Part Number Hot Search : 
C5000 50P03 24L32 0N65F LBT70A73 BA6129 00051 ZC832BTA
Product Description
Full Text Search
 

To Download AD5171 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Preliminary Technical Data
FEATURES
64-Position OTP Digital Potentiometer AD5171
a mechanical trimmer). When this permanent setting is achieved, the value will not change regardless of supply variations or environmental stresses under normal operating conditions. To verify the success of permanent programming, Analog Devices patterned the OTP validation such that the fuse status can be discerned from two validation bits in read mode. For applications that program AD5171 in the factories, Analog Devices offers a device programming software, which operates across Windows(R) 95 to XP(R) platforms including Windows NT(R). This software application effectively replaces the need for external I2C controllers or host processors and therefore significantly reduces users' development time. An AD5171 evaluation kit is available, which includes the software, connector, and cable that can be converted for the factory programming applications. The AD5171 is available in a compact SOT-23-8 package. All parts are guaranteed to operate over the automotive temperature range of -40C to +125C. Besides its unique OTP feature, the AD5171 lends itself well to other general-purpose digital potentiometer applications due to its temperature performance, small form factor, and low cost.
SCL SDA I2C INTERFACE AND CONTROL LOGIC A
64 positions OTP (one-time programmable)1 set-and-forget resistance setting--low cost alternative over EEMEM Unlimited adjustments prior to OTP activation 5 k, 10 k, 50 k, 100 k end-to-end resistance Low tempco 5 ppm/oC in potentiometer mode Low tempco 35 ppm/C in rheostat mode Compact standard SOT-23-8 package Low power, IDD = 8 A max Fast settling time, ts = 5 s typ in power-up I2C compatible digital interface Computer software replaces c in factory programming applications Full read/write of wiper register Extra I2C device address pin Power-on preset to midscale 6 V one-time programming voltage Low operating voltage, 2.7 V to 5.5 V OTP validation check function Automotive temperature range -40C to +125C
APPLICATIONS
Systems calibrations Electronics level settings Mechanical potentiometers and trimmers(R) replacements Automotive electronics adjustments Gain control and offset adjustments Transducer circuits adjustments Programmable filters up to 1.5 MHz BW
W
AD0
B
GENERAL DESCRIPTION
The AD5171 is a 64-position, one-time programmable (OTP) digital potentiometer2, which employs fuse link technology to achieve the memory retention of resistance setting function. OTP is a cost-effective alternative over the EEMEM approach for users who do not need to reprogram new memory setting in the digital potentiometer. This device performs the same electronic adjustment function like most mechanical trimmers and variable resistors do. The AD5171 is programmed using a 2-wire I2C compatible digital control. It allows unlimited adjustments before permanently setting the resistance value. During the OTP activation, a permanent fuse blown command is sent after the final value is determined; therefore freezing the wiper position at a given setting (analogous to placing epoxy on
Rev. PrC
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
VDD GND FUSE LINK
WIPER REGISTER
03437-0-001
AD5171
Figure 1. Functional Block Diagram
W1 VDD 2 GND 3
8
A B
03437-0-002
AD5171
7
TOP VIEW 6 AD0 (Not to Scale) 5 SDA SCL 4
Figure 2. Pin Configuration
1
One-time programmable (OTP) - Unlimited adjustments before permanent setting. 2 The terms digital potentiometer and RDAC are used interchangeably.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 (c) 2003 Analog Devices, Inc. All rights reserved.
AD5171 TABLE OF CONTENTS
AD5171--Electrical Characteristics .............................................. 3 Absolute Maximum Ratings............................................................ 5 ESD Caution.................................................................................. 5 Pin Configuration and Functional Descriptions.......................... 6 Typical Performance Characteristics ............................................. 7 Theory of Operation ...................................................................... 11 One-Time Programming (OTP) .............................................. 11 Determining the Variable Resistance and Voltage ................. 11 Rheostat Mode Operation..................................................... 11 Potentiometer Mode Operation ........................................... 12 ESD Protection ........................................................................... 12 Terminal Voltage Operating Range.......................................... 13 Power-Up/Power-Down Sequences......................................... 13 Power Supply Considerations ................................................... 13 Controlling the AD5171 ............................................................ 14 Software Programming ......................................................... 14
Preliminary Technical Data
I2C Controller Programming................................................ 15 Controlling Two Devices on One Bus ..................................... 16 Applications..................................................................................... 17 Programmable Voltage Reference (DAC) ............................... 17 Gain Control Compensation .................................................... 17 Programmable Voltage Source with Boosted Output............ 17 Level Shifting for Different Voltage Operation ...................... 17 Resistance Scaling ...................................................................... 17 Resolution Enhancement .......................................................... 18 RDAC Circuit Simulation Model ............................................. 18 AD5171 Evaluation Board ........................................................ 19 Outline Dimensions ....................................................................... 20 Ordering Guide .......................................................................... 20
REVISION HISTORY
Revision 0: Initial Version
Rev. PrC | Page 2 of 20
Preliminary Technical Data
ELECTRICAL CHARACTERISTICS
Table 1. 5 k, 10 k, 50 k, and 100 k versions, VDD = 3 V to 5 V 10%, VA = VDD, VB = 0 V, -40C < TA < +125C, unless otherwise noted.
Parameter DC CHARACTERISTICS RHEOSTAT MODE Resistor Differential Nonlinearity2 Symbol R-DNL Conditions RWB, VA = No Connect, RAB = 10 k, 50 k, and 100 k RWB, VA = No Connect, RAB = 5 k RWB, VA = No Connect, RAB = 10 k, 50 k, and 100 k RWB, VA = No Connect, RAB = 5 k Min -0.5 Typ1 0.2 Max +0.5
AD5171
Unit LSB
-1 -1 -1.5 -30
0.25 0.25 0.5
+1 +1 +1.5 +30
LSB LSB LSB % ppm/C
Resistor Integral Nonlinearity2
R-INL
Nominal Resistor Tolerance3 Resistance Temperature Coefficient Wiper Resistance DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE (Specifications apply to all RDACs) Resolution Differential Nonlinearity4 Integral Nonlinearity4 Voltage Divider Temperature Coefficient Full-Scale Error Zero-Scale Error
RAB/RAB (RAB/RAB)/T RW
VDD = 5 V
35 60
115
N DNL INL (VW/VW)/T VWFSE VWZSE
-0.5 -1 Code = 0x20 Code = 0x3F Code = 0x00, RAB=10 k, 50 k, and 100 k Code = 0x00, RAB = 5 k With respect to GND f = 1 MHz, measured to GND, Code = 0x20 f = 1 MHz, measured to GND, Code = 0x20 VA = VB = VDD/2 0.7 VDD -0.5 3.0 0 -1.5 0 0
0.1 0.2 5 -0.5 0.5
6 +0.5 +1 +0 1.5 2 VDD
Bits LSB LSB ppm/C LSB LSB LSB V pF pF nA
RESISTOR TERMINALS Voltage Range5 Capacitance6 A, B Capacitance6 W Common-Mode Leakage DIGITAL INPUTS Input Logic High (SDA and SCL) Input Logic Low (SDA and SCL) Input Logic High (AD0) Input Logic Low (AD0) Input Current Input Capacitance6 DIGITAL OUTPUTS Output Logic Low (SDA) Three-State Leakage Current (SDA) Output Capacitance6 POWER SUPPLIES Power Supply Range OTP Power Supply7 Supply Current OTP Supply Current8 Power Dissipation9 Power Supply Sensitivity
VA, B, W CA, B CW ICM VIH VIL VIH VIL IIL CIL VOL IOZ COZ VDD VDD_OTP IDD IDD_OTP PDISS PSSR
25 55 1 VDD+0.5 0.3VDD VDD 1.0 1 3
VDD = 3 V VDD = 3 V VIN = 0 V or 5 V
V V V V A pF V A pF V V A mA mW %/%
IOL = 6 mA VIN = 0 V or 5 V 3 2.7 6 4 100 -0.025 0.02 +0.001
0.4 1
TA = 25C VIH = 5 V or VIL = 0 V VDD_OTP = 6 V, TA = 25C VIH = 5 V or VIL = 0 V, VDD = 5 V
5.5 6.5 8 0.04 +0.025
Rev. PrC | Page 3 of 20
AD5171
Parameter DYNAMIC CHARACTERISTICS 6, 10, 11 Bandwidth -3 dB Symbol BW_5k BW_10k BW_50k BW_100k THD tS1 tS_OTP tS2 eN_WB Conditions
Preliminary Technical Data
Min Typ1 1500 600 110 60 0.05 5 400 5 8 12 Max Unit kHz kHz kHz kHz % s ms s nV/Hz nV/Hz RAB = 5 k, Code = 0x20 RAB = 10 k, Code = 0x20 RAB = 50 k, Code = 0x20 RAB = 100 k, Code = 0x20 VA =1 V rms, RAB = 10 k, VB = 0 V DC, f = 1 kHz VA= 5 V 1 LSB error band, VB = 0, measured at VW VA = 5 V 1 LSB error band, VB = 0, measured at VW VA = 5 V 1 LSB error band, VB = 0, measured at VW RAB = 5 k, f = 1 kHz, Code = 0x20 RAB = 10 k, f = 1 kHz, Code = 0x20
Total Harmonic Distortion Adjustment Settling Time OTP Settling Time12 Power-up Settling Time--Post Fuses Blown Resistor Noise Voltage
INTERFACE TIMING CHARACTERISTICS (Applies to all parts6,12) SCL Clock Frequency tBUF Bus Free Time between Start and Stop tHD;STA Hold Time (Repeated Start) tLOW Low Period of SCL Clock tHIGH High Period of SCL Clock tSU;STA Setup Time for Start Condition tHD;DAT Data Hold Time tSU;DAT Data Setup Time tF Fall Time of Both SDA and SCL Signals tR Rise Time of Both SDA and SCL signals tSU;STO Setup Time for Stop Condition
1 2
fSCL t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
400 After this period, the first clock pulse is generated 1.3 0.6 1.3 0.6 0.6 0.1 0.3 0.3 0.6
kHz s s s s s s s s s s
50 0.9
Typicals represent average readings at 25C and VDD = 5 V. Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. 3 VAB = VDD, Wiper (VW) = No connect. 4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions. 5 Resistor terminals A, B, W have no limitations on polarity with respect to each other. 6 Guaranteed by design and not subject to production test. 7 Different from operating power supply, power supply for OTP is used one-time only. 8 Different from operating current, supply current for OTP lasts approximately 400 ms for one-time needed only. 9 PDISS is calculated from (IDD x VDD). CMOS logic level inputs result in minimum power dissipation. 10 Bandwidth, noise, and settling time are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest bandwidth. The highest R value result in the minimum overall power consumption. 11 All dynamic characteristics use VDD = 5 V. 12 Different from settling time after fuse is blown. The OTP settling time occurs once only.
t8 t9 t6
SCL
t2 t3 t8
SDA
t4 t9
t5
t7
t10
P
S
P
Figure 3. Interface Timing Diagram
Rev. PrC | Page 4 of 20
03437-0-024
t1
Preliminary Technical Data
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter VDD to GND VA, VB, VW to GND Maximum Current IWB, IWA Pulsed IWB Continuous (RWB 1 k, A open)1 IWA Continuous (RWA 1 k, B open)1 Digital Inputs and Output Voltage to GND Operating Temperature Range Maximum Junction Temperature (TJ max) Storage Temperature Lead Temperature (Soldering, 10 sec) Vapor Phase (60 sec) Infrared (15 sec) Thermal Resistance2 JA
1
AD5171
Rating -0.3, +7 V GND, VDD 20 mA 5 mA 5 mA 0 V, VDD -40C to +125C 150C -65C to +150C 300C 215C 220C 230C/W
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Maximum terminal current is bounded by the maximum applied voltage across any two of the A, B, and W terminals at a given resistance, the maximum current handling of the switches, and the maximum power dissipation of the package. VDD = 5 V. 2 Package Power Dissipation = (TJ max - TA) / JA
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. PrC | Page 5 of 20
AD5171 PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS
W1 VDD 2 GND 3
8
Preliminary Technical Data
A B
03437-0-003
AD5171
7
TOP VIEW 6 AD0 (Not to Scale) 5 SDA SCL 4
Figure 4. SOT-23-8
Table 3. Pin Function Descriptions
Pin No. 1 2 3 4 5 6 7 8 Mnemonic W VDD GND SCL SDA AD0 B A Description Wiper Terminal W. GND VW VDD. Positive Power Supply. Specified for operation from 2.7 V to 5.5 V. For OTP programming, VDD needs to be a minimum of 6 V and 100 mA driving capability. Common Ground. Serial Clock Input. Requires pull-up resistor. Serial Data Input/Output. Requires pull-up resistor. I2C Device Address Bit. Allows maximum of two AD5171s to be addressed. Resistor Terminal B. GND VB VDD. Resistor Terminal A. GND VA VDD.
Rev. PrC | Page 6 of 20
Preliminary Technical Data
TYPICAL PERFORMANCE CHARACTERISTICS
0.10 0.08
RHEOSTAT MODE INL (LSB)
AD5171
0.10
VDD = 5V
POTENTIOMETER MODE DNL (LSB)
0.08 -40C 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08
03437-0-004
VDD = 5V
0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.10 0 8 16
+125C
+125C +25C
-40C
+25C
24
32
40
48
56
64
0
8
16
24
32
40
48
56
64
CODE (DECIMAL)
CODE (DECIMAL)
Figure 5. R-INL vs. Code vs. Temperature
0.10 0.08
RHEOSTAT MODE DNL (LSB)
Figure 8. DNL vs. Code vs. Temperature
0 -0.1
VDD = 5V +25C +125C
0.06 0.04
-0.2
FSE (LSB)
0.02 0 -0.02 -0.04 -0.06 -0.08
03437-0-005
-0.3 -0.4
VDD = 5V
-40C
VDD = 3V -0.5 -0.6 -0.7 -40
-20
0
20
40
60
80
100
120
140
CODE (DECIMAL)
TEMPERATURE (C)
Figure 6. R-DNL vs. Code vs. Temperature
0.10 0.08
POTENTIOMETER MODE INL (LSB)
Figure 9. Full-Scale Error
0.6
VDD = 5V
0.06 0.04 0.02 0 -0.02 -40C -0.04 -0.06 -0.08
03437-0-006
0.5
+25C
+125C
ZSE (LSB)
0.4 VDD = 3V 0.3
VDD = 5V
0.2
0.1
0
8
16
24
32
40
48
56
64
-20
0
20
40
60
80
100
120
140
CODE (DECIMAL)
TEMPERATURE (C)
Figure 7. INL vs. Code vs. Temperature
Figure 10. Zero-Scale Error
Rev. PrC | Page 7 of 20
03437-0-009
-0.10
0 -40
03437-0-008
-0.10
0
8
16
24
32
40
48
56
64
03437-0-007
-0.10
AD5171
10 VDD = 5V
IDD SUPPLY CURRENT (A)
Preliminary Technical Data
6 0 -6
MAGNITUDE (dB)
0x20 0x10 0x08 0x04 0x02 0x01 0x00
03437-0-013
-12 -18 -24 -30 -36 -42 -48
1
VDD = 3V
-20
0
20
40
60
80
100
120
140
03437-0-010
0.1 -40
-54 100
1k
TEMPERATURE (C)
10k 100k FREQUENCY (Hz)
1M
10M
Figure 11. Supply Current vs. Temperature
180 160
RHEOSTAT MODE TEMPCO (ppm/C)
Figure 14. Gain vs. Frequency vs. Code, RAB = 5 k
6 0 -6
MAGNITUDE (dB)
0x3F 0x20 0x10 0x08 0x04 0x02 0x01
140 120 100 80 60 40 20 0 -20
03437-0-011
-12 -18 -24 -30 -36 -42 -48
0x00
0
8
16
24
32
40
48
56
64
1k
10k
FREQUENCY (Hz)
100k
1M
CODE (DECIMAL)
Figure 12. Rheostat Mode Tempco (RAB/RAB)/ T vs. Code
25
Figure 15. Gain vs. Frequency vs. Code, RAB = 10 k
6 0 0x3F 0x20 0x10 0x08 0x04 0x02 0x01
RHEOSTAT MODE TEMPCO (ppm/C)
20
-6
MAGNITUDE (dB)
15
-12 -18 -24 -30 -36 -42 -48
10
5
0
03437-0-012
0
8
16
24
32
40
48
56
64
1k
10k FREQUENCY (Hz)
100k
1M
CODE (DECIMAL)
Figure 13. Potentiometer Mode Tempco (VW /VW)/ T vs. Code
Figure 16. Gain vs. Frequency vs. Code, RAB = 50
Rev. PrC | Page 8 of 20
03437-0-015
-5
-54 100
0x00
03437-0-001
-40
-54 100
Preliminary Technical Data
6 0 -6
MAGNITUDE (dB)
AD5171
VDD = 5.5V VA = 5.5V VB = GND
DATA 0x00 0x3F
0x3F 0x20 0x10 0x08 0x04 0x02 0x01
-12 -18 -24 -30 -36 -42 -48 1k
fCLK = 400kHz
VW = 5V/DIV
SCL = 5V/DIV
10k FREQUENCY (Hz)
100k
1M
03437-0-016
-54 100
0x00
5V
5V
5s
Figure 17. Gain vs. Frequency vs. Code, RAB = 100 k
80 TA = 25C CODE = 0x20 VA = 2.5V, VB = 0V 60 VDD = 5V DC 1.0V p-p AC VDD = 3V DC 0.6V p-p AC
Figure 20. Settling Time
POWER SUPPLY REJECTION RATIO (-dB)
VDD = 5.5V VA = 5.5V VB = GND
fCLK = 100kHz
VW = 50mV/DIV
DATA 0x20
0x1F
40
20
SCL = 5V/DIV
1k 10k FREQUENCY (Hz) 100k 1M
03437-0-017
0 100
50mV
5V
200ns
Figure 18. PSRR vs. Frequency
Figure 21. Midscale Glitch Energy
VDD = 5.5V VA = 5.5V VB = GND
fCLK = 100kHz
OTP PROGRAMMED AT MS VDD = 5.5V VA = 5.5V RAB = 10k
VW = 10mV/DIV
VW = 1V/DIV
SCL = 5V/DIV
03437-0-018
VDD = 5V/DIV 1V 5V 5s
03437-0-021
10mV
5V
500ns
Figure 19. Digital Feedthrough vs. Time
Figure 22. Power-Up Settling Time, after Fuses Blown
Rev. PrC | Page 9 of 20
03437-0-020
03437-0-019
AD5171
10.00 VA = VB = OPEN TA = 25C
Preliminary Technical Data
THEORETICAL IWB_MAX (mA)
RAB = 5k 1.00 RAB = 10k
RAB = 50k 0.10 RAB = 100k
0
8
16
24
32
40
48
56
64
CODE (DECIMAL)
Figure 23. IWB_max vs. Code
Rev. PrC | Page 10 of 20
03437-0-022
0.01
Preliminary Technical Data
THEORY OF OPERATION
The AD5171 allows unlimited 6-bit adjustments, except for onetime programmable, set-and-forget resistance setting. OTP technology is a proven cost-effective alternative over EEMEM in one-time memory programming applications. AD5171 employs fuse link technology to achieve the memory retention of the resistance setting function. It comprises six data fuses, which control the address decoder for programming the RDAC, one user mode test fuse for checking setup error, and one programming lock fuse for disabling any further programming once the data fuses are blown.
SCL SDA I2C INTERFACE
AD5171
A DAC REG. MUX DECODER W
B COMPARATOR FUSES EN ONE-TIME PROGRAM/TEST CONTROL BLOCK FUSE REG.
ONE-TIME PROGRAMMING (OTP)
Prior to OTP activation, the AD5171 presets to midscale during power on. After the wiper is set at the desired position, the resistance can be permanently set by programming the T bit to high along with the proper coding (Table 7). The device control circuit has two validation bits, E1 and E0, that can be read back in the read mode for checking the programming status as shown in Table 4. Table 4. Validation Status
E1 0 0 E0 0 1 Status Ready for Programming Test Fuse Not Blown Successfully. (For factory setup checking purpose only. Users should not see these combinations.) Error. Some fuses are not blown. Try again. Successful. No further programming is possible.
Figure 24. Detailed Functional Block Diagram
DETERMINING THE VARIABLE RESISTANCE AND VOLTAGE
Rheostat Mode Operation
If only the W-to-B or W-to-A terminals are used as variable resistors, the unused terminal can be opened or shorted with W. This operation is called rheostat mode (Figure 25).
A W B B A W B A W
03437-0-050
1 1
0 1
Figure 25. Rheostat Mode Configuration
When the OTP T bit is set, the internal clock is enabled. The program will attempt to blow a test fuse. The operation stops if this fuse is not blown properly. The validation Bits E1 and E0 show 01, and the users should check the setup. If the test fuse is blown successfully, the data fuses will be programmed next. The six data fuses will be programmed in six clock cycles. The output of the fuses is compared with the code stored in the DAC register. If they do not match, E1 and E0 = 10 is issued as a error and the operation stops. Users may retry with the same codes. If the output and stored code match, the programming lock fuse will be blown so that no further programming is possible. In the meantime, E1 and E0 will issue 11 indicating the lock fuse is blown successfully. All the fuse latches are enabled at power-on and therefore the output corresponds to the stored setting from this point on. Figure 24 shows a detailed functional block diagram.
The nominal resistance (RAB) of the RDAC has 64 contact points accessed by the wiper terminal, plus the B terminal contact if RWB is considered. The 6-bit data in the RDAC latch is decoded to select one of the 64 settings. Assuming that a 10 k part is used, the wiper's first connection starts at the B terminal for data 0x00. Such connection yields a minimum of 60 resistance between terminals W and B because of the 60 wiper contact resistance. The second connection is the first tap point, which corresponds to 219 (RWB = (1) x RAB/63 + RW) for data 0x01, and so on. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at 10060 ((63) x RAB/63 + RW). Figure 26 shows a simplified diagram of the equivalent RDAC circuit. The general equation determining RWB is
RWB (D) = D x RAB + RW 63
03437-0-025
(1)
where: D is the decimal equivalent of the 6-bit binary code. RAB is the end-to-end resistance. RW is the wiper resistance contributed by the on-resistance of the internal switch.
Rev. PrC | Page 11 of 20
AD5171
Table 5. RWB vs. Codes; RAB = 10 k and the A Terminal Is Opened
D (Dec) 63 32 1 0 RWB () 10060 5139 219 60 Output State Full-Scale (RAB + RW) Midscale 1 LSB Zero-Scale (Wiper Contact Resistance)
Preliminary Technical Data
Potentiometer Mode Operation
If all three terminals are used, the operation is called the potentiometer mode. The most common configuration is the voltage divider operation (Figure 27).
VI
A W B VO
03437-0-051
Since a finite wiper resistance of 60 is present in the zeroscale condition, care should be taken to limit the current flow between W and B in this state to a maximum pulse current of no more than 20 mA. Otherwise, degradation or possible destruction of the internal switch contact can occur. Similar to the mechanical potentiometer, the resistance of the RDAC between the wiper W and terminal A also produces a complementary resistance RWA. When these terminals are used, the B terminal can be opened or shorted to W. Setting the resistance value for RWA starts at a maximum value of resistance and decreases as the data loaded in the latch increases in value. The general equation for this operation is
RWA (D ) = 63 - D x R AB + RW 63
Figure 27. Potentiometer Mode Configuration
Ignoring the effect of the wiper resistance, the transfer function
is simply VW (D) = D VA 63
(3)
A more accurate calculation, which includes the wiper resistance effect, yields (2)
D R AB + RW 63 VA VW (D ) = R AB + 2RW
Table 6. RWA vs. Codes; RAB =10 k and B Terminal Is Opened
D (Dec) 63 32 1 0 RWA () 60 4980 9901 10060 Output State Full-Scale Midscale 1 LSB Zero-Scale
(4)
Unlike in rheostat mode operation where the absolute tolerance is high, potentiometer mode operation yields an almost ratiometric function of D/63 with a relatively small error contributed by the RW terms, and therefore the tolerance effect is almost
cancelled. Although the thin film step resistor RS and CMOS switches resistance RW have very different temperature coefficients, the ratio-metric adjustment also reduces the overall temperature coefficient effect to 5 ppm/oC, except at low value codes where RW dominates. Potentiometer mode operations include others such as op amp input, feedback resistor networks, and other voltage scaling applications. A, W, and B terminals can in fact be input or output terminals provided that |VAB|, |VWA|, and |VWB| do not exceed VDD to GND.
The typical distribution of the resistance tolerance from device to device is process lot dependent, and it is possible to have 30% tolerance.
A
D5 D4 D3 D2 D1 D0
RS RS W
ESD PROTECTION
Digital inputs SDA and SCL are protected with a series input resistor and parallel Zener ESD structures (Figure 28).
340
LOGIC
03437-0-027
RDAC LATCH AND DECODER
RS B
03437-0-026
Figure 28. ESD Protection of Digital Pins
Figure 26. AD5171 Equivalent RDAC Circuit
Rev. PrC | Page 12 of 20
Preliminary Technical Data
TERMINAL VOLTAGE OPERATING RANGE
There are also ESD protection diodes between VDD and the RDAC terminals. The VDD of AD5171 therefore defines their voltage boundary conditions, see Figure 29. Supply signals present on terminals A, B, and W that exceed VDD will be clamped by the internal forward-biased diodes and should be avoided.
VDD
CONNECT J1 HERE FOR OTP 6V R1 50k R2 250k J1 C1 1F C2 0.1F VDD
AD5171
5V
AD5171
03437-0-030
CONNECT J1 HERE AFTER OTP
Figure 30. Power Supply Requirement
A W B
GND
03437-0-029
An alternate approach in 3.5 V to 5.5 V systems adds a signal diode between the system supply and the OPT supply for isolation, as shown in Figure 31.
6V APPLY FOR OTP ONLY D1 3.5V-5.5V C1 10F C2 0.1F VDD
Figure 29. Maximum Terminal Voltages Set by VDD
AD5171
03437-0-031
POWER-UP/POWER-DOWN SEQUENCES
Similarly, because of the ESD protection diodes, it is important to power VDD first before applying any voltages to terminals A, B, and W. Otherwise, the diode will be forward-biased such that VDD will be powered unintentionally and may affect the rest of the users' circuits. The ideal power-up sequence is in the following order: GND, VDD, digital inputs, and VA/VB/VW. The order of powering VA, VB, VW, and digital inputs is not important as long as they are powered after VDD. Similarly, VDD should be powered down last.
Figure 31. Isolating the 6 V OPT Supply from the 3.5V to 5.5 V Normal Operating Supply. The 6 V supply must be removed once OPT is complete.
6V R1 10k 2.7V
APPLY FOR OTP ONLY
POWER SUPPLY CONSIDERATIONS
To minimize the package pin count, both the one-time programming and normal operating voltages are applied to the same VDD terminal of the AD5171. The AD5171 employs fuse link technology that requires 6 V to blow the internal fuses to achieve a given setting. On the other hand, it operates at 2.7 V to 5.5 V once the programming is complete. Such dual voltage requires isolation between supplies. The fuse programming supply (either an on-board regulator or rack-mount power supply) must be rated at 6 V and be able to handle 400 ms and 100 mA of transient current for one-time programming. Once programming is complete, the 6 V supply must be removed to allow normal operation of 2.7 V to 5.5 V. Figure 30 shows the simplest implementation using a jumper. This approach saves one voltage supply, but draws additional current and requires manual configuration.
P1
P2
C1 10F
C2 0.1F
VDD
AD5171
03437-0-052
P1 = P2 = FDV302P, NDS0610
Figure 32. Isolating the 6 V OPT Supply from the 2.7 V Normal Operating Supply. The 6 V supply must be removed once OPT is complete.
For users who operate their systems at 2.7 V, it is recommended to use the bi-directional low-threshold P-Ch MOSFETs for the supplies isolation. As shown in Figure 32 assumes the 2.7 V system voltage is applied first but not the 6 V. The gates of P1 are P2 are pulled to ground, which turns on P1 and subsequently P2. As a result, VDD of AD5171 becomes 2.7 V minus a few tenths of mV drop across P1 and P2. When the AD5171 setting is found, the factory tester applies the 6 V to VDD and also to the gates of P1 and P2 to turn them off. While the OTP command is executing at this time to program AD5171, the 2.7 V source is therefore protected. Once the OTP is complete, the tester withdraws the 6 V, and AD5171 setting is permanently fixed.
Rev. PrC | Page 13 of 20
AD5171
CONTROLLING THE AD5171
There are two ways of controlling the AD5171. Users can either program the devices with computer software or external I2C controllers. Read
Preliminary Technical Data
To read the validation bits and data out from the device, the user may simply press the Read button. The user may also set the bit pattern in the upper screen and press the Run button. The format of reading data out from the device is shown in Table 8. To apply the device programming software in the factory, users need to modify a parallel port cable and configure Pins 2, 3, 15, and 25 for SDA_write, SCL, SDA_read, and DGND, respectively for the control signals (Figure 34). Users should also layout the PCB of the AD5171 with SCL and SDA pads, as shown in Figure 35, such that pogo pins can be inserted for the factory programming.
13 25 12 24 11 23 10 22 9 21 8 20 7 19 6 18 5 17 4 16 3 15 2 14 1
Software Programming
Due to the advantage of the one-time programmable feature, users may consider programming the device in the factory before shipping to end users. ADI offers a device programming software, which can be implemented in the factory on PCs that run Windows 95 to XP platforms. As a result, external controllers are not required, which significantly reduces development time. The program is an executable file that does not require any programming languages or user programming skills. It is easy to set up and use. Figure 33 shows the software interface. The software can be downloaded from www.analog.com.
R3 100 R2 READ 100 R1 WRITE 100
SCL
SDA
Figure 33. AD5171 Computer Software Interface
Write The AD5171 starts at midscale after power-up prior to the OPT programming. To increment or decrement the resistance, the user may simply move the scrollbar on the left. To write any specific values, the user should use the bit pattern control in the upper screen and press the Run button. The format of writing data to the device is shown in Table 7. Once the desirable setting is found, the user may press the Program Permanent button to blow the internal fuse links for permanent setting. The user may also set the programming bit pattern in the upper screen and press the Run button to achieve the same result.
Table 7. SDA Write Mode Bit Format
S 0 1 0 1 1 0 AD0 Slave Address Byte 0 A T X XXXX Instruction Byte X
Figure 34. Parallel Port Connection. Pin 2 = SDA_write, Pin 3 = SCL, Pin 15 = SDA_read, and Pin 25 = DGND
Figure 35. Recommended AD5171 PCB Layout. The SCL and SDA pads allow pogo pins to be inserted so that signals can be communicated through the parallel port for programming (Figure 34).
X
A
X
X
D5
D4 D3 D2 Data Byte
03437-0-034
W VDD DGND SCL
A B AD0 SDA
D1
03437-0-033
D0
A
P
Table 8. SDA Read Mode Bit Format
S 0 1 0 1 1 0 Slave Address Byte AD0 1 A E1 E0 D5 D4 D3 Data Byte D2 D1 D0 A P
Rev. PrC | Page 14 of 20
Preliminary Technical Data
Table 9. SDA Bits Definitions and Descriptions
Bit S P A AD0 X T Description Start Condition. Stop Condition. Acknowledge. I2C Device Address Bit. Allows maximum of two AD5171s to be addressed. Don't Care. OTP Programming Bit. Logic 1 programs wiper position permanently. Bit D5, D4, D3, D2, D1, D0 E1, E0 0, 0 0, 1 1, 0 1, 1 Description Data Bits.
AD5171
OTP Validation Bits. Ready to Program. Test Fuse Not Blown Successfully. (For Factory Setup Checking Purpose Only. Users should not see these combinations). Fatal Error. Try again. Programmed Successfully. No further adjustments possible.
I2C Controller Programming
Write Bit Pattern Illustrations
1 SCL SDA 0 1 0 1 1 0 AD0 R/W ACK. BY AD5171 START BY MASTER FRAME 1 SLAVE ADDRESS BYTE FRAME 2 INSTRUCTION BYTE 0 X X X X X X X X ACK. BY AD5171 FRAME 1 DATA BYTE X D5 D4 D3 D2 D1 D0 ACK. BY AD5171
03437-0-035
9
1
9
1
9
STOP BY MASTER
Figure 36. Writing to the RDAC Register
1 SCL SDA 0 1 0 1 1 0 AD0 R/W
9
1 1 X X X X X X X
9
1 X X D5 D4 D3 D2 D1 D0
9
03437-0-036
ACK. BY AD5171 START BY MASTER FRAME 1 SLAVE ADDRESS BYTE FRAME 2 INSTRUCTION BYTE
ACK. BY AD5171 FRAME 1 DATA BYTE
ACK. BY AD5171
STOP BY MASTER
Figure 37. Activating One-Time Programming
Read Bit Pattern Illustration
1 SCL SDA 0 1 0 1 1 0 AD0 R/W E1 E0 D5 D4 D3 D2 D1 D0 NO ACK. BY MASTER FRAME 2 RDAC REGISTER 9 1 9
03437-0-037
ACK. BY AD5171 START BY MASTER FRAME 1 SLAVE ADDRESS BYTE
STOP BY MASTER
Figure 38. Reading Data from RDAC Register
For users who prefer to use external controllers, the AD5171 can be controlled via an I2C compatible serial bus and is connected to this bus as slave device. Referring to Figure 36, Figure 37, and Figure 38, the 2-wire I2C serial bus protocol operates as follows: 1. The master initiates data transfer by establishing a start condition, which is when SDA from high-to-low while SCL is high (Figure 36 and Figure 37). The following byte is the slave address byte, which consists of the 6 MSBs as a slave
address defined as 010110. The next bit is AD0, which is an I2C device address bit. Depending on the states of their AD0 bits, two AD5171 can be addressed on the same bus (Figure 39). The last LSB is the R/W bit, which determines whether data will be read from or written to the slave device. The slave whose address corresponds to the transmitted address responds by pulling the SDA line goes low during the 9th clock pulse (this is termed the Acknowledge bit). At
Rev. PrC | Page 15 of 20
AD5171
this stage, all other devices on the bus remain idle while the selected device waits for data to be written to or read from its serial register. 2. The write operation contains one more instruction byte than the read operation. The instruction byte in the write mode follows the slave address byte. The MSB of the instruction byte labeled T is the one-time programming bit. After acknowledging the instruction byte, the last byte in the write mode is the data byte. Data is transmitted over the serial bus in sequences of nine clock pulses (eight data bits followed by an Acknowledge bit). The transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL (Figure 36). In the read mode, the data byte follows immediately after the acknowledgment of the slave address byte. Data is transmitted over the serial bus in sequences of nine clock pulses (slight difference with the write mode; there are eight data bits followed by a No Acknowledge bit). Similarly, the transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL (Figure 38). When all data bits have been read or written, a stop condition is established by the master. A stop condition is defined as a low-to-high transition on the SDA line while SCL is high. In the write mode, the master will pull the SDA line high during the 10th clock pulse to establish a stop condition (Figure 36 and Figure 37). In the read mode, the master will issue a No Acknowledge for the 9th clock pulse, i.e., the SDA line remains high. The master will then bring the SDA line low before the 10th clock pulse, which goes high to establish a stop condition (Figure 38).
Preliminary Technical Data
A repeated write function gives the user flexibility to update the RDAC output a number of times, except after permanent programming, addressing, and instructing the part only once. During the write cycle, each data byte will update the RDAC output. For example, after the RDAC has acknowledged its slave address and instruction bytes, the RDAC output will update after these two bytes. If another byte is written to the RDAC while it is still addressed to a specific slave device with the same instruction, this byte will update the output of the selected slave device. If different instructions are needed, the write mode has to be started with a new slave address, instruction, and data bytes. Similarly, a repeated read function of the RDAC is also allowed.
3.
CONTROLLING TWO DEVICES ON ONE BUS
Figure 39 shows two AD5171 devices on the same serial bus. Each has a different slave address since the state of each AD0 pin is different. This allows each device to be operated independently. The master device output bus line drivers are open-drain pull-downs in a fully I2C compatible interface.
5V
Rp
Rp
4.
SDA
MASTER
SCL
AD5171
AD5171
Figure 39. Two AD5171 Devices on One Bus
Rev. PrC | Page 16 of 20
03437-0-038
SDA SCL AD0
5V
SDA SCL AD0
Preliminary Technical Data
APPLICATIONS
PROGRAMMABLE VOLTAGE REFERENCE (DAC)
It is common to buffer the output of the digital potentiometer as a DAC unless the load is much larger than RWB. The buffer serves the purpose of impedance conversion as well as delivering higher current, which may be needed.
5V 1 U1 VIN V OUT 3 ADR03
AD5171
In this circuit, the inverting input of the op amp forces the VOUT to be equal to the wiper voltage set by the digital potentiometer. The load current is then delivered by the supply via the N-Ch FET N1. N1 power handling must be adequate to dissipate (VI - VO) x IL power. This circuit can source a maximum of 100 mA with a 5 V supply. For precision applications, a voltage reference such as ADR421, ADR03, or ADR370 can be applied at the A terminal of the digital potentiometer.
AD5171
A W 5V U2 AD8601 A1
V0
03437-0-039
AD1582 GND 2
LEVEL SHIFTING FOR DIFFERENT VOLTAGE OPERATION
When users need to interface a 2.5 V controller with AD5171, a proper voltage level shift must be employed so that the digital potentiometer can be read from or written to the controller; Figure 43 shows one of the implementations. M1 and M2 should be low threshold N-Ch power MOSFETs, such as FDV301N.
VDD1 = 2.5V Rp Rp Rp Rp VDD2 = 5V
B
Figure 40. Programmable Voltage Reference (DAC)
GAIN CONTROL COMPENSATION
The digital potentiometers are commonly used in gain controls (Figure 41) or sensor transimpedance amplifier signal conditioning applications. To avoid gain peaking or in worstcase oscillation due to step response, a compensation capacitor is needed. In general, C2 in the range of a few picofarads to no more than a few tenths of a picofarad is adequate for the compensation.
C2 4.7pF R2 100k B W R1 47k VI
03437-0-040
G SDA1 SCL1 S M1 D S M2 2.5V CONTROLLER 2.7V-5.5V
03437-0-042
G D
SDA2 SCL2
AD5171
A
Figure 43. Level Shifting for Different Voltage Operation
VO
U1
RESISTANCE SCALING
The AD5171 offers 5 k, 10 k, 50 k, and 100 k nominal resistances. For users who need to optimize the resolution with an arbitrary full-range resistance, the following techniques can be used. By paralleling a discrete resistor (Figure 44) a proportion tely lower voltage appears at terminal A to B, which is applicable to only the voltage divider mode. This translates into a finer degree of precision because the step size at terminal W will be smaller. The voltage can be found as
VW (D ) = (RAB || R2) D x x VDD R3 + RAB || R2 64
VDD R3
03437-0-041
Figure 41. Typical Noninverting Gain Amplifier
PROGRAMMABLE VOLTAGE SOURCE WITH BOOSTED OUTPUT
For applications that require high current adjustment, such as a laser diode driver or tunable laser, a boosted voltage source can be considered (Figure 42).
U3 2N7002 VIN A W CC VOUT RBIAS IL LD SIGNAL
(5)
AD5171
B
U1
+V
U2
AD8601 -V
A R2 R1 B W
03437-0-043
Figure 42. Programmable Booster Voltage Source
Figure 44. Lowering the Nominal Resistance
Rev. PrC | Page 17 of 20
AD5171
For log taper adjustment, such as volume control, Figure 45 shows another way of resistance scaling to achieve the log taper function. In this circuit, the smaller the R2 with respect to RAB, the more like the pseudo log taper characteristic it behaves. The wiper voltage is simply
VW (D ) = (RWB || R2) x VI RWA + RWB || R2
Preliminary Technical Data
RDAC CIRCUIT SIMULATION MODEL
The internal parasitic capacitances and the external capacitive loads dominate the ac characteristics of the digital potentiometers. Configured as a potentiometer divider, the -3 dB bandwidth of the AD5171 (5 k resistor) measures 1.5 MHz at half scale. Figure 14 to Figure 17 provide the large signal BODE plot characteristics of the four available resistor versions 5 k 10 k, 50 k, and 100 k. A parasitic simulation model is shown in Figure 47. Listing 1 provides a macro model net list for the 10 k device.
A RDAC 10k CA 25pF
03437-0-044
(6)
VI A R1 B W R2 VO
B CW 55pF CB 25pF
W
Figure 45. Resistor Scaling with Log Adjustment Characteristics
Figure 47. Circuit Simulation Model for RDAC = 10 k
RESOLUTION ENHANCEMENT
The resolution can be doubled in the potentiometer mode of operation by using three digital potentiometers. Borrowed from ADI's patented RDAC segmentation technique, users can configure three AD5171 (Figure 46) to double the resolution. First, U3 must be parallel with a discrete resistor RP, which is chosen to be equal to a step resistance (RP = RAB/64). One can see that adjusting U1 and U2 together forms the coarse 6-bit adjustment and that adjusting U3 alone forms the finer 6-bit adjustment. As a result, the effective resolution becomes 12-bit.
A1 U1 W1 A3 B1 RP A2 B3 U2 W2 U3 W3
Listing 1. Macro Model Net List for RDAC .PARAM D=64, RDAC=10E3 * .SUBCKT DPOT (A,W,B) * CA A 0 25E-12 RWA A W {(1-D/64)*RDAC+60} CW W 0 55E-12 RWB W B {D/64*RDAC+60} CB B 0 25E-12 * .ENDS DPOT
B2 COARSE FINE ADJUSTMENT ADJUSTMENT
Figure 46. Doubling the Resolution
03437-0-045
Rev. PrC | Page 18 of 20
03437-0-046
Preliminary Technical Data
AD5171 EVALUATION BOARD
JP5 JP3
AD5171
VCC VDD V+ U4 5 1 TEMP TRIM 2 GND 4 3 VIN VOUT ADR03 C6 0.1F VREF CP3 -IN1 C7 10F
VDD C4 0.1F
-IN1
CP4 CP2
C5 0.1F JP1
JP8 A W
CP1 2 JP7 3
8 1 U3A CP6 V- OUT1
VDD VDD C1 10F R1 10k SCL SDA 1 2 3 4 U1 W VDD GND SCL 8 A 7 B AD0 6 SDA 5 1 2 3 4 U2 W VDD GND SCL JP2 8 A 7 B AD0 6 SDA 5
B
VIN +IN1
4 CP5
CP7
OUT1
J1 8 7 6 5 4 3 2 1
R2 10k C2 0.1F
C3 0.1F
AGND
JP4 C8 0.1F JP6 -IN2 6 OUT2
03437-0-047
AD5170
AD5171/AD5273
C9 10F VEE
7 +IN2 5 U3B
Figure 48. AD5171 Evaluation Board Schematic
The AD5171 evaluation board comes with a dual op amp AD822 and a 2.5 V reference ADR03. Users can configure many other building block circuits with minimum components needed. Figure 49 shows one of the examples. There is space available on the board that users can build additional circuits for further evaluations, see Figure 50.
CP2 VREF JP3
2 4
VDD
VREF A W B VO
JP1 A U2 B JP2 W JP7
U3A V+
1
OUT1
3
11
V-
AD822
03437-0-048
JP4
Figure 50. AD5171 Evaluation Board
Figure 49. Programmable Voltage Reference
Rev. PrC | Page 19 of 20
AD5171 OUTLINE DIMENSIONS
2.90 BSC
8 7 6 5
Preliminary Technical Data
1.60 BSC
1 2 3 4
2.80 BSC
PIN 1
0.65 BSC
1.30 1.15 0.90
1.95 BSC
1.45 MAX
0.38 0.22
0.22 0.08
0.15 MAX
SEATING PLANE
8 4 0
0.60 0.45 0.30
COMPLIANT TO JEDEC STANDARDS MO-178BA
Figure 51. 8-Lead Small Outline Transistor Package [SOT-23] (RJ-8) Dimensions shown in millimeters
ORDERING GUIDE
Model AD5171BRJ5-RL7 AD5171BRJ10-RL7 AD5171BRJ50-RL7 AD5171BRJ100-REEL7 AD5171BRJ5-R2 AD5171BRJ10-R2 AD5171BRJ50-R2 AD5171BRJ100-R2 AD5171EVAL* RAB (k) 5 10 50 100 5 10 50 100 10 Package Code RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 Package Description SOT-23-8 SOT-23-8 SOT-23-8 SOT-23-8 SOT-23-8 SOT-23-8 SOT-23-8 SOT-23-8 Full Container Quantity 3000 3000 3000 3000 3000 3000 3000 3000 1 Branding D12 D13 D14 D15 D12 D13 D14 D15
* The evaluation board is shipped with three pieces of 10 k parts. Users should order extra samples or different resistance options if needed.
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
(c) 2003 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C03437-0-9/03(PrC)
Rev. PrC | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of AD5171

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X