![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
19-2874; Rev 1; 7/03 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference General Description The single MAX9015/MAX9016 and dual MAX9017- MAX9020 nanopower comparators in space-saving SOT23 packages feature Beyond-the-RailsTM inputs and are guaranteed to operate down to 1.8V. The Agrade packages feature an on-board 1.236V 1% reference, while the B-grade packages feature a 1.24V 1.75% reference. An ultra-low supply current of 0.85A (MAX9019/MAX9020), 1A (MAX9015/MAX9016), or 1.2A (MAX9017/MAX9018) makes the MAX9015- MAX9020 family of comparators ideal for all 2-cell battery monitoring/management applications. The unique design of the MAX9015-MAX9020 output stage limits supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX9015/MAX9017/MAX9019 have a push-pull output stage that sinks and sources current. Large internal output drivers allow Rail-to-Rail(R) output swing with loads up to 6mA. The MAX9016/MAX9018/MAX9020 have an open-drain output stage that makes them suitable for mixed-voltage system design. All devices are available in the ultra-small 8-pin SOT23 package. Refer to the MAX9117-MAX9120 data sheet for similar single comparators with or without reference in a tiny SC70 package. o Ultra-Low Total Supply Current 0.85A (MAX9019/MAX9020) 1.0A (MAX9015A/MAX9016A) 1.2A (MAX9017/MAX9018) o Guaranteed Operation Down to 1.8V o Precision VOS < 5mV (max) o Internal 1.236V 1% Reference (A Grade) o Input Voltage Range Extends 200mV Beyond-the-Rails o CMOS Push-Pull Output with 6mA Drive Capability (MAX9015/MAX9017/MAX9019) o Open-Drain Output Versions Available (MAX9016/MAX9018/MAX9020) o Crowbar-Current-Free Switching o Internal 4mV Hysteresis for Clean Switching o No Phase Reversal for Overdriven Inputs o Dual Versions in Space-Saving 8-Pin SOT23 Package Features MAX9015-MAX9020 Ordering Information PART MAX9015AEKA-T TEMP RANGE -40C to +85C -40C to +85C -40C to +85C -40C to +85C PINPACKAGE 8 SOT23-8 8 SOT23-8 8 SOT23-8 8 SOT23-8 TOP MARK AEIW AEIX AEIQ AEIS Applications 2-Cell Battery Monitoring/Management Ultra-Low Power Systems Mobile Communications Notebooks and PDAs Threshold Detectors/ Discriminators Window Detectors Sensing at Ground or Supply Line Telemetry and Remote Systems Medical Instruments MAX9016AEKA-T MAX9017AEKA-T MAX9017BEKA-T Ordering Information continued at end of data sheet. Pin Configurations appear at end of data sheet. Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. Selector Guide PART MAX9015A MAX9016A MAX9017A MAX9017B MAX9018A MAX9018B MAX9019 MAX9020 COMPARATOR(S) 1 1 2 2 2 2 2 2 INTERNAL REFERENCE (V) 1.236 1% 1.236 1% 1.236 1% 1.240 1.75% 1.236 1% 1.240 1.75% -- -- OUTPUT TYPE Push-pull Open drain Push-pull Push-pull Open drain Open drain Push-pull Open drain SUPPLY CURRENT (A) 1 1 1.2 1.2 1.2 1.2 0.85 0.85 ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference MAX9015-MAX9020 ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE) ....................................................6V IN+, IN-, INA+, INB+, INA-, INB-, REF/INA-, REF..................................(VEE - 0.3V) to (VCC + 0.3V) Output Voltage (OUT_) MAX9015A, MAX9017_, MAX9019....(VEE - 0.3V) to (VCC + 0.3V) MAX9016A, MAX9018_, MAX9020...................(VEE - 0.3V) to +6V Output Current (REF, OUT_, REF/INA-)............................50mA Output Short-Circuit Duration (REF, OUT_, REF/INA-) ...........10s Continuous Power Dissipation (TA = +70C) 8-Pin SOT23 (derate 9.1mW/C above +70C)............727mW Operating Temperature Range ...........................-40C to +85C Storage Temperature Range .............................-65C to +150C Junction Temperature ......................................................+150C Lead Temperature (soldering, 10s) .................................+300C Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS--MAX9015-MAX9018 (Single and Duals with REF) (VCC= 5V, VEE = 0V, VIN- = VREF, TA = -40C to +85C, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Supply Voltage Range SYMBOL VCC CONDITIONS Inferred from the PSRR test VCC = 1.8V, TA = +25C MAX9015A/ MAX9016A Supply Current ICC MAX9017_/ MAX9018_ VCC = 5.0V, TA = +25C VCC = 5.0V, TA = TMIN to TMAX VCC = 1.8V, TA = +25C VCC = 5.0V, TA = +25C VCC = 5.0V, TA = TMIN to TMAX VEE - 0.2 1.2 1.4 MIN 1.8 1.0 1.1 TYP MAX 5.5 1.5 1.7 2.0 1.9 2.3 2.8 A UNITS V Input Common-Mode Voltage Range (MAX9015A/MAX9016A) IN+ Voltage Range (MAX9017_/MAX9018_) Input Offset Voltage Input-Referred Hysteresis Input Bias Current (IN+, IN-, INA+, INB+, INB-) Power-Supply Rejection Ratio VCM Inferred from the output swing test, VEE - 0.2V < VCM < VCC + 0.2V Inferred from the output swing test VEE - 0.2V < VCM < VCC + 0.2V (Note 2) TA = +25C TA = TMIN to TMAX VCC = 1.8V to 5.5V VCC = 1.8V, ISOURCE = 1mA VCC = 5.0V, ISOURCE = 6mA VCC = 1.8V, ISINK = 1mA VCC = 5.0V, ISINK = 6mA TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX VCC + 0.2 V VIN+ VOS VHB IB PSRR VEE - 0.2 0.15 4 0.15 VCC + 0.2 5 10 1 2 0.1 100 250 105 285 1 200 300 350 450 200 300 350 450 V mV mV nA mV/V VEE - 0.2V < VCM < VCC + 0.2V (Note 3) Output Voltage Swing High (MAX9015A/MAX9017_) VCC - VOH mV Output Voltage Swing Low (MAX9015A/MAX9017_) VOL mV 2 _______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference ELECTRICAL CHARACTERISTICS--MAX9015-MAX9018 (Single and Duals with REF) (continued) (VCC= 5V, VEE = 0V, VIN- = VREF, TA = -40C to +85C, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Output Leakage Current (MAX9016A/MAX9018_) SYMBOL ILEAK CONDITIONS VCC = 5.5V, VOUT = 5.5V Sourcing, VOUT = VEE (MAX9015A/ MAX9017_ only) Sinking, VOUT = VCC High-to-Low Propagation Delay (Note 4) tPDVCC = 1.8V VCC = 5.0V MAX9015A/MAX9017_ VCC = 1.8V Low-to-High Propagation Delay (Note 4) tPD+ VCC = 5.0V Rise Time Fall Time Power-Up Time tRISE tFALL tON MAX901_A Reference Voltage VREF MAX901_B Reference Voltage Temperature Coefficient Reference Output Voltage Noise Reference Line Regulation Reference Load Regulation TCREF EN VREF/ VCC VREF/ IOUT BW = 10Hz to 1kHz, CREF = 1nF BW = 10Hz to 6kHz, CREF = 1nF 1.8V VCC 5.5V IOUT = 0 to 100nA TA = +25C, 1.0% TA = TMIN to TMAX, 2.5% TA = +25C, 1.75% TA = TMIN to TMAX, 4.5% 1.224 1.205 1.218 1.184 40 29 60 0.5 0.03 1.240 MAX9016A/MAX9018_, RPULLUP = 100k to VCC MAX9015A/MAX9017_ MAX9016A/MAX9018_, RPULLUP = 100k to VCC VCC = 1.8V VCC = 5.0V VCC = 1.8V VCC = 5.0V MIN TYP 0.001 3 35 3 33 7 6 11 12 28 31 1.6 0.2 1.2 1.236 1.248 1.267 1.262 1.296 ppm/C VRMS mV/V mV/nA V s s ms s s mA MAX 1 UNITS A MAX9015-MAX9020 Output Short-Circuit Current ISC CL = 15pF (MAX9015A/MAX9017_) CL = 15pF _______________________________________________________________________________________ 3 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference MAX9015-MAX9020 ELECTRICAL CHARACTERISTICS--MAX9019/MAX9020 (Duals without REF) (VCC = 5V, VEE = 0V, TA = -40C to +85C, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Supply Voltage Range SYMBOL VCC CONDITIONS Inferred from the PSRR test VCC = 1.8V, TA = +25C Supply Current ICC MAX9019/ MAX9020 VCC = 5.0V, TA = +25C VCC = 5.0V, TA = TMIN to TMAX VEE - 0.2 1 4 0.15 0.1 TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX 0.001 3 35 3 33 7 6 MAX9019 VCC = 1.8V Low-to-High Propagation Delay (Note 4) tPD+ VCC = 5.0V MAX9020, RPULLUP = 100k to VCC MAX9019 MAX9020, RPULLUP = 100k to VCC 11 12 28 31 s s mA 190 55 190 55 1 2 1 200 300 350 450 200 300 350 450 1 A mV mV MIN 1.8 0.85 1.1 TYP MAX 5.5 1.50 1.70 2.0 VCC + 0.2 5 10 V mV mV nA mV/V A UNITS V Input Common-Mode Voltage Range Input Offset Voltage Input-Referred Hysteresis Input Bias Current (INA-, INA+, INB+, INB-) Power-Supply Rejection Ratio Output Voltage Swing High (MAX9019 Only) VCM VOS VHB IB PSRR Inferred from the output swing test, VEE - 0.2V < VCM < VCC + 0.2V VEE - 0.2V < VCM < VCC + 0.2V (Note 2) TA = +25C TA = TMIN to TMAX VCC = 1.8V to 5.5V VCC = 1.8V, ISOURCE = 1mA VCC = 5.0V, ISOURCE = 6mA VCC = 1.8V, ISINK = 1mA VCC = 5.0V, ISINK = 6mA TA = +25C TA = TMIN to TMAX VEE - 0.2V < VCM < VCC + 0.2V (Note 3) VCC - VOH Output Voltage Swing Low VOL Output Leakage Current (MAX9020 Only) ILEAK VCC = 5.5V, VOUT = 5.5V Sourcing, VOUT = VEE (MAX9019 only) Sinking, VOUT = VCC VCC = 1.8V VCC = 5.0V VCC = 1.8V VCC = 5.0V Output Short-Circuit Current ISC High-to-Low Propagation Delay (Note 4) tPD- VCC = 1.8V VCC = 5.0V 4 _______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference ELECTRICAL CHARACTERISTICS--MAX9019/MAX9020 (Duals without REF) (continued) (VCC = 5V, VEE = 0V, TA = -40C to +85C, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Rise Time Fall Time Power-Up Time SYMBOL tRISE tFALL tON CL = 15pF CONDITIONS CL = 15pF (MAX9019 only) MIN TYP 1.6 0.2 1.2 MAX UNITS s s ms MAX9015-MAX9020 Note 1: All devices are 100% tested at TA = +25C. Specifications over temperature (TA = TMIN to TMAX) are guaranteed by design, not production tested. Note 2: VOS is defined as the center of the hysteresis band at the input. Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of the band (i.e., VOS) (Figure 1). Note 4: Specified with an input overdrive (VOVERDRIVE) of 100mV, and a load capacitance of CL = 15pF. VOVERDRIVE is defined above and beyond the offset voltage and hysteresis of the comparator input. Typical Operating Characteristics (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25C, unless otherwise noted.) MAX9015/MAX9016 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 1.5 2.0 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 1.5 2.0 MAX9015 toc01 MAX9017/MAX9018 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 MAX9015 toc02 MAX9019/MAX9020 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE MAX9015 toc03 SUPPLY CURRENT (A) SUPPLY CURRENT (A) TA = +25C TA = +25C SUPPLY CURRENT (A) TA = +85C TA = +85C TA = +85C TA = +25C TA = -40C TA = -40C TA = -40C 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 MAX9015/MAX9016 SUPPLY CURRENT vs. TEMPERATURE 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 -40 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 MAX9015 toc04 MAX9017/MAX9018 SUPPLY CURRENT vs. TEMPERATURE 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 MAX9015 toc05 MAX9019/MAX9020 SUPPLY CURRENT vs. TEMPERATURE MAX9015 toc06 VCC = 5V SUPPLY CURRENT (A) SUPPLY CURRENT (A) VCC = 5V VCC = 3V SUPPLY CURRENT (A) VCC = 5V VCC = 3V VCC = 3V VCC = 1.8V VCC = 1.8V VCC = 1.8V -15 10 35 TEMPERATURE (C) 60 85 -40 -15 10 35 TEMPERATURE (C) 60 85 -40 -15 10 35 TEMPERATURE (C) 60 85 _______________________________________________________________________________________ 5 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference MAX9015-MAX9020 Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25C, unless otherwise noted.) MAX9015/MAX9016 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY MAX9015 toc07 MAX9017/MAX9018 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY MAX9015 toc08 MAX9019/MAX9020 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY 45 40 SUPPLY CURRENT (A) 35 30 25 20 15 10 5 0 VCC = 3V VCC = 5V VCC = 1.8V MAX9015 toc09 50 45 40 SUPPLY CURRENT (A) 35 30 25 20 15 10 5 0 1 10 100 1k 10k VCC = 5V VCC = 3V VCC = 1.8V 35 30 SUPPLY CURRENT (A) 25 20 15 10 5 0 VCC = 3V VCC = 5V VCC = 1.8V 50 100k 1 10 100 1k 10k 100k 1 10 100 1k 10k 100k OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT VOLTAGE LOW vs. SINK CURRENT 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 0 MAX9015 toc10 OUTPUT VOLTAGE LOW vs. SINK CURRENT AND TEMPERATURE MAX9015 toc11 OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT MAX9015 toc12 600 500 TA = +25C 400 VOL (mV) 300 200 100 0 TA = -40C 0.7 0.6 VCC = 3V 0.5 VCC - VOH (V) 0.4 0.3 0.2 0.1 0 VCC = 5V VCC = 1.8V VCC = 3V VCC = 1.8V VOL (mV) TA = +85C VCC = 5V 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 SINK CURRENT (mA) SINK CURRENT (mA) SOURCE CURRENT (mA) OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT AND TEMPERATURE MAX9015 toc13 SHORT-CIRCUIT TO VCC (SINK CURRENT) vs. TEMPERATURE MAX9015 toc14 SHORT-CIRCUIT TO GND (SOURCE CURRENT) vs.TEMPERATURE 45 40 SINK CURRENT (mA) 35 30 25 20 15 10 VCC = 3V VCC = 1.8V VCC = 5V MAX9015toc15 0.6 0.5 0.4 0.3 TA = +85C 0.2 0.1 0 0 1 2 3 4 5 6 7 8 9 TA = -40C TA = +25C 40 35 SINK CURRENT (mA) 30 25 20 15 10 5 0 VCC = 1.8V VCC = 3V VCC = 5V 50 VCC - VOH (V) 5 0 60 85 -40 -15 10 -40 -15 10 35 10 35 60 85 SOURCE CURRENT (mA) TEMPERATURE (C) TEMPERATURE (C) 6 _______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25C, unless otherwise noted.) INPUT OFFSET VOLTAGE DISTRIBUTION MAX9015 toc16 MAX9015-MAX9020 OFFSET VOLTAGE vs. TEMPERATURE MAX9015 toc17 REFERENCE VOLTAGE DISTRIBUTION A GRADE 25 PERCENTAGE OF UNITS (%) 20 15 10 5 0 MAX9015 toc18 8 7 PERCENTAGE OF UNITS (%) 6 2.0 1.6 1.2 0.8 VOS (mV) VCC = 1.8V 30 5 4 3 2 1 0 -1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 VOS (mV) 0.4 0 -0.4 -0.8 -1.2 -1.6 -2.0 -40 -15 10 35 60 85 TEMPERATURE (C) VCC = 5V 1.232 1.234 1.236 1.238 1.240 VREF (V) HYSTERESIS VOLTAGE vs. TEMPERATURE MAX9015 toc19 REFERENCE VOLTAGE vs. TEMPERATURE MAX9015 toc20 REFERENCE VOLTAGE vs. SUPPLY VOLTAGE MAX9015 toc21 5.0 4.5 4.0 VHB (mV) 3.5 3.0 2.5 2.0 -40 -15 10 35 60 1.240 A GRADE 1.238 VCC = 1.8V 1.240 1.239 REFERENCE VOLTAGE (V) 1.238 1.237 1.236 1.235 1.234 REFERENCE VOLTAGE (V) 1.236 VCC = 3V VCC = 5V 1.232 1.234 1.230 85 -40 -15 10 35 60 85 TEMPERATURE (C) TEMPERATURE (C) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 SUPPLY VOLTAGE (V) REFERENCE VOLTAGE vs. REFERENCE SOURCE CURRENT MAX9015 toc22 REFERENCE VOLTAGE vs. REFERENCE SINK CURRENT MAX9015 toc23 REFERENCE VOLTAGE vs. REFERENCE SINK CURRENT AND TEMPERATURE VCC = 3V TA = +85C MAX9015 toc24 1.248 1.246 REFERENCE VOLTAGE (V) 1.244 1.242 1.240 1.238 1.236 1.234 VCC = 3V VCC = 5V VCC = 1.8V 1.255 1.250 REFERENCE VOLTAGE (V) 1.245 1.240 1.235 1.230 1.225 1.238 VCC = 1.8V REFERENCE VOLTAGE (V) 1.235 TA = +25C 1.232 VCC = 3V VCC = 5V 1.229 TA = -40C 1.226 0 40 80 120 160 200 REFERENCE SOURCE CURRENT (nA) 1.232 0 40 80 120 160 200 REFERENCE SINK CURRENT (nA) 0 40 80 120 160 200 REFERENCE SINK CURRENT (nA) _______________________________________________________________________________________ 7 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference MAX9015-MAX9020 Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25C, unless otherwise noted.) INPUT BIAS CURRENT vs. INPUT BIAS VOLTAGE MAX9015 toc25 PROPAGATION DELAY (tPD-) vs. TEMPERATURE MAX9015 toc26 PROPAGATION DELAY (tPD+) vs. TEMPERATURE MAX9015 toc27 1.000 IN+ = 2.5V 16 14 12 10 8 6 4 VCC = 3V VCC = 5V VCC = 1.8V 50 INPUT BIAS CURRENT (IN-) (nA) 0.600 40 VCC = 5V tPD+ (s) 30 VCC = 3V 20 -0.200 -0.600 2 -1.000 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 INPUT BIAS VOLTAGE (IN-) (V) 0 -40 -15 10 tPD- (s) 0.200 10 VCC = 1.8V 0 35 60 85 -40 -15 10 35 60 85 TEMPERATURE (C) TEMPERATURE (C) PROPAGATION DELAY (tPD-) vs. CAPACITIVE LOAD MAX9015 toc28 PROPAGATION DELAY (tPD+) vs. CAPACITIVE LOAD MAX9015 toc29 PROPAGATION DELAY (tPD-) vs. INPUT OVERDRIVE MAX9015 toc30 180 160 140 120 tPD- (s) 100 80 60 40 20 0 0.01 0.1 1 10 100 VCC = 3V VCC = 1.8V 200 180 160 140 tPD+ (s) 120 100 80 60 40 20 0 VCC = 5V VCC = 3V VCC = 1.8V 50 40 VCC = 5V tPD- (s) 30 20 VCC = 1.8V VCC = 5V 10 VCC = 3V 20 0 0.01 0.1 1 10 100 1000 0 10 20 30 40 50 CAPACITIVE LOAD (nF) INPUT OVERDRIVE (mV) 1000 CAPACITIVE LOAD (nF) PROPAGATION DELAY (tPD+) vs. INPUT OVERDRIVE MAX9015 toc31 PROPAGATION DELAY (tPD-) vs. PULLUP RESISTANCE MAX9015 toc32 PROPAGATION DELAY (tPD+) vs. PULLUP RESISTANCE MAX9015 toc33 40 35 30 25 VCC = 5V 10 9 8 tPD- (s) VCC = 1.8V VCC = 3V 200 160 VCC = 5V tPD+ (s) 20 15 10 5 0 0 10 VCC = 3V 7 VCC = 5V 6 tPD+ (s) 120 VCC = 3V 80 VCC = 1.8V 40 VCC = 1.8V 5 4 0 10k 100k RPULLUP () 1M 10M 10k 100k RPULLUP () 1M 10M 20 30 40 50 INPUT OVERDRIVE (mV) 8 _______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25C, unless otherwise noted.) PROPAGATION DELAY (tPD-) (VCC = 5V) PROPAGATION DELAY (tPD+) (VCC = 5V) PROPAGATION DELAY (tPD-) (VCC = 3V) MAX9015-MAX9020 MAX9015 toc34 MAX9015 toc35 MAX9015 toc36 VIN+ 50mV/div VIN+ 50mV/div VIN+ 50mV/div VOUT 2V/div VOUT 2V/div VOUT 2V/div 2s/div 10s/div 2s/div PROPAGATION DELAY (tPD+) (VCC = 3V) MAX9015 toc37 PROPAGATION DELAY (tPD-) (VCC = 1.8V) MAX9015 toc38 PROPAGATION DELAY (tPD+) (VCC = 1.8V) MAX9015 toc39 VIN+ 50mV/div VIN+ 50mV/div VIN+ 50mV/div VOUT 2V/div VOUT 1V/div VOUT 1V/div 10s/div 2s/div 10s/div 1kHz RESPONSE (VCC = 5V) SLOW POWER-UP/DOWN RESPONSE MAX9015 toc41 POWER-UP RESPONSE MAX9015 toc42 MAX9015 toc40 VCC 2V/div IN+ 50mV/div AC-COUPLED VCC 1V/div VOUT 2V/div OUT 2V/div VOUT 1V/div 200s/div 40s/div 20s/div VREF 1V/div _______________________________________________________________________________________ 9 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference MAX9015-MAX9020 Pin Description PIN MAX9015/ MAX9016 1 2 3 4 5, 8 6 7 -- -- -- -- -- -- -- MAX9017/ MAX9018 -- -- -- 4 -- -- 8 1 3 5 6 7 -- 2 MAX9019/ MAX9020 -- -- -- 4 -- -- 8 1 3 5 6 7 2 -- NAME REF ININ+ VEE N.C. OUT VCC OUTA INA+ INB+ INBOUTB INAREF/ INA1.24V Reference Output Comparator Inverting Input Comparator Noninverting Input Negative Supply Voltage No Connection. Not internally connected. Comparator Output Positive Supply Voltage Comparator A Output Comparator A Noninverting Input Comparator B Noninverting Input Comparator B Inverting Input Comparator B Output Comparator A Inverting Input 1.24V Reference Output. Internally connected to the inverting input of comparator A (MAX9017/MAX9018 only). FUNCTION Functional Diagrams 7 VCC 3 INA+ 3 IN+ OUT 6 2 IN2 REF/INA- 8 VCC 3 INA+ OUTA 1 2 INA- 8 VCC OUTA 1 1 REF REF 1.24V VEE 4 MAX9015 MAX9016 5 INB+ OUTB 7 6 INB- 5 INB+ MAX9019 MAX9020 OUTB 7 6 INB- REF 1.24V VEE 4 MAX9017 MAX9018 VEE 4 10 ______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Detailed Description The MAX9015-MAX9018 feature an on-board 1.24V 0.5% (1.45% for the B grade) reference, yet draw an ultra-low supply current. The MAX9019/MAX9020 (duals without reference) consume just 850nA of supply current. All devices are guaranteed to operate down to 1.8V supply. Their common-mode input voltage range extends 200mV beyond-the-rails. An internal 4mV hysteresis ensures clean output switching, even with slowmoving input signals. Large internal output drivers swing rail-to-rail with up to 6mA loads (MAX9015/ MAX9017/MAX9019). The output stage employs a unique design that minimizes supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. The MAX9015/MAX9017/MAX9019 have a push-pull output stage that sinks as well as sources current. The MAX9016/MAX9018/MAX9020 have an open-drain output stage that can be pulled beyond VCC up to 5.5V above VEE. These open-drain versions are ideal for implementing wire-ORed output logic functions. Output Stage Circuitry The MAX9015-MAX9020 feature a unique breakbefore-make output stage capable of driving 8mA loads rail-to-rail. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with the MAX9015- MAX9020 family of comparators, the supply-current change during an output transition is extremely small. In the Typical Operating Characteristics, the Supply Current vs. Output Transition Frequency graphs show the minimal supply-current increase as the output switching frequency approaches 1kHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. In battery-powered applications, this characteristic results in a substantial increase in battery life. MAX9015-MAX9020 Reference (MAX9015-MAX9018) The MAX9015-MAX9018s' internal +1.24V reference has a typical temperature coefficient of 40ppm/C over the full -40C to +85C temperature range. The reference is a very-low-power bandgap cell, with a typical 35k output impedance. REF can source and sink up to 100nA to external circuitry. For applications needing increased drive, buffer REF with a low input-bias current op amp such as the MAX4162. Most applications require no REF bypass capacitor. For noisy environments or fast transients, connect a 1nF to 10nF ceramic capacitor from REF to GND. Input Stage Circuitry The input common-mode voltage ranges extend from VEE - 0.2V to VCC + 0.2V. These comparators operate at any differential input voltage within these limits. Input bias current is typically 150pA at the trip point, if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal ESD protection diodes connected to the supply rails. As the input voltage exceeds the supply rails, these ESD protection diodes become forward biased and begin to conduct increasing input bias current (see the Input Bias Current vs. Input Bias Voltage graph in the Typical Operating Characteristics). Applications Information Low-Voltage, Low-Power Operation The MAX9015-MAX9020 are ideally suited for use with most battery-powered systems. Table 1 lists a variety of battery types, capacities, and approximate operating times for the MAX9015-MAX9020, assuming nominal conditions. Table 1. Battery Applications Using the MAX9015-MAX9020 BATTERY TYPE Alkaline (2 cells) Nickel-cadmium (2 cells) Nickel-metal-hydride (2 cells) Lithium-ion (1 cell) VFRESH (V) 3.0 2.4 2.4 3.6 VEND-OFLIFE (V) 1.8 1.8 1.8 2.9 CAPACITY, AA SIZE (mA-hr) 2000 750 1000 1000 MAX9015A/ MAX9016A OPERATING TIME (hr) 2000k 750k 1000k 1000k MAX9017/ MAX9018 OPERATING TIME (hr) 1540k 570k 770k 770k MAX9019/ MAX9020 OPERATING TIME (hr) 1333k 500k 660k 660k RECHARGEABLE No Yes Yes Yes ______________________________________________________________________________________ 11 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference MAX9015-MAX9020 Internal Hysteresis Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. Oscillations can occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9015-MAX9020 have internal 4mV hysteresis to counter parasitic effects and noise. The hysteresis in a comparator creates two trip points: one for the rising input voltage (VTHR) and one for the falling input voltage (VTHF) (Figure 1). The difference between the trip points is the hysteresis (VHB). When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. Figure 1 illustrates the case in which the comparator's inverting input has a fixed voltage applied, and the noninverting input is varied. If the inputs were reversed, the figure would be the same, except with an inverted output. IN+ VTHR INVHB VTHF HYSTERESIS BAND THRESHOLDS OUT Figure 1. Threshold Hysteresis Band VCC R3 Additional Hysteresis (MAX9015/MAX9017/MAX9019) (Push-Pull Outputs) The MAX9015/MAX9017/MAX9019 feature a built-in 4mV hysteresis band (VHB). Additional hysteresis can be generated with three resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values: 1) Select R3. Input bias current at IN_+ is less than 2nA, so the current through R3 should be at least 0.2A to minimize errors caused by input bias current. The current through R3 at the trip point is (VREF - VOUT)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = VREF/IR3 or R3 = (VCC - VREF)/IR3. Use the smaller of the two resulting resistor values. For example, when using the MAX9017 (VREF = 1.24V) and VCC = 5V, and if we choose IR3 = 0.2A, then the two resistor values are 6.2M and 19M. Choose a 6.2M standard value for R3. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: V R1 = R3 HB VCC For this example, insert the values: 50mV R1 = 6.2M = 12k 5V 12 R1 VIN VCC R2 VEE OUT VREF MAX9015 MAX9017 MAX9019 Figure 2. MAX9015/MAX9017/MAX9019 Additional Hysteresis 4) Choose the trip point for VIN rising (VTHR) such that: V VTHR > VREF 1 + HB VCC where VTHR is the trip point for VIN rising. This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V. 5) Calculate R2 as follows: R2 = 1 VTHR 1 1 - - VREF X R1 R1 R3 R2 = 1 = 43.99k 3.0 V 1 1 - - 6.2M 62k (1.24 V X 62k) For this example, choose a 44.2k standard value. ______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference 6) Verify the trip voltages and hysteresis as follows: VIN rising: = 2.992V, which is equivalent to REF times R1 divided by the parallel combination of R1, R2: 1 1 1 VTHR = VREF x R1 + + R1 R2 R3 and R3. VIN falling: = 2.942V: R1 x VCC VTHF = VTHR - R3 Hysteresis = VTHR - VTHF = 50mV. 4) Choose the trip point for VIN rising (VTHR) such that: V VTHR > VREF 1 + HB VCC (VTHR is the trip point for VIN rising). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V: 5) Calculate R2 as follows: R2 = 1 VTHR 1 1 - R1 - R 3 VREF x R1 MAX9015-MAX9020 Additional Hysteresis (MAX9016/MAX9018/MAX9020) (Open-Drain Outputs) The MAX9016/MAX9018/MAX9020 feature a built-in 4mV hysteresis band. These devices have open-drain outputs and require an external pullup resistor (Figure 3). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX9015/MAX9017/MAX9019. Use the following procedure to calculate resistor values: 1) Select R3. Input bias current at IN_+ is less than 2nA, so the current through R3 should be at least 0.2A to minimize errors caused by input bias current. The current through R3 at the trip point is (VREF - VOUT)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = VREF/IR3 or R3 = [(VCC - VREF)/IR3] - R4. Use the smaller of the two resulting resistor values. For example, when using the MAX9018 (VREF = 1.24V) and VCC = 5V, and if we choose IR3 = 0.2A, and R4 = 1M, then the two resistor values are 6.2M and 18M. Choose a 6.2M standard value for R3. 2) Choose the hysteresis band required (VHB). 3) Calculate R1 according to the following equation. For this example, insert the values: V R1 = (R3 + R4) HB VCC 50mV R1 = (6.2M + 1M) = 72k 5V R2 = 1 = 51.1k 3.0V 1 1 - 72k - 6.2M 1.24 V x 72k For this example, choose a 49.9k standard value. 6) Verify the trip voltages and hysteresis as follows: 1 1 1 VIN risin g : VTHR = VREF x R1 + + R1 R2 R3 = 3.043V 1 1 1 VIN falling : VTHF = VREF x R1 + + R1 R2 R3 - R1 x VCC = 2.993V R 3 + R4 Hysteresis = VTHR - VTHF = 50mV. VCC R3 R1 VIN VCC R2 VEE OUT R4 VREF MAX9016 MAX9018 MAX9020 Figure 3. MAX9016/MAX9018/MAX9020 Additional Hysteresis ______________________________________________________________________________________ 13 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference MAX9015-MAX9020 Board Layout and Bypassing The MAX9015-MAX9020 ultra-low supply current typically requires no power-supply bypass capacitors. However, when the supply has high output impedance, long lead lengths or excessive noise, or fast transients, bypass VCC to VEE with a 0.1F capacitor placed as close to the VCC pin as possible. Minimize signal trace lengths to reduce stray capacitance. Use a ground plane and surface-mount components for best performance. If REF is decoupled, use a low-leakage ceramic capacitor. VIN V OTH = 4.2V VUTH = 2.9V R3 INA+ OUTA REF/INAREF 1.24V VEE POWERGOOD 5V VCC R2 Window Detector The MAX9018 is ideal for window detectors (undervoltage/overvoltage detectors). Figure 4 shows a window detector circuit for a single-cell Li+ battery with a 2.9V end-of-life charge, a peak charge of 4.2V, and a nominal value of 3.6V. Choose different thresholds by changing the values of R1, R2, and R3. OUTA provides an active-low undervoltage indication, and OUTB provides an active-low overvoltage indication. ANDing the two open-drain outputs provides an active-high, powergood signal. The design procedure is as follows: 1) Select R1. The input bias current into INB- is normally less than 2nA, so the current through R1 should exceed 100nA for the thresholds to be accurate. In this example, choose R1 = 1.24M (1.24V/1A). 2) Calculate R2 + R3. The overvoltage threshold should be 4.2V when V IN is rising. The design equation is as follows: VOTH R2 + R3 = R1 x - 1 VREF + VHB 4.2V = 1.24M x - 1 1.24V + 0.004 =2.95M 3) Calculate R2. The undervoltage threshold should be 2.9V when VIN is falling. The design equation is as follows: - VHB V R2 = (R1 + R2 + R3) x REF - R1 VUTH = (1.24M + 2.95M) x = 546k 14 INB+ MAX9018 OUTB INBR1 VEE Figure 4. Window Detector Circuit For this example, choose a 499k standard value 1% resistor. 4) Calculate R3: R3 = (R2 + R3) - R2 = 2.95M - 546k = 240M 5) Verify the resistor values. The equations are as follows, evaluated for the above example: Overvoltage threshold: VOTH = (VREF + VHB ) x Undervoltage threshold: VUTH = (VREF - VHB ) x (R1 + R2 + R3) = 2.97V (R1 + R2) (R1 + R2 + R3) = 4.20V R1 where the internal hysteresis band, VHB, is 4mV. Zero-Crossing Detector Figure 5 shows a zero-crossing detector application. The MAX9015/MAX9016/MAX9019/MAX9020s' inverting input is connected to ground, and its noninverting input is connected to a 100mVP-P signal source. As the signal at the noninverting input crosses zero, the comparator's output changes state. (1.236) - 1.24M 2.9 ______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference VCC Ordering Information (continued) PART TEMP RANGE -40C to +85C -40C to +85C -40C to +85C -40C to +85C PINPACKAGE 8 SOT23-8 8 SOT23-8 8 SOT23-8 8 SOT23-8 TOP MARK AEIR AEIT AEIU AEIV MAX9015-MAX9020 100mVP-P IN+ VCC MAX9018AEKA-T MAX9018BEKA-T OUT MAX9019EKA-T MAX9020EKA-T IN- VEE MAX9015 MAX9016 MAX9019 MAX9020 Typical Application Circuit VIN V OTH = 4.2V VUTH = 2.9V R3 5V Figure 5. Zero-Crossing Detector VCC INA+ OUTA UNDERVOLTAGE REF/INAREF 1.24V VEE Logic-Level Translator The open-drain comparators can be used to convert 5V logic to 3V logic levels. The MAX9020 can be powered by the 5V supply voltage, and the pullup resistor for the MAX9020's open-drain output is connected to the 3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translations, connect the 3V supply voltage to VCC and the 5V supply voltage to the pullup resistor. R2 INB+ MAX9017 OUTB OVERVOLTAGE INB- Chip Information TRANSISTOR COUNT: 349 PROCESS: BiCMOS R1 VEE Pin Configurations TOP VIEW REF 1 ININ+ 2 3 8 7 N.C. VCC OUT N.C. OUTA 1 8 7 VCC OUTB INBINB+ OUTA 1 8 7 VCC OUTB INBINB+ REF/INA- 2 INA+ 3 INA- 2 INA+ 3 MAX9015 MAX9016 6 5 MAX9017 MAX9018 6 5 MAX9019 MAX9020 6 5 VEE 4 VEE 4 VEE 4 SOT23 SOT23 SOT23 ______________________________________________________________________________________ 15 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference MAX9015-MAX9020 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages. SOT23, 8L .EPS REV. SEE DETAIL "A" b C L e SYMBOL A A1 A2 b C D E E1 L L2 e e1 MIN 0.90 0.00 0.90 0.28 0.09 2.80 2.60 1.50 0.30 MAX 1.45 0.15 1.30 0.45 0.20 3.00 3.00 1.75 0.60 0.25 BSC. 0.65 BSC. 1.95 REF. C L E C L E1 PIN 1 I.D. DOT (SEE NOTE 6) e1 D C C L 0 0 8 L2 A A2 A1 SEATING PLANE C GAUGE PLANE L 0 NOTE: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF HEEL OF THE LEAD PARALLEL TO SEATING PLANE C. 3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR. 4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING. 5. COPLANARITY 4 MILS. MAX. 6. PIN 1 I.D. DOT IS 0.3 MM MIN. LOCATED ABOVE PIN 1. 7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP. 8. MEETS JEDEC MO178. PROPRIETARY INFORMATION TITLE: DETAIL "A" PACKAGE OUTLINE, SOT-23, 8L BODY APPROVAL DOCUMENT CONTROL NO. 21-0078 1 1 D Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products. |
Price & Availability of MAX9015
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |