Tel:
Fax: email

The ACTF 8026-868.69-QCC8C is a RF low-loss filter in a surface-mount ceramic QCC8C case for remote control receivers.

1. Package Dimension (QCC8C)

Pin	Connection
2	Input
6	Output
$1,3,5,7$	to be Grounded
4,8	Case Ground

2. Marking

Laser Printing

Sign	Data (unit: mm)	Sign	Data (unit: $\mathbf{m m}$)
A	2.08	E	1.20
B	0.60	F	1.35
C	1.27	G	5.00
D	2.54	H	5.00

3. Test Circuit

4. Typical Frequency Response

5. Performance

5-1.Maximum Rating

Rating		Value	Unit
Input Power Level	$\mathrm{P}_{\text {in }}$	10	dBm
DC Voltage	V_{DC}	12	V
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +90	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{A}	-40 to +90	${ }^{\circ} \mathrm{C}$

5-2.E lectronic Characteristics (@ $25{ }^{\circ} \mathrm{C}$)

Characteristic		Minimum	Typical	Maximum	Unit
Center Frequency (center frequency between 3dB points)	f_{C}		868.69		MHz
Insertion Loss $868.39 \text {... } 868.99 \mathrm{MHz}$	IL	--	3.8	5.0	dB
3dB Pass Bandwidth	BW_{3}		1.9		MHz
$\begin{array}{r} \text { Relative Attenuation (relative to IL) } \\ 10.00 \ldots 700.00 \mathrm{MHz} \\ 700.00 \ldots 830.00 \mathrm{MHz} \\ 830.00 \ldots 863.00 \mathrm{MHz} \\ 873.00 \ldots 880.00 \mathrm{MHz} \\ 880.00 \ldots .1000 .0 \mathrm{MHz} \end{array}$	\pm rel	$\begin{aligned} & 50 \\ & 33 \\ & 23 \\ & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 38 \\ & 28 \\ & 20 \\ & 35 \end{aligned}$	-- -- -- --	$\begin{aligned} & d B \\ & d B \\ & d B \\ & d B \\ & d B \end{aligned}$

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

NOTE:

1. The frequency f_{c} is defined as the midpoint between the 3 dB frequencies.
2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50 © test system with VSWR d1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_{c}. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
4. Frequency aging is the change in f_{c} with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
5. Turnover temperature, T_{0}, is the temperature of maximum (or turnover) frequency, f_{0}. The nominal frequency at any case temperature, T_{C}, may be calculated from: $f=f_{0}\left[1-F T C\left(T_{0}-T_{C}\right)^{2}\right]$.
6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
