![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Data Sheet No. PD60026-N IR2112(S) HIGH AND LOW SIDE DRIVER Features * Floating channel designed for bootstrap operation * Fully operational to +600V * Tolerant to negative transient voltage * Gate drive supply range from 10 to 20V * Undervoltage lockout for both channels * 3.3V logic compatible * * * * Separate logic supply range from 3.3V to 20V Logic and power ground 5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs dV/dt immune Product Summary VOFFSET IO+/VOUT ton/off (typ.) Delay Matching 600V max. 200 mA / 420 mA 10 - 20V 125 & 105 ns 30 ns Packages Description The IR2112(S) is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge16-Lead SOIC dized monolithic construction. Logic inputs are com(wide body) 14-Lead PDIP patible with standard CMOS or LSTTL outputs, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection HO VDD HIN SD LIN V SS VCC V DD HIN SD LIN V SS VCC COM LO VB VS up to 600V TO LOAD (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2112(S) Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD RTHJA TJ TS TL Definition High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Allowable Offset Supply Voltage Transient (Figure 2) Package Power Dissipation @ TA +25C Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) (14 Lead DIP) (16 Lead SOIC) (14 Lead DIP) (16 Lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 VCC - 25 VSS - 0.3 -- -- -- -- -- -- -55 -- Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VSS + 25 VCC + 0.3 VDD + 0.3 50 1.6 1.25 75 100 150 150 300 Units V V/ns W C/W C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37. Symbol VB VS VHO VCC VLO VDD VSS VIN TA Definition High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Ambient Temperature Min. VS + 10 Note 1 VS 10 0 VSS + 3 -5 (Note 2) VSS -40 Max. VS + 20 600 VB 20 VCC VSS + 20 5 VDD 125 Units V C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD. 2 www.irf.com IR2112(S) Dynamic Electrical Characteristics VBIAS (VCC , V BS , VDD ) = 15V, CL = 1000 pF, TA = 25C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol ton toff tsd tr tf MT Definition Turn-On Propagation Delay Turn-Off Propagation Delay Shutdown Propagation Delay Turn-On Rise Time Turn-Off Fall Time Delay Matching, HS & LS Turn-On/Off Figure Min. Typ. Max. Units Test Conditions 7 8 9 10 11 -- -- -- -- -- -- -- 125 105 105 80 40 -- 180 160 160 130 65 30 Figure 5 VS = 0V VS = 600V VS = 600V ns Static Electrical Characteristics VBIAS (VCC , VBS, VDD) = 15V, TA = 25C and VSS = COM unless otherwise specified. The VIN, VTH and I IN parameters are referenced to V SS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO- Definition Logic "1" Input Voltage Logic "0" Input Voltage High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Quiescent VDD Supply Current Logic "1" Input Bias Current Logic "0" Input Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current Figure Min. Typ. Max. Units Test Conditions 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 9.5 -- -- -- -- -- -- -- -- -- 7.4 7.0 7.6 7.2 200 420 -- -- -- -- -- 25 80 2.0 20 -- 8.5 8.1 8.6 8.2 250 500 -- 6.0 100 100 50 60 180 5.0 40 1.0 9.6 9.2 V 9.6 9.2 -- -- mA VO = 0V, VIN = VDD PW 10 s VO = 15V, VIN = 0V PW 10 s A V mV IO = 0A IO = 0A VB = VS = 600V VIN = 0V or VDD VIN = 0V or VDD VIN = 0V or VDD VIN = VDD VIN = 0V www.irf.com 3 IR2112(S) Functional Block Diagram VB VDD RQ S HIN HV LEVEL SHIFT UV DETECT PULSE FILTER R R S Q HO VDD /VCC LEVEL SHIFT PULSE GEN VS SD UV DETECT VCC VDD /VCC LEVEL SHIFT LIN RQ VSS S LO DELAY COM Lead Definitions Symbol VDD HIN SD LIN VSS VB HO VS VCC LO COM Description Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return Lead Assignments 14 Lead DIP 16 Lead SOIC (Wide Body) IR2112 Part Number 4 IR2112S www.irf.com IR2112(S) Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit HIN LIN ton 50% 50% tr 90% toff 90% tf HO LO 10% 10% Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition SD 50% HIN LIN 50% 50% LO tsd HO 10% HO LO 90% MT MT 90% LO Figure 5. Shutdown Waveform Definitions HO Figure 6. Delay Matching Waveform Definitions www.irf.com 5 IR2112(S) 250 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 200 250 200 150 100 Typ. 50 0 -50 -25 0 25 50 Temperature 75 100 125 10 12 14 16 18 20 V CC/VB S Supply Voltage (V) Max . Max. 150 100 Typ. 50 0 Figure 7A. Turn-On Time vs. Te mperature Figure 7B. Turn-On Time vs. VCC/VBS Supply Voltage 250 Turn-Off Delay Time (ns) 200 400 Turn-On Delay Time (ns) 300 Max. 200 Max. 150 100 100 0 0 2 4 6 Typ. Typ. 50 0 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Supply Voltage (V) Temperature (C) Figure 8A. Turn-Off Time vs. Temperature Figure 7C. Turn-On Time vs. VDD Supply Voltage 250 Turn-Off Delay Time (ns) Turn-OFF Delay Time (ns) 400 200 150 100 Max. 300 Max. 200 100 Typ. 50 0 10 12 14 16 18 20 Typ. 0 0 2 4 6 8 10 12 14 16 18 20 VCC/VB S Supply Voltage (V) VDD Supply Voltage (V) Figure 8B. Turn-Off Time vs. VCC/VBS Supply Voltage Figure 8C. Turn-Off Time vs. VDD Supply Voltage 6 www.irf.com IR2112(S) 250 Shutdown Delay Time (ns) Shutdown Delay Time (ns) 200 250 200 150 100 Typ. 50 0 10 12 14 16 18 20 Max. Max. 150 100 50 0 -50 -25 0 25 50 75 100 125 Typ. Temperature (C) Figure 9A. Shutdow n Tim e vs. Te mpe ra ture 400 Shutdown Delay Time (ns) VCC/VB S Supply Voltage (V) Figure 9B. Shutdown Delay Time vs. VCC/VBS Supply Voltage 250 Turn-On rise Time (ns) 200 150 100 50 0 -50 Typ. Max. 300 Max. 200 100 Typ. 0 0 2 4 6 8 10 12 14 16 18 20 -25 0 VDD Supply Voltage (V) 25 50 75 Temperature (C) 100 125 Figure 9C. Shutdown Time vs. VDD Supply Voltage Figure 10A. Turn-On Rise Time vs. Temperature 125 Turn-On Fall Time (ns) 100 75 50 25 0 Turn-On Rise Time (ns) 250 200 150 100 50 0 10 12 14 16 18 20 Typ. Max. Max. Typ. -50 -25 0 25 50 75 100 125 Tem perature (C) VBIAS Supply Voltage (V) Figure 10B. Turn-On Rise Time vs. Voltage Figure 11A Turn-On Fall Time vs. Temperature www.irf.com 7 IR2112(S) 12 5 15 Logic "1" Input Threshold (V) 12 Tu rn-O ff F all Tim e (ns ) 10 0 Max. 75 50 Min. 9 6 3 0 -50 -25 0 25 50 75 100 125 Typ. 25 0 10 12 14 16 V B IA S S u pp ly V oltag e (V ) 18 20 Temperature (C) Figure 11B. Turn-Off Fall Time vs. Voltage Figure 12A. Logic "I" Input Threshold vs. Temperature 15 Logic "0" Input Threshold (V) 12 9 Log ic " 1 " Input Tres hold 9 12 15 Min. 6 Max. 6 3 0 0 2.5 3 5 7.5 10 12.5 15 17.5 20 -5 0 -2 5 0 25 50 75 100 125 V DD Log ic S upply V oltage (V ) Te m p e ra t u re (C ) Figure 12B. Logic "I" Input Threshold vs. Voltage 15 Logic " 0 " Input Treshold (V) 1 High Level O utpu t V oltage (V ) 0.8 0.6 0.4 Figure 13A. Logic "0" Input Threshold vs. Temperature 6 9 12 Max. 3 M ax . 0.2 0 -50 -25 0 25 50 75 100 125 0 2.5 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) T e mp e ra tu re Figure 14A. High Level Output vs. Temperature Figure 13B. Logic "0" Input Threshold vs. Voltage 8 www.irf.com IR2112(S) Low Level Output Voltage (V) High Level Output Voltage (V) 1 0.8 0.6 0.4 Max. 0.2 0 10 12 14 16 18 20 VBAIS Supply Votage (V) 1 0.8 0.6 0.4 0.2 0 -50 Max. -25 0 25 50 75 100 125 Temperature (C) Figure 14B. High Level Output vs. Voltage Figure 15A. Low Level Output vs. Temperature Offset Supply Leakage Current (uA) Low Level Output Voltage (V) 1 0.8 0.6 0.4 Max. 0.2 0 10 12 14 16 18 20 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Max. VBIAS Supply Votage (V) Temperature (C) Figure 16A. Offse t Supply Curre nt vs. Tem pe ra ture Figure 15B. Low Level Output vs. Voltage Offset Supply Leakage Current (uA) 500 400 300 200 M ax . 100 0 0 100 200 300 400 500 600 V B B oos t V oltage (v) VBS Supply Current (uA) 100 80 60 Max. 40 20 Typ. 0 -50 -25 0 25 50 75 100 125 Tem perature (C) Figure 16B. Offset Supply Current vs. Voltage Figure 17A. VBS Supply Current vs. Temperature www.irf.com 9 IR2112(S) 100 VBS Supply Current (uA) Vcc Supply Current (uA) 300 250 200 150 100 50 0 80 M ax . 60 40 20 0 10 12 14 16 18 20 Ty p. Max. Typ. -5 0 -2 5 0 25 50 75 100 125 V BS Floating Supply V oltage (V ) Te m p e ra t u re ( C ) Figure 17B. VBS Supply Current vs. Voltage 300 Vcc Supply Current (uA) 250 200 150 100 50 0 10 12 14 16 18 20 Figure 18A. VCC Supply Current vs. Temperature 12 VDD Supply Current (uA) 10 8 6 4 2 0 -50 -25 0 25 50 75 100 125 Temperature (C) Max. Max. Typ. Typ. Vcc Fixed Supply V oltage (V) Figure 18B. VCC Supply Current vs. Voltage 12 VDD Supply Current (uA) 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 VDD Logic Supply Voltage (V) 18 20 Figure 19A. VDD Supply Current vs. Temperature Logic "1 " Input Bias Current (uA) 100 80 60 Max. Max. 40 20 Typ. Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 19B. VDD Supply Current vs. VDD Voltage Figure 20A. Logic "I" Input Current vs. Temperature 10 www.irf.com IR2112(S) 100 5 Logic "0" Input Bias Current (uA 4 3 2 Logic " 1" Input Bias Current (uA) 80 60 40 20 Max. Max. 1 0 -50 -25 0 25 50 75 100 125 Typ. 0 0 2 4 6 8 10 12 14 16 V D D L ogic S upply V oltage (V ) 18 20 Temperature (C) Figure 20B. Logic "1" Input Current vs. VDD Voltage Figure 21A. Logic "0" Input Current vs. Temperature 11 10 9 Logic "0" Input Bias Current (uA) 4 3 2 VBS Undervoltage Lockout +(V) 5 Max. Typ. 8 Max. 1 0 0 2 4 6 8 10 12 14 16 18 20 Min. 7 6 -50 -25 0 25 50 75 100 125 VDD Supply Voltage (V) Figure 21B. Logic "0" Input Current vs. VDD Voltage 11 VBS Undervoltage Lockout -(V) 10 Temperature (C) Figure 22. VBS Undervoltage (+) vs. Temperature 11 Vcc Undervoltage Lockout +(V) 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Max. 9 Max. Typ. Min. Typ. 8 Min. 7 6 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 23. VBS Undervoltage (-) vs. Temperature Temperature (C) Figure 24. VCC Undervoltage (-) vs. Temperature www.irf.com 11 IR2112(S) 11 VCC Undervoltage Lockout - (V) 500 Output source Current (mA) 400 300 10 Max. 9 Typ. 8 Typ. 200 Min. 7 6 -50 -25 0 25 50 75 100 125 Tem perature (C) Min. 100 0 -50 -25 0 25 50 75 100 125 Tem perature (C) Figure 25. VCC Undervoltage (-) vs. Temperature 500 400 Figure 26A. Output Source Current vs. Temperature 750 Output Sink Current (mA) 600 Output source Current (mA) Typ. 300 200 100 0 10 12 14 16 18 20 Typ. 450 300 150 0 -50 -25 0 25 50 75 100 125 Temperature (C) Min. Min. VBIAS Supply Voltage (V) Figure 26B. Output Source Current vs. Voltage 750 Output Sink Current (mA) 600 Figure 27A. Output Sink Current vs. Temperature Typ. 450 300 150 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Min. Figure 27B. Output Sink Current vs. Voltage 12 www.irf.com IR2112(S) 150 150 320V 125 Junction Temperature (C) 320V 125 Junction Temperature (C) 100 100 140V 75 140V 75 10V 50 10V 50 25 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 28. IR2112 TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V 150 320V Figure 29. IR2112 TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V 150 320V 140V 10V 125 140V 125 Junction Temperature (C) Junction Temperature (C) 100 10V 100 75 75 50 50 25 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 30. IR2112 TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V 150 320V Figure 31. IR2112 TJ vs. Frequency (IRFPE50) RGATE = 10, VCC = 15V 150 320V 140V 125 Junction Temperature (C) Junction Temperature (C) 125 100 140V 100 75 10V 75 10V 50 50 25 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 32. IR2112S TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V Figure 33. IR2112S TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V www.irf.com 13 IR2112(S) 320V 140V 320V 140V 10V 150 150 125 Junction Temperature (C) 10V 125 Junction Temperature (C) 100 100 75 75 50 50 25 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 34. IR2112S TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V Figure 35. IR2112S TJ vs. Frequency (IRFPE50) RGATE = 10, VCC = 15V 0.0 20.0 Typ. -6.0 VSS Logic Supply Offset Voltage (V) -3.0 VS Offset Supply Voltage (V) 16.0 12.0 -9.0 8.0 Typ. -12.0 4.0 -15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) 0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage 14 www.irf.com IR2112(S) Case outline 14-Lead PDIP 01-6010 01-3002 03 (MS-001AC) 16-Lead SOIC (wide body) 01 6015 01-3014 03 (MS-013AA) 5/31/2001 www.irf.com 15 |
Price & Availability of IR2112SNBSP
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |