![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
HA17741/PS General-Purpose Operational Amplifier (Frequency Compensated) Description The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is appropriate for use in a wide range of applications in the test and control fields. Features * * * * * High voltage gain : 106 dB (Typ) Wide output amplitude : 13 V (Typ) (at RL 2 k) Shorted output protection Adjustable offset voltage Internal phase compensation Ordering Information Application Industrial use Commercial use Type No. HA17741PS HA17741 Package DP-8 Pin Arrangement Offset Null Vin(-) Vin(+) VEE 1 2 3 4 (Top view) - + 8 7 6 5 NC VCC Vout Offset Null HA17741/PS Circuit Structure VCC Vin(+) Vin(-) Vout To VCC To VCC VEE 1 Pin 5 Pin Offset Null Absolute Maximum Ratings (Ta = 25C) Ratings Item Power-supply voltage Symbol VCC VEE Input voltage Differential input voltage Allowable power dissipation Operating temperature Storage temperature Vin Vin(diff) PT Topr Tstg HA17741PS +18 -18 15 30 670 * -20 to +75 -55 to +125 HA17741 +18 -18 15 30 670 * -20 to +75 -55 to +125 Unit V V V V mW C C Note: These are the allowable values up to Ta = 45C. Derate by 8.3 mW/C above that temperature. 2 HA17741/PS Electrical Characteristics Electrical Characteristics-1 (VCC = -VEE = 15 V, Ta = 25C) Item Input offset voltage Input offset current Input bias current Power-supply rejection ratio Voltage gain Common-mode rejection ratio Common-mode input voltage range Maximum output voltage amplitude Power dissipation Slew rate Rise time Overshoot Input resistance Pd SR tr Vover Rin Symbol VIO I IO I IB VIO/VCC VIO/VEE AVD CMR VCM VOP-P Min -- -- -- -- -- 86 70 12 12 10 -- -- -- -- 0.3 Typ 1.0 18 75 30 30 106 90 13 14 13 65 1.0 0.3 5.0 1.0 Max 6.0 200 500 150 150 -- -- -- -- -- 100 -- -- -- -- Unit mV nA nA V/V V/V dB dB V V V mW V/s s % M RS 10 k RS 10 k RL 2 k, Vout = 10 V RS 10 k RS 10 k RL 10 k RL 2 k No load RL 2 k Vin = 20 mV, RL = 2 k, CL = 100 pF Test Condition RS 10 k Electrical Characteristics-2 (VCC = -VEE = 15 V, Ta = -20 to +75C) Item Input offset voltage Input offset current Input bias current Voltage gain Maximum output voltage amplitude Symbol VIO I IO I IB AVD VOP-P Min -- -- -- 80 10 Typ -- -- -- -- -- Max 9.0 400 1,100 -- -- Unit mV nA nA dB V RL 2 k, Vout = 10 V RL 2 k Test Condition RS 10 k 3 HA17741/PS IC Operational Amplifier Application Examples Multivibrator A multivibrator is a square wave generator that uses an RC circuit charge/discharge operation to generate the waveform. Multivibrators are widely used as the square wave source in such applications as power supplies and electronic switches. Multivibrators are classified into three types, astable multivibrators, which have no stable states, monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable states. 1. Astable Multivibrator R3 Vin(-) - VCC Vout Vin(+) C1 + VEE R1 RL R2 Figure 1 Astable Multivibrator Operating Circuit Vin(+) 0 Vin(-) 0 Vertical: 5 V/div Horizontal: 2 ms/div Vout 0 Circuit constants R1 = 8 k, R2 = 4 k R3 = 100 k, C1 = 0.1 F RL = VCC = 15 V, VEE = -15 V Figure 2 HA17741 Astable Multivibrator Operating Waveform 4 HA17741/PS 2. Monostable Multivibrator R3 C1 - VCC Vout Input 0 C2 R2 + VEE RL R1 Figure 3 Monostable Multivibrator Operating Circuit Trigger input 0 Vin(+) 0 Vin(-) 0 Vertical: Horizontal: Circuit constants R1 = 10 k, R2 = 2 k R3 = 40 k, C1 = 0.47 F C2 = 0.0068 F RL = VCC = 15 V, VEE = -15 V Vout 0 Figure 4 HA17741 Monostable Multivibrator Operating Waveform 3. Bistable Multivibrator Vin(-) Vin(+) + - VCC Vout Input 0 C R2 RL VEE R1 Figure 5 Bistable Multivibrator Operating Circuit 5 HA17741/PS Trigger input 0 Vin(+) 0 Vertical: 5 V/div Horizontal: 2 ms/div Vout 0 Circuit constants R1 = 10 k, R2 = 2 k C = 0.0068 F RL = VCC = 15 V, VEE = -15 V Figure 6 HA17741 Bistable Multivibrator Operating Waveform Wien Bridge Sine Wave Oscillator 1S2074 H C3 R3 1 M R4 470 k 5.1 k RS - 2SK16 H Vout 50 k R1 RL 500 Rin C2 R2 + C1 Figure 7 Wien Bridge Sine Wave Oscillator 30 k VOP-P = 2 V 10 k VCC = 15 V, VEE = -15 V C1 = C2/10 R1 = 110 k, R2 = 11 k Oscillator Frequency f (Hz) 3k 1k VOP-P = 20 V 300 100 30 10 30 p 100 p 300 p 1,000 p 3,000 p 0.01 0.03 0.1 C1 Capacitance (F) Figure 8 HA17741 Wien Bridge Sine Wave Oscillator f-C Characteristics 6 HA17741/PS Vertical: 5 V/div Horizontal: 0.5 ms/div Test circuit condition VCC = 15 V, VEE = -15 V R1 = 110 k, R2 = 11 k C1 = 0.0015 F, C2 = 0.015 F Test results f = 929.7 Hz, T.H.P = 0.06% Figure 9 HA17741 Wien Bridge Sine Wave Oscillator Operating Waveform Quadrature Oscillator Sin out CT2 RT2 A1 + + - A2 Cos out D1 V4 R11 R22 R44 CT1 - RT1 C1 R1 D2 R33 V8 Figure 10 Quadrature Sine Wave Oscillator Figure 10 shows the circuit diagram for a quadrature sine wave oscillator. This circuit consists of two integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is, it also supplies the waveform delayed by 90. The output amplitude is essentially determined by the limiter circuit. 7 HA17741/PS 30 CT1 = 102 pF CT2 = 99 pF C1 = 106 pF VCC = -VEE = 15 V RT1 = 150 k, RT2 = 150 k R1 = 151.2 k R11 = 15 k, R22 = 10 k R33 = 15 k, R44 = 10 k CT1, CT2, C1 1,000 pF Use a Mylar capacitor. With VOP-P = 21 VP-P and R22 = R44 = 10 k the frequency of the sine wave will be under 10 kHz. Sin out Cos out 10 3 1.0 0.3 0.1 0.03 0.01 100 p 1,000 p 0.01 0.1 CT1, CT2, C1 (F) Figure 11 HA17741 Quadrature Sine Wave Oscillator f-CT1, CT2, C1 Characteristics Vertical: 5 V/div Horizontal: 0.2 ms/div Circuit constants CT1 = 1000 pF (990), CT2 = 1000 pF (990) RT1 = 150 k, RT2 = 150 k C1 = 1000 pF (990), R1 = 160 k R11 = 15 k, R22 = 10 k R33 = 16 V, R44 = 10 k VCC = 15 V, VEE = -15 V Sin out 0 Cos out Figure 12 Sine and Cosine Output Waveforms Triangular Wave Generator Integrator D1 R3 - A1 D2 R4 + R1 VA + Vout2 A2 - R1/R2 Vout1 C R2 Hysteresis comparator Figure 13 Triangular Wave Generator Operating Circuit 8 HA17741/PS 0 Vout1 Vout2 0 Vertical: 10 V/div Horizontal: 10 ms/div Circuit constants VCC = 15 V, VEE = -15 V R1 = 10 k, R2 = 20 k R3 = 100 k, R4 = 200 k C = 0.1 F VA 0 Figure 14 HA17741 Triangular Wave Generator Operating Waveform Sawtooth Waveform Generator R3 R2 Vin 6 k R4 3 k - R5 2.7 k R6 2.7 k C1 Q1 5 k VR VA 6 k + VB R1 I - R7 2.7 k R8 2.7 k VC + Vout 2SC1706 H Figure 15 Sawtooth Waveform Generator VR 0 Vout 0 Vertical: 5 V/div Horizontal: 2 ms/div Circuit constants VCC = 15 V, VEE = -15 V R1 = 100 k, C1 = 0.1 F Vin = 10 V Figure 16 HA17741 Sawtooth Waveform Generator Operating Waveform 9 HA17741/PS Characteristic Curves Input Offset Current vs. Power-Supply Voltage Characteristics 20 R2 Voltage Offset Adjustment Circuit Input offset current IIO (nA) 16 R1 2 56 3 1 12 8 R1 R2 a = 0% R a = 100% VEE 4 0 3 6 9 12 15 18 Power-supply voltage VCC, VEE (V) Power Dissipation vs. Power-Supply Voltage Characteristics 100 No load Voltage Gain vs. Power-Supply Voltage Characteristics 120 Power dissipation Pd (mW) 60 Voltage gain AVD (dB) 80 110 100 40 90 RL 2 k 20 80 0 3 6 9 12 15 18 70 3 6 9 12 15 18 Power-supply voltage VCC, VEE (V) Power-supply voltage VCC, VEE (V) 10 HA17741/PS Maximum Output Voltage Amplitude vs. Power-Supply Voltage Characteristics 20 Input Offset Voltage vs. Ambient Temperature Characteristics 5 VCC = +15 V VEE = -15 V RS 10 k Maximum output voltage amplitude VOP-P (V) RL 2 k 16 Input offset voltage VIO (mV) 15 18 4 12 O PP 3 4 -V O 8 +V PP 2 1 0 3 6 9 12 0 -20 0 20 40 60 80 Power-supply voltage VCC, VEE (V) Ambient temperature Ta (C) Input Offset Current vs. Ambient Temperature Characteristics 20 Input Bias Current vs. Ambient Temperature Characteristics 120 100 80 60 40 20 0 -20 VCC = +15 V VEE = -15 V Input offset current IIO (nA) 16 12 8 VCC = +15 V VEE = -15 V 4 0 -20 Input bias current IIB (nA) 0 20 40 60 80 0 20 40 60 80 Ambient temperature Ta (C) Ambient temperature Ta (C) 11 HA17741/PS Power Dissipation vs. Ambient Temperature Characteristics 90 120 VCC = +15 V VEE = -15 V No load Voltage Gain vs. Ambient Temperature Characteristics Power dissipation Pd (mW) 70 Voltage gain AVD (dB) 80 110 100 60 90 50 80 VCC = +15 V VEE = -15 V RL 2 k 0 20 40 60 80 40 -20 0 20 40 60 80 70 -20 Ambient temperature Ta (C) Ambient temperature Ta (C) Maximum Output Voltage Amplitude vs. Ambient Temperature Characteristics 16 20 Output Shorted Current vs. Ambient Temperature Characteristics VO = VCC VCC = +15 V VEE = -15 V Maximum output voltage amplitude VOP-P (V) 12 8 4 0 -4 -8 VCC = +15 V VEE = -15 V RL = 10 k Output shorted current IOS (mA) 16 12 8 4 -12 -20 0 20 40 60 80 0 -20 0 20 40 60 80 Ambient temperature Ta (C) Ambient temperature Ta (C) 12 HA17741/PS Maximum Output Voltage Amplitude vs. Load Resistance Characteristics 16 1.6 1.2 Offset Adjustment Characteristics VCC = +15 V, VEE = -15 V R1 = 51 , R2 = 5.1 k See the voltage offset adjustment circuit diagram. R = 10 k Maximum output voltage amplitude VOP-P (V) 12 Output voltage Vout (V) 8 4 0 -4 -8 VCC = +15 V VEE = -15 V 0.8 0.4 0 -0.4 -0.8 -1.2 -1.6 R = 5 k R = 20 k -12 200 500 1 k 2k 5 k 10 k 0 20 40 60 80 100 Load resistance RL () Resistor position a (%) Maximum Output Voltage Amplitude vs. Frequency Characteristics 28 1.4 Input Resistance vs. Frequency Characteristics Maximum output voltage amplitude VOP-P (V) 20 Input resistance Rin (M) 5k 10 k 20 k 50 k 100 k 200 k 500 k 24 1.2 1.0 16 0.8 12 0.6 8 VCC = +15 V VEE = -15 V RL = 10 k 0.4 4 0.2 0 100 200 500 1k 2k 0 100 200 500 1k 2k 5k 10 k 20 k 50 k 100 k 200 k 500 k 1M Frequency f (Hz) Frequency f (Hz) 13 HA17741/PS Phase vs. Frequency Characteristics 40 120 Voltage Gain vs Frequency Characteristics VCC = +15 V VEE = -15 V Open loop 0 Voltage gain AVD (dB) VCC = +15 V VEE = -15 V Open loop 100 80 60 40 20 0 -20 40 Phase (deg.) -40 -80 -120 -160 -200 -240 50 100 200 500 1k 2k 5k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2M 10 20 50 100 200 500 1 k 2 k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M Frequency f (Hz) Frequency f (Hz) Voltage Gain and Phase vs. Frequency Characteristics (1) 120 Voltage Gain and Phase vs. Frequency Characteristics (2) 120 100 80 60 40 -120 20 0 -20 -40 Voltage gain AVD (dB) 100 80 60 40 20 0 -20 Phase (deg.) 0 Voltage gain AVD (dB) VCC = +15 V VEE = -15 V Closed loop gain = 60 dB AVD VCC = +15 V VEE = -15 V Closed loop gain = 40 dB 0 -60 -60 -120 AVD -180 -180 10 20 50 100 200 500 1k 2k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M Frequency f (Hz) 10 20 50 100 200 500 1k 2k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M Frequency f (Hz) 14 Phase (deg.) HA17741/PS Voltage Gain and Phase vs. Frequency Characteristics (3) 120 120 Voltage Gain and Phase vs. Frequency Characteristics (4) Voltage gain AVD (dB) Voltage gain AVD (dB) 100 80 60 40 20 0 -20 -40 10 20 Phase (deg.) 80 60 40 20 0 -20 -40 VCC = +15 V VEE = -15 V Closed loop gain = 20 dB AVD -60 -120 VCC = +15 V VEE = -15 V Closed loop gain = 0 dB AVD -60 -120 -180 -180 50 100 200 500 1k 2k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M 10 20 50 100 200 500 1k 2k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M Frequency f (Hz) Frequency f (Hz) Impulse Response Characteristics Test Circuit 0.8 Rise time vs. Power-Supply Voltage Characteristics Vin = 20 mV RL = 2 k CL = 100 pF 2 6 3 Vout CL RL 0.6 Vin Rise time tr (s) 0.4 Vout = 90% Vout 10% tr V2 V2 x 100 (%) V1 0.2 V1 0 3 6 9 12 15 18 Power-supply voltage VCC, VEE (V) Phase (deg.) 100 0 0 15 HA17741/PS Overshoot vs. Power-Supply Voltage Characteristics 40 Vin = 20 mV RL = 2 k CL = 100 pF 30 40 Impulse Response Characteristics VCC = +15 V VEE = -15 V RL = 2 k CL = 100 pF Vin = 20 mV Output voltage Vout (mV) Overshoot Vover (%) 30 20 20 10 10 0 0 3 6 9 12 15 18 0 0.4 0.8 1.2 1.6 Power-supply voltage VCC, VEE (V) Time t (s) 16 HA17741/PS Package Dimensions Unit: mm 9.6 10.6 Max 8 5 6.3 7.4 Max 1 0.89 4 1.3 2.54 Min 5.06 Max 1.27 Max 7.62 0.1 Min 0.25 - 0.05 0 - 15 Hitachi Code JEDEC EIAJ Mass (reference value) + 0.10 2.54 0.25 0.48 0.10 DP-8 Conforms Conforms 0.54 g 17 HA17741/PS Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Strae 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. 18 |
Price & Availability of HA17741
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |