

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAIRCHILD

KA2803B

Earth Leakage Detector

Features

－Low Power Consumption： $5 \mathrm{~mW}, 100 \mathrm{~V} / 200 \mathrm{~V}$
－Built－In Voltage Regulator
－High－Gain Differential Amplifier
－$\quad 0.4 \mathrm{~mA}$ Output Current Pulse to Trigger SCRs
－Low External Part Count
－DIP \＆SOP Packages，High Packing Density
－High Noise Immunity，Large Surge Margin
－Super Temperature Characteristic of Input Sensitivity
－Wide Operating Temperature Range：
$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
－Operation from 12 V to 20 V Input

Functions

－Differential Amplifier
－Level Comparator
－Latch Circuit

Description

The KA2803B is designed for use in earth leakage circuit interrupters，for operation directly off the AC line in breakers．The input of the differential amplifier is connected to the secondary coil of ZCT（Zero Current Transformer）．The amplified output of differential amplifier is integrated at external capacitor to gain adequate time delay specified in KSC4613．The level comparator generates a high level when earth leakage current is greater than the fixed level．

Figure 1. Block Diagram

Application Circuit

Figure 2. Full-Wave Application Circuit

Application Information

(Refer to full-wave application circuit in Figure 2)
Figure 2 shows the KA2803B connected in a typical leakage current detector system. The power is applied to the V_{cc} terminal (Pin 8) directly from the power line. The resistor R_{S} and capacitor C_{S} are chosen so that Pin 8 voltage is at least 12 V . The value of C_{s} is recommended above $1 \mu \mathrm{~F}$.

If the leakage current is at the load, it is detected by the zero current transformer (ZCT). The output voltage signal of ZCT is amplified by the differential amplifier of the KA2803B internal circuit and appears as a half-cycle sine wave signal referred to input signal at the output of the amplifier. The amplifier closed-loop gain is fixed about 1000 times with internal feedback resistor to compensate for zero current transformer (ZCT) variations. The resistor R_{L} should be selected so that the breaker satisfies the required sensing current. The protection resistor R_{P} is not usually used when high current is injected at the breaker; this resistor should be

Figure 3. Half-Wave Application Circuit
used to protect the earth leakage detector IC (KA2803B). The range of R_{P} is from several hundred Ω to several $k \Omega$.

Capacitor C_{1} is for the noise canceller and a standard value of C_{1} is $0.047 \mu \mathrm{~F}$. Capacitor C 2 is also a noise canceller capacitance, but it is not usually used.

When high noise is present, a $0.047 \mu \mathrm{~F}$ capacitor may be connected between Pins 6 and 7. The amplified signal finally appears at the Pin 7 with pulse signal through the internal latch circuit of the KA2803B. This signal drives the gate of the external SCR, which energizes the trip coil, which opens the circuit breaker. The trip time of the breaker is determined by capacitor C_{3} and the mechanism breaker. This capacitor should be selected under $1 \mu \mathrm{~F}$ to satisfy the required trip time. The full-wave bridge supplies power to the KA2803B during both the positive and negative half cycles of the line voltage. This allows the hot and neutral lines to be interchanged.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage		20	V
I_{CC}	Supply Current		8	mA
P_{D}	Power Dissipation		300	mW
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature, Soldering 10 Seconds		260	${ }^{\circ} \mathrm{C}$
T_{A}	Operation Temperature Range	-25	+80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions		Test Circuit	Min.	Typ.	Max.	Units
Icc	Supply Current 1	$\begin{aligned} & V_{C C}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=\mathrm{OPEN} \\ & \mathrm{~V}_{\mathrm{I}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$	Figure 4			580	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		300	400	530	
			$\mathrm{T}_{\mathrm{A}}=+80^{\circ} \mathrm{C}$				480	
V_{T}	Trip Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V} \sim 2.02 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2 \end{aligned}$		Figure 5	14	16	18	$\begin{gathered} \mathrm{mV} \\ (\mathrm{~ms}) \end{gathered}$
		Note 1			12.5	14.2	17.0	
$\mathrm{l}_{\text {(D) }}$	Differential Amplifier Current Current 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}} \sim \mathrm{~V}_{\mathrm{I}}=30 \mathrm{mV}, \\ & \mathrm{~V}_{\mathrm{OD}}=1.2 \mathrm{~V} \end{aligned}$		Figure 7	-12	20	-30	$\mu \mathrm{A}$
	Differential Amplifier Current Current 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{OD}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}, \\ & \mathrm{~V}_{\mathrm{I}} \text { Short=}=\mathrm{V}_{\mathrm{P}} \end{aligned}$		Figure 8	17	27	37	
10	Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Sc}}=1.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OS}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=16.0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$	Figure 9	200	400	800	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		200	400	800	
			$\mathrm{T}_{\mathrm{A}}=+80^{\circ} \mathrm{C}$		100	300	600	
$\mathrm{V}_{\text {Scon }}$	Latch-On Voltage	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}$		Figure 10	0.7	1.0	1.4	V
Iscon	Latch Input Current	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}$		Figure 11	-13	-7	-1	$\mu \mathrm{A}$
lost	Output Low Current	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OsL }}=0.2 \mathrm{~V}$		Figure 12	200	800	1400	$\mu \mathrm{A}$
$V_{\text {IDC }}$	Differential Input Clamp Voltage	$\mathrm{V}_{C C}=16 \mathrm{~V}, \mathrm{l}_{\mathrm{IDC}}=100 \mathrm{~mA}$		Figure 13	0.4	1.2	2.0	V
$\mathrm{V}_{\text {SM }}$	Maximum Current Voltage	$\mathrm{I}_{\mathrm{SM}}=7 \mathrm{~mA}$		Figure 14	20	24	28	V
$\mathrm{I}_{\mathrm{S} 2}$	Supply Current 2	$\mathrm{V}_{\text {CC }}=12.0 \mathrm{~V}, \mathrm{~V}_{\text {OSL }}=0.6 \mathrm{~V}$		Figure 15	200	400	900	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SOFF }}$	Latch-Off Supply Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{OS}}=12.0 \mathrm{~V} \\ \hline \mathrm{~V}_{\mathrm{SC}}=1.8 \mathrm{~V} \\ \hline \end{array}$		Figure 16	7	8	9	V
		$\mathrm{I}_{\text {IDC }}=100.0 \mathrm{~mA}$						
ton	Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}} \\ & 1 \mathrm{~V}<\mathrm{V}_{\mathrm{x}}<5 \mathrm{~V} \end{aligned}$	$\mathrm{R}^{-} \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V},$	Figure 17	2	3	4	ms

Note:

1. Guaranteed by design, not tested in production.

Test Circuits

Figure 4. Supply Current 1

* $V_{p}=V$ pin1-0.03V

Figure 6. $\mathrm{V}_{\mathrm{PN} 1}$ for V_{P} Measurement

Figure 8. Differential Amplifier Output Current 2

Figure 5. Trip Voltage

Figure 7. Differential Amplifier Output Current 1

Figure 9. Output Current

Test Circuits (Continued)

Figure 10.Latch-On Voltage

Figure 12.Output Low Current

Figure 14. Maximum Current Voltage

Figure 16.Latch-Off Supply Voltage

Figure 11.Latch Input Current

Figure 13. Differential Input Clamp Voltage

Figure 15.Supply Current 2

Figure 17.Response Time

Typical Performance Characteristics

Figure 18.Supply Current

Figure 20.Differential Amplifier Output Current $\left(\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{OD}}=0.8 \mathrm{~V}\right)$

Figure 22.Output Low Current

Figure 19. Differential Amplifier Output Current ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{I}}=30 \mathrm{mV}, \mathrm{V}_{\mathrm{OD}}=1.2 \mathrm{~V}$)

Figure 21. Output Current

Figure 23.Vcc Voltage vs. Supply Current 1

Typical Performance Characteristics (Continued)

Figure 24.Differential Amplifier Output Current 1

Figure 26.Latch Input Current

Figure 28.Output Current

Figure 25.Differential Amplifier Output

Figure 27.Output Low Current

Figure 29. Vcc Voltage vs. Supply Current 2

Typical Performance Characteristics (Continued)

Figure 30. Differential Input Clamp Voltage

Figure 32.Latch-On Input Voltage

Figure 34.Trip and Output

Figure 31.Latch-Off Supply Voltage

Figure 33.Maximum Supply

Figure 35.Output Response Time

Physical Dimensions

N08EREVG

Figure 36.8-Lead, Dual Inline Package (DIP)
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging.

Physical Dimensions

Figure 37.8-Lead, Small Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packagingl.

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowertm	F-PFS ${ }^{\text {TM }}$		Sync-Lock ${ }^{\text {Tm }}$
AX-CAP ${ }^{\text {®** }}$	FRFET ${ }^{\text {® }}$	@	5 SYSTEM
BitSiC'm	Global Power Resource ${ }^{\text {sm }}$	PowerTrench ${ }^{(0)}$	\checkmark GENERAL ${ }^{\text {ax }}$
Build it Now ${ }^{\text {TM }}$	GreenBridge ${ }^{\text {™ }}$	Power ${ }^{\text {S }}{ }^{\text {TM }}$	TinyBoost ${ }^{\text {(0 }}$
CorePLUSTM	Green FPS ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {® }}$
CorePOMER ${ }^{\text {™ }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	TinyCalc ${ }^{\text {Tm }}$
CROSSVOLT ${ }^{\text {Tm }}$	Gmax ${ }^{\text {m }}$	QS ${ }^{\text {m }}$	TinyLogic ${ }^{\text {® }}$
CTL'M	GTOTM	Quiet Series ${ }^{\text {™ }}$	TINYOPTOTM
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {Tm }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {a }}$	ISOPLANAR ${ }^{\text {TM }}$	$)^{\text {mm }}$	TinyPMM ${ }^{\text {™ }}$
Dual Cool ${ }^{\text {TM }}$	Making Small Speakers Sound Louder		Tiny M ${ }^{\text {re }}{ }^{\text {TM }}$
Ecospark ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	Saving our morld, 1 mWWMWN at a time ${ }^{\text {TM }}$	TranSictm
EfficientMax ${ }^{\text {™ }}$	MegaBuck ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {™ }}$
ESBC'm	MICROCOUPLER ${ }^{\text {Tm }}$	SmartMax ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {®** }}$
${ }^{(8)}$	MicroFet ${ }^{\text {TM }}$	SMART STARTTM	μ SerDes ${ }^{\text {TM }}$
Fairchild ${ }^{\text {® }}$	MicroPak ${ }^{\text {mm }}$	${ }_{\text {SPM }}$ Solutions for Your Success ${ }^{\text {™ }}$	W
Fairchild Semiconductor ${ }^{\text {(10 }}$	MicroPak $2^{\text {™ }}$	SPM ${ }^{\text {a }}$	Serdes:
Fairchild Semiconductor	MillerDrive ${ }^{\text {m }}$	STEALTH ${ }^{\text {TM }}$	UHC ${ }^{\text {as }}$
	MotionMax ${ }^{\text {™ }}$	SuperFET	Ultra FRFET ${ }^{\text {m }}$
FAST ${ }^{\text {F }}$	mWSaver ${ }^{\text {® }}$	Supersotim-3	UniFET ${ }^{\text {TM }}$
FastyCore ${ }^{\text {m/ }}$	OptoHiTtM	SuperSOTm-6	VCX ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\circledR}$ OPTOPLANAR ${ }^{\text {® }}$	SupreMOS ${ }^{\text {a }}$	VisualMax ${ }^{\text {Tm }}$
FPS ${ }^{\text {™ }}$		SyncFET ${ }^{\text {TM }}$	VoltagePlus ${ }^{\text {TM }}$ $\times S^{\text {TM }}$

Tradenarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHID SEMICONDUCTORRESERVES THERIGHT TOMAKE CHANGES WTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TOIMPROVE RELIABIUTY, FUNCTION, ORDESIGN. FAIRCHILDDOESNOT ASSUME ANY LIABIUTY ARISING OUT OF THE APFLICATION OR USE OF ANY PRODUCT ORCIRCUITDESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDERITS PATENTRGHTS, NOR THERIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHID'S WORLDMDE TERMS AND CONDITIONS, SPECIFICALLY THE MARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES ORSYSTEMS MTHOUT THE EXPRESS MRITTEN APPROVAL OF FAIRCHID SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Compration's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, whw.fairchildsemi.oom, under Sales Support
Counterfeiting of semiconductor parts is a growing problem in the industy. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address ary warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to cormbat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

