![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
KT3170 LOW POWER DTMF RECEIVER INTRODUCTION 18-DIP-300A The KT3170 is a complete Dual Tone Multiple Frequency (DTMF) receiver that is fabricated by low power CMOS and the Switched-Capacitor Filter technology. This LSI consists of band split filters, which seperates counting section which verifies the frequency and duration of the received tones before passing the corresponding code to the output bus. It decodes all 16 DTMF tone pairs into a 4bits digital code. The externally required components are minimized by on chip provision of a differential input AMP, clock oscillator and latched three state interface. The on chip clock generator requires only a low cost TV cystal as an external component. FEATURES * * * * * * Detects all 16 standard tones. Low power consumption : 15mW (Typ) Single power supply : 5V Uses inexpensive 3.58MHz crystal Three state outputs for microprocessor interface Good quality and performance for using in exchange system * Power down mode/input inhibit ORDERING INFORMATION Device KT3170N Package 18-DIP-300A Operating - 25C ~ + 75C APPLICATIONS * * * * * * * * * * PABX Central Office Paging Systems Remote Control Credit Card Systems Key Phone System Answering Phone Home Automation System Mobile Radio Remote Data Entry PIN CONFIGURATION IN+ 1 2 3 4 5 6 7 8 9 KT3170 18 17 16 15 14 13 12 11 10 VDD IN- SI/GTO GS ESO VREF DSO IIN Q4 PDN Q3 OSC1 Q2 OSC2 Q1 GND OE Fig. 1 KT3170 LOW POWER DTMF RECEIVER PIN DESCRIPTION Pin No 1 2 3 4 5 Symbol IN + IN GS VREF IIN Description Non inverting input of the op amp. Inverting input of the op amp. Gain Select. The output used for gain adjustment of analog input signal with a feedback resistor. Reference Voltage output (VDD/2, Typ) can be used to bias the op amp input of VDD/2. Input inhibit. High input states inhibits the detection of tones. This pin is pulled down internally. Control input for the stand-by power down mode. Power down occurs 6 PDN when the signal on this input is in high states. This pin is pulled down internally. 7, 8 OSC1 OSC2 GND Clock input/output. A inexpensive 3.579545MHz crystal connected between these pins completes internal oscillator. Also, external clock can be used. Ground pin. Output Enable input. Outputs Q1-Q4 are CMOS push pull when OE is 10 OE High and open circuited (High impedance) when disabled by pulling OE low. Internal pull up resistor built in. Three state data output. When enabled by OE, these digital outputs 11 - 14 Q1 - Q4 provide the hexadecimal code corresponding to the last valid tone pair received. Delayed Steering Output. Indicates that valid frequencies have been present for the required guard time, thus constituting a valid signal. 15 DSO Presents a logic high when a received tone pair has been registered and the output latch is updated. Returns to logic low when the voltage on SI/GTO falls below VTH. Early Steering Outputs. Indicates detection of valid tone output a 16 ESO logic high immediately when the digital algorithm detects a recognizable tone pair. Any momentary loss of signal condition will cause ESO to return to low. Steering Input/Guard Time Output. A voltage greater the VTS detected at SI causes the device to register the detected tone pair 17 SI/GTO and update the output latch. A voltage less than VTS frees the device to accept a new tone pair. The GTO output acts to reset the external steering time constant, and its state is a function of ESO and the voltage on SI 18 VDD Power Supply (+5V, Typ) 9 KT3170 LOW POWER DTMF RECEIVER ABSOLUTE MAXIMUM RATINGS Characteristics Power Supper Voltage Analog Input Voltage Range Digital Input Voltage Range Output Voltage Range Current On Any Pin Operating Temperature Storage Temperature Symbol VDD VI (A) VI (D) VO II T OPR T STG Value 6 - 0.3 ~ VDD + 0.3 - 0.3 ~ VDD + 0.3 - 0.3 ~ VDD + 0.3 10 - 40 ~ + 85 -60 ~ + 150 Unit V V V V mA C C ELECTRICAL CHARACTERISTICS Characteristic Operating Voltage Operating Current Power Dissipation Input Voltage Low Input Voltage High Input Leakage Current Pull Up Current On OE Pin Analog Input Impedance Steering Input Threshold Voltage Output Voltage Low Output Current Output Current VREF Output Voltage VREF Output Resistance Analog Input Offset Voltage Power Supply Rejection Ratio Common Mode Rejection Ratio Open Loop Voltage Gain Open Loop Unit Gain Bandwidth Analog Output Voltage Swing Acceptable Capacitive Load Acceptable Resistive Load Analog Input Common Mode Voltage Range (VDD = 5V, Ta = 25C, unless otherwise noted) Test Conditions VIN = GND or VDD OE = GND fIN = 1KHz No Load No Load VOL = 0.4V VOH = 4.6V Gain Setting Amp at 1KHz - 3.0V < VIN < 3.0V Gain Setting Amp at 1KHz RL = 100K GS GS No Load Min 4.75 3.5 8 2.2 4.97 1 0.4 2.4 Typ 3.0 15 0.1 7.5 10 2.5 0.8 10 25 60 60 65 1.5 4.5 100 50 3.0 2.8 Max 5.25 9.0 45 1.5 15 2.5 0.03 Unit V mA mW V V A A M V V V mA mA V K mV dB dB dB MHz VP-P pF K VP-P Symbol VDD IDD PD VIL VIH II (LKG) IPU RI VTH VOL VOH IO (SINK) IO (SOURCE) VO (REF) RO (REF) VIO PSRR CMRR GV BW VO (P-P) CL RL VCM KT3170 AC ELECTRICAL CHARACTERISTICS Characteristic Valid Input Signal Range (each tone of composite signal) Dual Tone Twist Accept Acceptable Frequency Deviation Frequency Deviation Reject Third Tone Tolerance Noise Tolerance Dial Tolerance Crystal Clock Frequency Maximum Clock Input Rise Time Maximum Clock Input Fall Time Acceptable Clock Input Duty Cycle Acceptable Capacitive Load Tone Present Detect Time Tone Absent Detect Time Minimum Tone Duration Accept Maximum Tone Duration Reject Acceptable Interdigit Pause Rejectable Interdigit Pause Propagation Delay Time SI to Q Propagation Delay Time SI to DSO Output Data Setup Q to DSO Propagation Delay Time OE to Q (Enable) Propagation Delay Time OE to Q (disable) Notes : 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. TW f fR T3rd TN DT fCK tR (MAX) tF (MAX) DCK CL tDET (P) tDET (A) tTDA (MIN) tTDR (MAX) tIDP (A) tIDP (R) tD (SI-Q) tD (SI-D) tSU tD (QE-Q) EN tD (OE-Q) DIS Symbol VI (VAL) LOW POWER DTMF RECEIVER (VDD = 5V, Ta = 25C, fCK = 3.579545MHz) Test Conditions External Clock External Clock External Clock OSC2 PIN User Adjustable User Adjustable User Adjustable User Adjustable OE = High OE = High OE = High RL = 10K, CL = 50pF RL = 10K, CL = 50pF Min -29 3.5% -25 18 3.5759 40 5 0.5 20 20 Typ 10 -16 -12 22 3.5795 50 11 4 8 12 3.4 50 300 Max 1.0 1.5% 2Hz 3.5831 110 110 60 30 14 8.5 40 40 11 16 60 Unit dBm dB dB dB dB MHz nS nS % pF mS mS mS mS mS mS S S S nS nS Digit sequence consists of all 16 DTMF tones. Tone duration = 40mS, Tone pause = 40mS. Nominal DTMF frequencies are used. Both tones in the composite signal have an equal amplitude. Tone pair is deviated by 1.5% 2Hz. Bandwidth limited (3KHz) Gaussian Noise. The precise dial tone frequencies are (350Hz and 440Hz) 2%. For an error rate of better than 1 in 10000. Referenced to lowest level frequency component in DTMF signal. Minimum signal acceptance level is measured with specitied maximum frequency deviation. This item also applies to a third tone injected onto the power supply. Referenced to Fig. 1 Input DTMF tone level at -28dBm. LOW POWER DTMF RECEIVER VCC 1 1 2 100K 3 R2 4 R1 100K 5 0.1F 13 12 8 11 10 VCC X - tal 1 X - tal 2 VCC VCC VCC 18 R3 C1 18 17 16 15 17 300K 1 1 16 15 LED b 14 2 2 13 c VCC f 16 15 R10 10 g 9 87 6 f com a b 2 3 4 5 6 7 HL74HCTLS02 3 LT g 14 KT3170 14 4 6 7 13 5 12 6 11 7 9 10 4 11 5 10 6 9 7 8 8 HL74LS47 RDO ABI d a 13 R8 12 R7 c d GND 11 R6 10 R5 9 R4 12 3 KS58006 14 8 9 a d com c dp 45 VCC 1 4 7 2 5 8 3 6 9 * 0 # Fig. 2 TEST CIRCUIT KT3170 LTS542R 3 12 R9 KT3170 TIMING DIAGRAM tT D R (MAX) LOW POWER DTMF RECEIVER tTDA (MIN) tI D P (A) tI D P (R) DTMF #n DTMF INPUT DTMF #n + 1 DTMF #n + 1 tD E T (P) tD E T (A) ESO tPGT tAGT V TH SI/GTO t SU DECODED TONE # (n - 1) Q1 - Q4 tD (SI-D) DSO tD OE (OE-Q) EN tD (OE-Q) DIS Fig. 3 DIGITAL OUTPUT Outputs Q1-Q4 are CMOS push pull when enabled (EO = High) and open circuited (high impedance) when disabled by pulling EO = Low. These digital outputs provide the hexadecimal code corresponding to the DTMF signals. The table below describes the hexadecimal. NO 1 2 3 4 5 6 7 8 9 0 * # A B C D ANY Z : High Impedance H : High Logic Level L : Low Logic Level LOW 697 697 697 770 770 770 852 852 852 941 941 941 697 770 852 941 HIGH 1209 1336 1477 1209 1336 1477 1209 1336 1477 1336 1209 1477 1633 1633 1633 1633 OE H H H H H H H H H H H H H H H H L Q4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 Z Q3 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 Z Q2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 Z Q1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Z FREQUENCY FREQUENCY KT3170 APPLICATION CIRCUIT +5V IN+ 0.1uF 100K IN100K SI/GTO 300K V DD 0.1uF LOW POWER DTMF RECEIVER 10nF C1 100K R1 IN+ GS ESO 1 2 3 4 + _ VREF DSO INGS 10nF C2 100K R2 R3 37.5K R2 60K R5 100K VREF IIN Q4 PDN 3.58MHz OSC1 Q3 Q2 KT3170 OSC2 Q1 GND OE All resistors are 1% tolerance All capacitors are 5% tolerance Fig. 4 Single Ended Input Configuration R3 = R2R5/(R2+R5), VOLTAGE GAIN = R5/R1 2 2 INPUT IMPEDANCE : 2 R1 + (1/wC) All resistors are 1% tolerance All capacitors are 5% tolerance Fig. 5 Differential Ended Input Configuration VDD C C SI/GTO SI/GTO R1 R2 ESO ESO R1 R2 tPGT = (R1C) In (VDD/VDD-VTH) tAGT = (RPC) In (VDD/VTST) RP = R1R2/(R1 + R2) (a) Decreasing tAGT (tPGT > tAGT) Fig. 6 Guard Time Adjustment tPGT = (RPC) In (VDD/VDD-VTH) tAGT = (R1C) In (VDD/VTH) RP = R1R2 (R1 + R2) (a) Decreasing tPGT (tPGT< tAGT) KT3170 KT3170 30pF OSC1 3.579545MH z OSC2 OSC2 OSC1 T O O S C 1 o f n ex t K T 3 1 7 0 Fig. 7 Oscillator Connection |
Price & Availability of KT3170
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |