![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Unipolar Driver ICs SLA7020M WITH MOSFETs SLA7021M s Ratings Absolute maximum ratings Type No. SLA7020M SLA7021M Motor supply Voltage (V) VCC 46 FET output breakdown voltage (V) VDS 100 Control voltage (V) VS 32 TTL input voltage (V) VIN 7 Reference voltage (V) VREF 2 Output current (A) IO 1.5 3 Power dissipation (W) PD 4.5 (No Fin) Channel temperature (C) Tch 150 Storage temperature (C) Tstg -40 to +150 s Characteristics (1) DC Characteristics Electrical characteristics Control current (mA) VS = 30V IS VS max min typ max min Control voltage (V) FET turn-on voltage FET drain leak current (mA) VDSS = 100V VS = 30V IDSS TTL input current (A) VIH = 2.4V VS = 30V IIH TTL input current (mA) VIL = 0.4V VS = 30V IIL (V) (7020M) ID =1A, VS =14V (7021M) ID =3A, VS =14V VDS typ max TTL input voltage (OUT) (V) ID = 1A VIH TTL input voltage (V) VDSS = 100V VIL TTL input voltage (OUT) (V) VDSS = 100V VIH typ TTL input voltage (V) ID = 1A VIL Type No. SLA7020M SLA7021M min typ min typ max min typ max min typ max min typ max min typ max min max min typ max 5.5 10 15 10 19 30 0.6 0.85 4 40 -0.8 2.0 0.8 2.0 0.8 (2) AC Characteristics Electrical characteristics FET diode forward voltage (V) (7020M) ISD = 1A (7021M) ISD = 3A VSD min typ max Switching time (s) VS = 24V ID = 1A Tstg Tr Tf max Type No. SLA7020M SLA7021M min typ max min typ max min typ 1.1 2.3 0.5 0.7 0.1 12 SLA7020M and SLA7021M s Block diagram Motor main power supply VCC r3/ Auxiliary Excitation power supply signal Reference voltage Vb r1 R*C for setting chopper OFF time r4 Motor r2 r5/r6 R*C for protection against chopping malfunctions C3/C4 C1/C2 Td VS IN Excitation signal transfer circuit OUT OUT REF Current peak detector circuit Chopper OFF time control circuit Current control and counter EMF canceller circuit GND RS Current detection resistor RS Da/Db s Internal circuit diagram (enclosed with chain line) VCC Vs=10~30V OUTA OUTA OUTB OUTB 15 9 Vb(5V) RSB Db RS + INA VS INB 6 1 5 Reg 8 Reg 14 10 + - + - + - + - 7 RSA 2 TDA 3 REFA 4 GNDA GNDB 12 REFB 13 TDB 11 RS Da C3 r3 C1 r1 r5 r2 r6 r4 C2 C4 13 SLA7020M and SLA7021M s Diagram of standard external circuit (Recommended circuit constants) VCC (46V max) Excitation signal time chart 2-phase excitation clock INA INB 0 H L 1 H H 2 L H 3 L L 0 H L 1 H H VS (10~30V) 1-2 phase excitation VREF (5V) 8 1 VS OUTA 6 10 OUTA OUTB 15 OUTB INA 2 11 C1 C2 TdA TdB 5 INA clock INA tdA INB tdB 0 H L L L 1 H L L H 2 H L H L 3 H H H L 4 L L H L 5 L L H H 6701 LLHH LHLL LLLL LLLH 2 H L H L 3 H H H L r3 r4 r1 SLA7020M SLA7021M GA 4 Db Rs INB GB 12 14 INB * tdA and tdB are signals before the inverter stage. r1 r2 r3 r4 r5 r6 C1 C2 C3 C4 510 100 (VR) 47k 47k 2.4k 2.4k 470pF 470pF 2200pF 2200pF 7020M EK03 1 typ 7021M RK34 0.68 typ r2 Da RSA REFA REFB RSB 7 3 13 9 C3 Rs C4 Da. Db Rs r5 r6 Open collector tdA tdB s External dimensions (Unit: mm) Epoxy resin package 3.20.15 310.2 24.40.2 16.40.2 3.2 0.15x3.8 4.8 0.2 1.7 0.1 16 0.2 13 0.2 9.9 0.2 6.70.5 R-End 0.65 -0.1 +0.2 9.7 -0.5 +1 1.60.6 1.15 -0.1 14xP2.030.7=28.421.0 31.30.2 +0.2 0.55 -0.1 40.7 +0.2 1.15 -0.1 14xP2.030.4=28.420.8 +0.2 2.20.4 6.30.6 7.50.6 1 2 3 * * * * * * * 15 12 3 * * * * * * * 15 Forming number No. 853 Forming number No. 855 14 0.55 -0.1 (3) +0.2 0.65 -0.1 +0.2 30.6 2.45 0.2 4.60.6 Type No. Lot No. SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note s Determining the output current Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value (lo) of the output current based on this waveform is shown below. (1) Normal rotation mode lo is determined as follows when current flows at the maximum level during motor rotation. See Fig. 2, 3 and 4. Vb r2 . lo = * ................................................... q . r1+r2 Rs (2) Power down mode The circuits in Fig. 5, 6 and 7 (rx and Tr) are added in order to decrease the coil current. lo is then determined as follows. 1 Vb . IOPD = * ....................................... w . r1(r2+rx) Rs 1+ r2*rx Fig. 3 Circuit for fixing the coil current Vb(5V) r1 r6 r5 3,(14) C3 9,(10) RS SLA7024M SLA7026M SLA7027MU r2 Fig. 1 Waveform of coil current (Phase A excitation ON) Fig. 4 Circuit for fixing the coil current Vb(5V) IO Phase A r1 r6 r5 SDK03M 3 C3 10 13 15 RS r2 0 Phase A Fig. 5 Circuit for fixing the coil current Fig. 2 Circuit for fixing the coil current Vb(5V) Vb(5V) r1 r5 r2 C3 3,(13) 7,(9) RS r6 SLA7022MU SLA7029M SMA7022MU SMA7029M SLA7020M SLA7021M r6 r1 r5 rX Power down signal Tr r2 C3 7,(9) 3,(13) SLA7022MU SLA7029M SMA7022MU SMA7029M SLA7020M SLA7021M RS 17 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Fig. 6 Circuit for fixing the coil current Vb(5V) r1 r6 r5 SLA7024M SLA7026M SLA7027MU Fig. 9 Output current lOPD vs. Variable current resistor rx SLA7024M, SLA7026M, SLA7029M, SLA7027MU, SLA7022MU, SLA7020M, SLA7021M, SMA7029M, SMA7022MU, SDK03M 2 3,(14) Power down signal C3 Tr Output current IOPD (A) rX r2 9,(10) 1.5 RS =0.5 1 RS =0.8 RS =1 1 * Vb r1(r2+rX) RS 1+ r2 * rX r1=510 r2=100 Vb=5V 1000 1200 6.0 8.00 IOPD= 0.5 Fig. 7 Circuit for fixing the coil current Vb(5V) r6 r1 r5 rX Power down signal Tr RS r2 C3 10 13 15 3 SDK03M 00 2.0 4.0 Variable current resistor rX () Fig. 8 and 9 show the graphs of equations q and w , respectively. Fig. 8 Output current Io vs. Current detection resistor Rs SLA7024M, SLA7026M, SLA7029M, SLA7027MU, SLA7022MU, SLA7020M, SLA7021M, SMA7029M, SMA7022MU, SDK03M NOTE: Ringing noise is produced in the current detection resistor Rs when the MOSFET is switched ON and OFF through chopping. This noise is also generated in feedback signals from Rs which may therefore causes the comparator to malfunction. To prevent chopping malfunctions, r5(r6) and C3(C4) are added in order to act as noise filter. However, when the values of these constants are increased, the response from Rs to the comparator becomes slow. Hence, the value of the output current lo is higher to some extent than the computed value. 4 Output current IO (A) 3 IO= r2 * Vb r1+r2 RS r1=510 r2=100 rx= Vb=5V 2 1 0 0 1 2 3 4 Current detection resistor RS () 18 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note s Determining the chopper frequency Determining TOFF: SLA7000M series, SMA7000M series and SDK03M are self-excited choppers. The chopping OFF time TOFF is fixed by r3/C1 and r4/C2 connected to terminal Td. TOFF can be computed through the following formula: 2 2 . TOFF = -r3*C1Rn(1- ) = -r4*C2Rn(1- ) . Vb Vb The circuit constants and the TOFF value shown below are recommended. TOFF r3 C1 Vb = = = = 12 s 47 K 500 pF 5V Fig. 10 Chopper frequency vs. Motor coil resistance 60 50 47k r4 500PF C1 = C2 = TOFF =12s RS =1 Lm =1~3ms Rm 4V =2 C VC V =36 VCC r3 40 30 20 10 0 0 2 20 25 30 35 40 4 6 8 10 12 14 Motor coil resistance Rm () 16 s Thermal design An outline on the method of computing heat dissipation is shown below. (1) Obtain the PH that corresponds to the motor coil current IO from Fig. 11 "Heat dissipation per phase PH vs. Output current lo". Heat dissipation per phase PH (W) (2) The power dissipation Pdiss is obtained through the following formula. * SLA7000M and SMA7000M series . 2-phase excitation : Pdiss = 2PH + 0.015 x Vs (W) . .3 1-2 phase excitation : Pdiss = PH + 0.015 x Vs (W) . 2 * SDK03M 2-phase excitation . : Pdiss = PH + 0.015 x Vs (W) . .3 1-2 phase excitation : Pdiss = PH + 0.015 x Vs (W) . 4 4.0 3.0 2.0 1.0 SLA7026M and SLA7021M Typ. Motor : 23PM-C503 Rm=1.16 / Lm=2.9mA/ Holding mode =4 4V VC 15 24 V V 36 0 0 (3) Obtain the temperature rise that corresponds to the computed Pdiss from Fig. 12 "Temperature rise curve." Fig. 11 Heat dissipation per phase PH vs. Output current lo 1.0 2.0 Output current IO (A) C V 3.0 SLA7022MU, SLA7027MU, SMA7022MU and SDK03M Heat dissipation per phase PH (W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Heat dissipation per phase PH (W) 1.2 1.0 0.8 0.6 0.4 0.2 0 SLA7024M, SLA7029M, SMA7029M and SLA7020M Typ. Motor : 23LM-C004 Holding mode VCC =44 V Typ. Motor : 23LM-C202 Holding mode VCC V =44 V 36 V 24 15 V 36V 15V 24V 0 0.2 0.4 0.6 Output current IO (A) 0.8 1.0 Output current IO (A) Chopping frequency (KHz) 15 ON time TON (s) 19 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Fig. 12 Temperature rise curve Comparison of losses 8 150 SLA7000M series 7 Power dissipation PH (W) Natural cooling Without heatsink Tj-a TC-a (C) 100 T j 6 5 Sanken product : SI-7300A T C 4 3 IO=1A Motor : 23LM-C202 IO : Output current 2-phase excitation, holding mode 50 0 2 SLA7024M, SLA7029M, SMA7029M and SLA7020M 0 1 2 3 Total power (W) 4 5 IO=1A 1 0 0 10 20 30 40 50 150 SMA7000M series Natural cooling Without heatsink 100 Tj-a (C) TC-a Supply voltage VCC (V) T j T C 50 0 0 1 2 Total power (W) 3 4 150 SDK03M 100 Tj-a (C) TC-a T C T 50 Glass epoxy board (mounted on level surface) (95x69x1.2mm) Natural cooling 0 0 1 2 Total power (W) j 3 20 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Heat dissipation characteristics 30 SLA7024M, SLA7029M and SLA7020M SLA7026M and SLA7021M Case temperature rise TC-a (C) 25 20 15 10 5 0 200 Case temperature rise TC-a (C) 50 40 30 Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation 500 Without heatsink Natural cooling 20 Without heatsink Natural cooling Motor : 23PM-C705 (Rm=1.27 / , Lm=1.8mH/ ) VCC=24V, VS=24V, IO=1.5A TC ( 4 pin) 2-phase excitation 500 1K 5K 10 TC ( 4 pin) 1K 2K 0 100 Response frequency (pps) Response frequency (pps) 35 SLA7022MU and SLA7027MU 35 SMA7022MU Case temperature rise TC-a (C) 30 25 20 15 10 5 0 200 Case temperature rise TC-a (C) 30 25 20 15 10 5 0 200 Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation 500 Without heatsink Natural cooling TC ( 4 pin) 1K 2K Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation 500 Without heatsink Natural cooling TC ( 4 pin) 1K 2K Response frequency (pps) Response frequency (pps) 30 SMA7029M 50 SDK03M Case temperature rise TC-a (C) 25 20 15 10 5 0 200 Case temperature rise TC-a (C) 40 30 Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation 500 Without heatsink Natural cooling 20 10 TC ( 4 pin) 1K 2K Natural cooling Glass epoxy board (mounted on level surface) (95x69x1.2mm) Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation 0 200 TC ( 9 pin) 1K 2K 500 Response frequency (pps) Response frequency (pps) 21 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Supply voltage Vcc vs. Supply current Icc Torque characteristics SLA7024M, SLA7029M, SMA7029M and SLA7020M 500 2.0 SLA7024M, SLA7029M, SMA7029M and SLA7020M Motor : 23LM-C202 (1V/1.1A) Output current IO =0.8A Motor supply voltage VCC =24V 2-phase excitation Supply current ICC (mA) 400 Pull-out torque (kg-cm) Motor : 23LM-C004 (6V/1.2A) 1-phase excitation Holding mode Chopper period T = 47 s IO : Output current 1.5 300 1.0 200 IO=1A 0.5 100 IO=0.5A IO=0.2A 0 0 10 20 30 40 50 0 100 500 1k 2k 3k 4k 5k Supply voltage VCC (V) Response frequency (pps) SLA7026M and SLA7021M 6.0 1.5 SLA7026M and SLA7021M Pull-out torque (kg-cm) Supply current ICC (A) Motor : 23PM-C503 Rm=1.16/ Lm=2.9mH/ 1-phase excitation, holding mode IO : Output current 5.0 4.0 3.0 2.0 1.0 0 100 1.0 0.5 IO=3A IO=2A IO=1A Motor : 23PM-C705 Rm=1.27/ Lm=1.8mH/ VCC =24V IO =2.5A 2-phase excitation 500 1k 3k 5k 10k 0 0 10 20 30 40 50 Supply voltage VCC (V) Response frequency (pps) SLA7027MU, SLA7022MU, SMA7022MU and SDK03M 2.0 SLA7022MU, SLA7027MU, SMA7022MU and SDK03M 500 Supply current ICC (mA) 400 Pull-out torque (kg-cm) Motor : 23LM-C202 (4V/1A) 1-phase excitation, holding mode IO : Output current Motor : PX244-02 Output current IO =0.6A Motor supply voltage VCC =24V 2-phase excitation 1.5 300 200 1.0 IO=1A 100 0.4A 0.2A 0 10 20 30 40 50 0.5 0 0 100 500 1k 2k 3k 5k 10k Supply voltage VCC (V) Response frequency (pps) 22 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Chopper frequency vs. Supply voltage 50 Chopper frequency vs. Output current 50 40 40 30 30 f (kHz) 20 f (kHz) 20 10 Motor : 23LM-C202 (1V/1.1A) IO = 0.8A at VCC=24V RS=1 10 Motor : 23LM-C202 (1V/1.1A) VCC=24V RS=1 0 0 10 20 30 40 50 0 0 0.2 0.4 0.6 0.8 1.0 VCC (V) IO (A) s NOTE Either active high or active low excitation input signals can be used for SLA7024M, SLA7026M, SLA7027MU and SDK03M. However, take note of the output that corresponds to a specified input as shown in the table below. * SLA7024M, SLA7026M and SLA7027MU Active High Input INA (6 pin) INA (5 pin) INB (17 pin) INB (16 pin) * SDK03M Active High Input IN1 (6 pin) IN2 (5 pin) Output OUT1 (1, 16 pin) OUT2 (8, 9 pin) Active Low Input IN1 (6 pin) IN2 (5 pin) Output OUT1 (8, 9 pin) OUT2 (1, 16 pin) Output OUTA (1 pin) OUTA (8 pin) OUTB (11 pin) OUTB (18 pin) Active Low Input INA (6 pin) INA (5 pin) INB (17 pin) INB (16 pin) Output OUTA (8 pin) OUTA (1 pin) OUTB (18 pin) OUTB (11 pin) 23 |
Price & Availability of SLA7020
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |