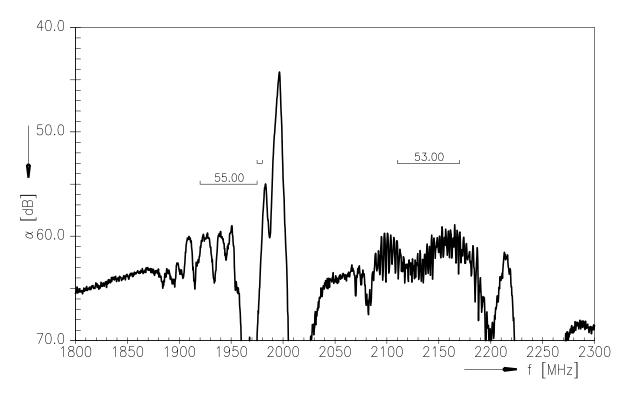

Data sheet

SMD

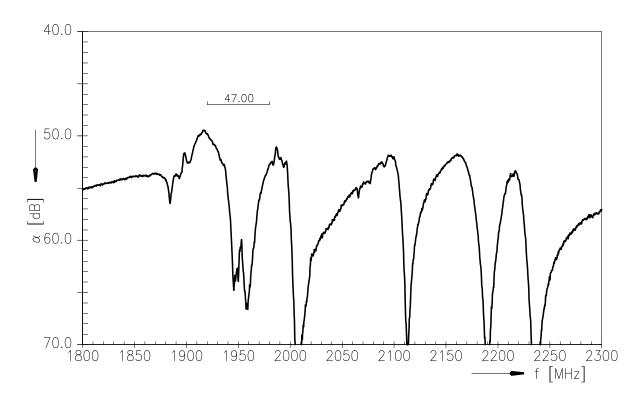
Frequency Response RX-ANT

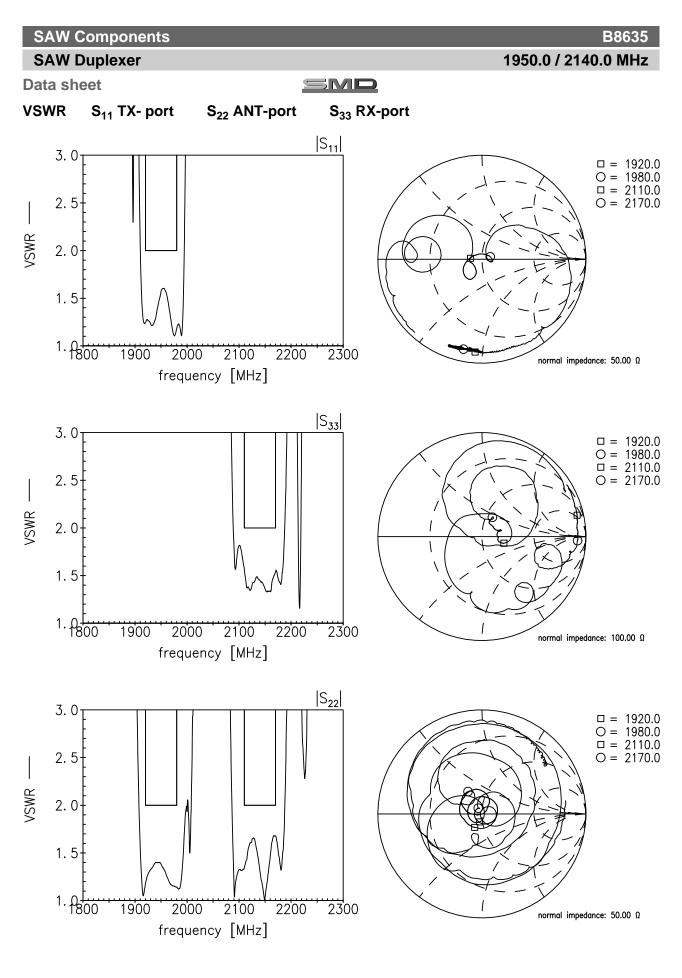
Frequency Response RX-ANT (wideband)

1950.0 / 2140.0 MHz


SAW Components

SAW Duplexer


Data sheet


SMD

Frequency Response TX-RX (Differential mode)

Frequency Response TX-RX (Common mode)

1950.0 / 2140.0 MHz

SAW Components

SAW Duplexer

Data sheet

SMD

References

Туре	B8635
Ordering code	B39212B8635P810
Marking and package	C61157-A8-A149
Packaging	F61074-V8259-Z000
Date codes	L_1126
S-parameters	B8635_NB_UN.s4p, B8635_WB_UN.s4p see file header for port/pin assignment table
Soldering profile	S_6001
RoHS compatible	RoHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8 th , 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.
Moldability	Before using in overmolding environment, please contact your EPCOS sales office.
Matching coils	See Inductor pdf-catalog <u>http://www.tdk.co.jp/tefe02/coil.htm#aname1</u> and Data Library for circuit simulation <u>http://www.tdk.co.jp/etvcl/index.htm</u>

For further information please contact your local EPCOS sales office or visit our webpage at www.epcos.com .

Published by EPCOS AG

Systems, Acoustics, Waves Business Group

P.O. Box 80 17 09, 81617 Munich, GERMANY

 $\ensuremath{\mathbb{C}}$ EPCOS AG 2014. This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.

from the foregoing for customer-specific products.

- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.