

S810500MG

- Infrared Laser Diode
- 810 nm, 500 mW
- Multi Mode
- 5.6mm TO-Can with PD
- Flat window cap

rev.1.0 13.07.2016

Description

S810500MG is an infrared laser diode emitting at typically 810 nm with rated output power of 500 mW cw, in a standard 5.6 mm TO package with integrated monitor photodiode and flat window cap.

Maximum Ratings (T_{CASE} = 25°C)

Deremeter	Symbol	Valu	11:5:4	
Parameter	Symbol	Min.	Max.	Unit
Output power	Ро		500	mW
LD Reverse Voltage	V _R		2	V
PD Reverse Voltage	V _{RPD}		-	V
Operating Temperature	T_{CASE}	- 10	+ 50	°C
Storage Temperature	$T_{\rm STG}$	- 40	+ 85	°C

Laser Characteristics (T_{CASE} = 25°C, Po=500mW)

Parameter		Symbol	Values			l loit
			Min.	Тур.	Max.	Unit
Emission Wavelength		λ_{peak}	807	810	813	nm
Threshold Current		I _{th}		70		mA
Operating Current		I _F		560		mA
Operating Voltage		V_{F}		1.9		V
Beam Divergence (FWHM)	Parallel	Θ _{II}		10		deg.
	Perpendicular	Θ_{\perp}		31		deg.
Slope Efficiency (375mW-125mW)		η	0.8	1.1		mW/mA
Chip size				300*600		μm
PD Monitor Current		I _m		0.6	2.5	mA

Performance Characteristics

Drawing

Electrical Connection

Pin 1 PD Anode	
Pin 2 LD Cathode	
Pin 3 LD Anode, PD Cathode, Ground	ł

ESD Caution

Always do handle laser diodes with extreme caution to prevent electrostatic discharge, the primary cause of unexpected diode failure. ESD failures can be prevented by always wearing wrist straps, only using a grounding workplace, and following strict anti-static guidelines when handling the laser diode

Safety Advice

This laser diode emits highly concentrated IR light which can be hazardous to the human eye and skin. This diode is classified as CLASS 4 laser product according to IEC 60825-1 and 21 CFR Part 1040.10 Safety Standards.

This product is comply with 21 CFR Part 1040.10

Operating Considerations

Operating the laser diode outside of its maximum ratings may cause failure or a safety hazard. The diode may be damaged by excessive drive currents or switching transients. If the diode is operated using a power supply, it is strongly recommended to connect the diode with the output voltage set to zero. The voltage should then be increased slowly and with great caution, while at the same time carefully monitoring the laser diodes output power and drive current. The laser diode will show accelerated degradation with increased temperature, and it is advised to keep the case temperature low therefor, by means of heat sinking the device.