FEATURES

- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.5 ns at 3.3 V
- Typical $\mathrm{V}_{\text {olp }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\text {OHV }}$ (Output V_{OH} Undershoot) $>\mathbf{2} \mathrm{V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- $\mathrm{I}_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{cc}}$)
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This 16-bit edge-triggered D-type flip-flop is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.

DGG, DGV, OR DL PACKAGE
(TOP VIEW)

1 $\overline{O E}$	48 1CLK
1Q1 2	47] 1D1
1Q2 3	46 1D2
GND 4	45 GND
1Q3 5	44 103
1Q4 ${ }^{6}$	43 1D4
$\mathrm{V}_{\mathrm{cc}}{ }^{7}$	${ }^{42} \mathrm{v}_{\mathrm{CC}}$
1Q5 8	41.1 D
1Q6 9	401 D 6
GND 10	$39]$ GND
1Q7 ${ }^{11}$	381 107
1Q8 12	371 D 8
2Q1 ${ }^{13}$	36 2D1
2Q2 14	$35] 2 \mathrm{D} 2$
GND 15	34 GND
2Q3 16	33 2D3
2Q4 17	32] 2D4
$\mathrm{v}_{\mathrm{CC}}[18$	${ }_{31} \mathrm{v}_{\mathrm{CC}}$
2Q5 19	30 2D5
2Q6 20	29] 206
GND 21	28 GND
2Q7 22	27.2 D
2Q8 [23	26 2D8
2 $\overline{O E}$ [24	25 2CLK

ORDERING INFORMATION

TA	PAC	$\mathrm{EE}^{(1)}$	ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	FBGA - GRD	Tape and reel	SN74LVCH16374AGRDR	LDH374A
	FBGA - ZRD (Pb-free)		SN74LVCH16374AZRDR	
	SSOP - DL	Tube	SN74LVCH16374ADL	LVCH16374A
			74LVCH16374ADLG4	
		Tape and reel	SN74LVCH16374ADL	
			74LVCH16374ADLRG4	
	TSSOP - DGG	Tape and reel	SN74LVCH16374ADGGR	LVCH16374A
			74LVCH16374ADGGRG4	
	TVSOP - DGV	Tape and reel	SN74LVCH16374ADGVR	LDH374A
			74LVCH16374ADGVRE4	
	VFBGA - GQL	Tape and reel	SN74LVCH16374AGQLR	LDH374A
	VFBGA - ZQL (Pb-free)		SN74LVCH16374AZQLR	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus is a trademark of Texas Instruments.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

A buffered output-enable $(\overline{\mathrm{OE}})$ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ system environment.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

The SN74LVCH16374A is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as two 8 -bit flip-flops or one 16 -bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.

This device is fully specified for partial-power-down applications using $\mathrm{I}_{\text {off }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

GQL OR ZQL PACKAGE (TOP VIEW)
$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
A ()()()()()()
()()()()() ()
() ()()()() ()
()()()()()()
() () () ()
() () () ()
() () () () () ()
() () () () () ()
()()()()()()
()()()()()()
() () () () () ()

TERMINAL ASSIGNMENTS ${ }^{(1)}$
(56-Ball GQL/ZQL Package)

	1	2	3	4	5	6
A	$1 \overline{O E}$	NC	NC	NC	NC	1CLK
B	1Q2	1Q1	GND	GND	1D1	1D2
C	1Q4	1Q3	V_{CC}	$\mathrm{V}_{\text {CC }}$	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
E	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
H	2Q5	2Q6	V_{CC}	$\mathrm{V}_{\text {CC }}$	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
K	2ОE	NC	NC	NC	NC	2CLK

(1) NC - No internal connection

TERMINAL ASSIGNMENTS ${ }^{(1)}$
(54-Ball GRD/ZRD Package)

	1	2	3	4	5	6
A	1Q1	NC	1 $\overline{O E}$	1CLK	NC	1D1
B	1Q3	1Q2	NC	NC	1D2	1D3
C	1Q5	1Q4	V_{CC}	V_{CC}	1D4	1D5
D	1Q7	1Q6	GND	GND	1D6	1D7
E	2Q1	1Q8	GND	GND	1D8	2D1
F	2Q3	2Q2	GND	GND	2D2	2D3
G	2Q5	2Q4	V_{CC}	V_{CC}	2D4	2D5
H	2Q7	2Q6	NC	NC	2D6	2D7
J	2Q8	NC	$2 \overline{O E}$	2CLK	NC	2D8

(1) NC - No internal connection

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS			OUTPUT
$\mathbf{O E}$	CLK	D	Q
L	\uparrow	H	H
L	\uparrow	L	L
L	Hor L	X	Q_{0}
H	X	X	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

Pin numbers shown are for the DGG, DGV, and DL packages.

Absolute Maximum Ratings ${ }^{(1)}$
over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
V_{1}	Input voltage range ${ }^{(2)}$		-0.5	6.5	V
V_{O}	Voltage range applied to any ou	h-impedance or power-off state ${ }^{(2)}$	-0.5	6.5	V
V_{O}	Voltage range applied to any ou	igh or low state ${ }^{(2)(3)}$	-0.5	$\mathrm{V}_{C C}+0.5$	V
I_{K}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
$\mathrm{l}_{\text {OK }}$	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
I_{0}	Continuous output current			± 50	mA
	Continuous current through each			± 100	mA
		DGG package		70	
		DGV package		58	
$\theta_{\text {JA }}$	Package thermal impedance ${ }^{(4)}$	DL package		63	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		GQL/ZQL package		42	
		GRD/ZRD package		36	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

[^0]—

Recommended Operating Conditions ${ }^{(1)}$

			MIN	MAX	UNIT
V_{CC}	Supply voltage	Operating	1.65	3.6	V
		Data retention only	1.5		
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\text {cc }}$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$0.35 \times \mathrm{V}_{\mathrm{CC}}$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.7	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8	
V I	Input voltage		0	5.5	V
V_{O}	Output voltage	High or low state	0	$\mathrm{V}_{\text {cc }}$	V
		High-impedance state	0	5.5	
IOH	High-level output current	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$		-4	mA
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-8	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-12	
		$\mathrm{V}_{C C}=3 \mathrm{~V}$		-24	
loL	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		4	mA
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		8	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		24	
$\Delta t / \Delta v$	Input transition rise or fall rate			10	ns/V
T_{A}	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

(1) All unused control inputs of the device must be held at V_{CC} or $G N D$ to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

INSTRUMENTS 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{cc}	MIN	TYP(1) MAX	UNIT
V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		1.65 V to 3.6 V	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		1.65 V	1.2		
	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$		2.3 V	1.7		
	$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$		2.7 V	2.2		
			3 V	2.4		
	$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		3 V	2.2		
$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		1.65 V to 3.6 V		0.2	V
	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		1.65 V		0.45	
	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		2.3 V		0.7	
	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		2.7 V		0.4	
	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		3 V		0.55	
1	$\mathrm{V}_{1}=0$ to 5.5 V		3.6 V		± 5	$\mu \mathrm{A}$
$\mathrm{l}_{\text {(hold) }}$	$\mathrm{V}_{1}=0.58 \mathrm{~V}$		1.65 V	(2)		$\mu \mathrm{A}$
	$\mathrm{V}_{1}=1.07 \mathrm{~V}$			(2)		
	$\mathrm{V}_{1}=0.7 \mathrm{~V}$		2.3 V	45		
	$\mathrm{V}_{1}=1.7 \mathrm{~V}$			-45		
	$\mathrm{V}_{1}=0.8 \mathrm{~V}$		3 V	75		
	$\mathrm{V}_{1}=2 \mathrm{~V}$			-75		
	$\mathrm{V}_{1}=0$ to $3.6 \mathrm{~V}^{(3)}$		3.6 V		± 500	
$\mathrm{I}_{\text {off }}$	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		0		± 10	$\mu \mathrm{A}$
l_{0}	$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V		3.6 V		± 10	$\mu \mathrm{A}$
	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		36 V		20	A
ICC	$3.6 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}^{(4)}$	$10=0$			20	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$,	Other inputs at V_{CC} or GND	2.7 V to 3.6 V		500	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		3.3 V		5	pF
C	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND		3.3 V		6.5	pF

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) This information was not available at the time of publication.
(3) This is the bus-hold maximum dynamic current required to switch the input from one state to another.
(4) This applies in the disabled state only.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

(1) This information was not available at the time of publication.

WITH 3-STATE OUTPUTS
SCAS757A-DECEMBER 2003-REVISED OCTOBER 2005
www.ti.com

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			(1)		(1)		150		150		MHz
t_{pd}	CLK	Q	(1)	(1)	(1)	(1)		4.9	1.5	4.5	ns
$\mathrm{t}_{\text {en }}$	$\overline{\mathrm{OE}}$	Q	${ }^{(1)}$	(1)	(1)	(1)		5.3	1.5	4.6	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Q	(1)	(1)	(1)	(1)		6.1	1.5	5.5	ns
$\mathrm{t}_{\text {sk(0) }}$										1	ns

(1) This information was not available at the time of publication.

Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance per flip-flop	Outputs enabled		$\mathrm{f}=10 \mathrm{MHz}$	(1)	${ }^{(1)}$	58	
		Outputs disabled	(1)		(1)	24	pr	

(1) This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t}_{\text {PLL }} / t_{\text {PHL }}$	Open
$\mathbf{t}_{\text {PLZ }} / /_{\text {PZL }}$	V $_{\text {LOAD }}$
$\mathbf{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND

V_{CC}	INPUTS		V_{M}	$\mathrm{V}_{\text {LOAD }}$	C_{L}	R_{L}	V_{Δ}
	$\mathrm{V}_{\mathbf{I}}$	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$					
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	500Ω	0.15 V
2.7 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V

NOTES: A. C i includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{e n}$.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Packag Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
74LVCH16374ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
74LVCH16374ADGVRE4	ACTIVE	TVSOP	DGV	48	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
74LVCH16374ADLG4	ACTIVE	SSOP	DL	48	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
74LVCH16374ADLRG4	ACTIVE	SSOP	DL	48	1000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16374ADGGR	ACTIVE	TSSOP	DGG	48	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16374ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16374ADL	ACTIVE	SSOP	DL	48	25	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16374ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16374AGQLR	ACTIVE		GQL	56	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74LVCH16374AZQLR	ACTIVE	$\begin{gathered} \text { BGA MI } \\ \text { CROSTA } \\ \text { R JUNI } \\ \text { OR } \end{gathered}$	ZQL	56	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	SNAGCU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$): TI defines "Green" to mean Pb -Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

ZQL (R-PBGA-N56)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-225 variation BA.
D. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

GQL (R-PBGA-N56)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-225 variation BA.
D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^1]Copyright © 2006, Texas Instruments Incorporated

[^0]: (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 (2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 (3) The value of $\mathrm{V}_{C C}$ is provided in the recommended operating conditions table.
 (4) The package thermal impedance is calculated in accordance with JESD 51-7.

[^1]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

