![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 91801B RADIATION HARDENED POWER MOSFET THRU-HOLE ( T0-204AA/AE) Product Summary Part Number IRH7230 IRH3230 IRH4230 IRH8230 Radiation Level 100K Rads (Si) 300K Rads (Si) 600K Rads (Si) 1000K Rads (Si) RDS(on) R DS(on) 0.40 0.40 0.40 0.40 ID 9.0A 9.0A 9.0A 9.0A IRH7230 200V, N-CHANNEL RAD Hard HEXFET TECHNOLOGY (R) TO-204AE International Rectifiers RADHard HEXFET(R) technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. Features: ! ! ! ! ! ! ! ! ! Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Package Light Weight Absolute Maximum Ratings Parameter ID @ VGS = 12V, TC = 25C ID @ VGS = 12V, TC = 100C IDM PD @ TC = 25C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current Continuous Drain Current Pulsed Drain Current Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction Storage Temperature Range Lead Temperature Weight For footnotes refer to the last page 9.0 6.0 36 75 0.60 20 330 9.0 7.5 5.0 -55 to 150 Pre-Irradiation Units A W W/C V mJ A mJ V/ns o C 300 ( 0.063 in.(1.6mm) from case for 10s) 11.5 (Typical ) g www.irf.com 1 8/9/01 IRH7230 Pre-Irradiation @ Tj = 25C (Unless Otherwise Specified) Min 200 2.0 3.3 Electrical Characteristics Parameter Typ Max Units 0.27 10 0.40 0.49 4.0 25 250 100 -100 50 10 20 35 80 60 46 V V/C V S( ) A Test Conditions VGS = 0V, ID = 1.0mA Reference to 25C, ID = 1.0mA VGS = 12V, ID =6.0A VGS = 12V, ID = 9.0A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 6.0A VDS= 160V ,VGS=0V VDS = 160V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VGS =12V, ID =9.0A VDS = 100V VDD = 100V, ID =9.0A VGS =12V, RG = 7.5 BVDSS Drain-to-Source Breakdown Voltage BV DSS /T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current IGSS IGSS Qg Q gs Qgd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (Miller) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance nA nC ns nH Measured from Drain lead (6mm /0.25in. from package) to Source lead (6mm /25in. from package) with Source wires internally bonded from Source Pin to Drain Pad C iss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance 1100 250 65 pF VGS = 0V, VDS = 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics Parameter IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min Typ Max Units 9.0 36 1.6 460 5.0 Test Conditions A V nS C Tj = 25C, IS = 9.0A, VGS = 0V Tj = 25C, IF = 9.0A, di/dt 100A/s VDD 50V Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance Parameter R thJC RthJA RthCS Junction-to-Case Junction-to-Ambient Case-to-Sink Min Typ Max Units 1.67 30 0.12 C/W Test Conditions Typical socket mount Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page 2 www.irf.com Radiation Characteristics Pre-Irradiation IRH7230 International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25C, Post Total Dose Irradiation Parameter Min 200 2.0 100 K Rads(Si) Max 300 - 1000K Rads (Si) Min Max Units Units V nA A V Test Conditions BVDSS V/5JD IGSS IGSS IDSS RDS(on) RDS(on) VSD Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source" On-State Resistance (TO-3) Static Drain-to-Source" On-State Resistance (TO-204AE) Diode Forward Voltage" 4.0 100 -100 25 0.40 0.40 1.6 200 1.25 4.5 100 -100 25 0.53 0.53 1.6 VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS=160V, VGS =0V VGS = 12V, ID =6.0A VGS = 12V, ID =6.0A VGS = 0V, IS = 9.0A 1. Part numbers IRH7230, 2. Part number IRH3230, IRH4230, and IRH8230 International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. Table 2. Single Event Effect Safe Operating Area Ion Cu Br LET MeV/(mg/cm )) 28 36.8 Energy (MeV) 285 305 Range (m) 43 39 VDS(V) @VGS=0V @VGS=-5V@ GS=-10V@ GS=-15V@ GS=-20V =-5V@V =-10V@V =-15V@V @VGS=0V @VGS=-5V@VGS=-10V@VGS=-15V@VGS=-20V 190 180 170 125 100 100 100 50 200 150 VDS 100 50 0 0 -5 -10 VGS -15 -20 Cu Br Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 3 IRH7230 Post-Irradiation Pre-Irradiation Fig 1. Typical Response of Gate Threshhold Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure Voltage Vs. Total Dose Exposure Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure 4 www.irf.com Post-Irradiation Pre-Irradiation IRH7230 Fig 5. Typical Zero Gate Voltage Drain Current Vs. Total Dose Exposure Fig 6. Typical On-State Resistance Vs. Neutron Fluence Level Fig 8a. Gate Stress of VGSS Equals 12 Volts During Radiation Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x1012 Rad (Si)/Sec Exposure Fig 8b. VDSS Stress Equals 80% of BVDSS During Radiation www.irf.com 5 IRH7230 Note: Bias Conditions during radiation: V/5 = 12 Vdc, V,5 = 0 Vdc Characteristics RadiationPost-Irradiation Pre-Irradiation Fig 9. Typical Output Characteristics Pre-Irradiation Fig 10. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 11. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 12. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si) 6 www.irf.com Radiation Characteristics Pre-Irradiation Note: Bias Conditions during radiation: V/5 = 0 Vdc, V,5 = 160 Vdc IRH7230 Fig 13. Typical Output Characteristics Pre-Irradiation Fig 14. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 15. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 16. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si) www.irf.com 7 IRH7230 Pre-Irradiation Fig 17. Typical Output Characteristics Fig 18. Typical Output Characteristics Fig 19. Typical Transfer Characteristics Fig 20. Normalized On-Resistance Vs. Temperature 8 www.irf.com Pre-Irradiation IRH7230 29 Fig 21. Typical Capacitance Vs. Drain-to-Source Voltage Fig 22. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 23. Typical Source-Drain Diode Forward Voltage Fig 24. Maximum Safe Operating Area www.irf.com 9 IRH7230 Pre-Irradiation VDS VGS RG RD D.U.T. + -VDD VGS Pulse Width 1 s Duty Factor 0.1 % Fig 26a. Switching Time Test Circuit VDS 90% 10% VGS Fig 25. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 26b. Switching Time Waveforms Fig 27. Maximum Effective Transient Thermal Impedance, Junction-to-Case 10 www.irf.com Pre-Irradiation IRH7230 15V VDS L DRIVER RG D.U.T IAS tp + - VDD A V/5 20V 0.01 Fig 28a. Unclamped Inductive Test Circuit V(BR)DSS tp Fig 28c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 28b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K QG 12V .2F .3F 12 V QGS VG QGD VGS 3mA D.U.T. + V - DS Charge IG ID Current Sampling Resistors Fig 29a. Basic Gate Charge Waveform Fig 29b. Gate Charge Test Circuit www.irf.com 11 IRH7230 Pre-Irradiation Foot Notes: Repetitive Rating; Pulse width limited by maximum junction temperature. VDD = 25V, starting TJ = 25C, L=8.15mH Peak IL = 9.0A, VGS =12V ISD 9.0A, di/dt 120A/s, VDD 200V, TJ 150C Pulse width 300 s; Duty Cycle 2% Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A. Total Dose Irradiation with V DS Bias. 160 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. Case Outline and Dimensions TO-204AE IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. . Data and specifications subject to change without notice. 08/01 12 www.irf.com |
Price & Availability of IRH7230
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |