![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
12345 n OUTLINE `99.12.8 PWM/VFM step-down DC/DC Converter R1223N Series The R1223N Series are PWM step-down DC/DC Converter controllers with low supply current by CMOS process. Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable circuit, and resistors for voltage detection. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with only four external components, or a power-transistor, an inductor, a diode and a capacitor. With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching into the VFM oscillator from PWM oscillator, therefore the efficiency at small load current is improved. The R1223N XXXB type, which is without a PWM/VFM alternative circuit, is also available. If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. There are two types of protection function. One is latch-type protection circuit, and it works to latch an external Power MOSFET with keeping it disable. To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on. The other is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat this operation until maximum duty cycle condition is released. Either of these protection circuits can be designated by users' request. n FEATURES l Range of Input Voltage * * * * * * * * * * * * *2.3V~13.2V l Built-in Soft-start Function and Two choices of Protection Function (Latch-type or Reset type) l Two choices of Oscillator Frequency * * * * * *300kHz, 500kHz l High Efficiency * * * * * * * * * * * * * * * * * *TYP. 90% l Output Voltage * * * * * * * * * * * * * * * * * Stepwise Setting with a step of 0.1V in the range of 1.5V ~ 5.0V l Standby Current * * * * * * * * * * * * * * * * *TYP. 0A l High Accuracy Output Voltage * * * * * * * * * *2.0% l Low Temperature-Drift Coefficient of Output Voltage * * * * * TYP. 100ppm/C n APPLICATIONS l Power source for hand-held communication equipment, cameras, video instruments such as VCRs, camcorders. l Power source for battery-powered equipment. l Power source for household electrical appliances. 12345 Rev. 1.11 -1- n BLOCK DIAGRAM VIN OSC VOUT Vref EXT PWM/VFM CONTROL Protection Soft Start Chip Enable CE GND n SELECTION GUIDE In the R1223N Series, the output voltage, the oscillator frequency, the optional function, and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below; R1223NXXXX-XX - -- a bc Code a b c d Contents d Setting Output Voltage(VOUT): Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible. Designation of Oscillator Frequency 2 : fixed Designation of Optional Function A : 300kHz, with a PWM/VFM alternative circuit, Latch-type protection B : 500 kHz, with a PWM/VFM alternative circuit, Latch-type protection C : 300kHz, without a PWM/VFM alternative circuit, Latch-type protection D : 500kHz, without a PWM/VFM alternative circuit, Latch-type protection E : 300kHz, with a PWM/VFM alternative circuit, Reset-type protection F : 500 kHz, with a PWM/VFM alternative circuit, Reset-type protection G : 300kHz, without a PWM/VFM alternative circuit, Reset-type protection H : 500kHz, without a PWM/VFM alternative circuit, Reset-type protection Designation of Taping Type; Ex. :TR,TL(refer to Taping Specification) "TR" is prescribed as a standard. 12345 Rev. 1.11 -2- n PIN CONFIGURATION l SOT-23-5 5 VIN 4 EXT (mark side) CE GND VOUT 1 2 3 n PIN DESCRIPTION Pin No. 1 2 3 4 5 Symbol CE GND VOUT EXT VIN Chip Enable Pin Ground Pin Pin for Monitoring Output Voltage External Transistor Drive Pin Power Supply Pin Description n ABSOLUTE MAXIMUM RATINGS Symbol VIN VEXT VCE VOUT IEXT PD Topt Tstg Item VIN Supply Voltage EXT Pin Output Voltage CE Pin Input Voltage VOUT Pin Input Voltage EXT Pin Inductor Drive Output Current Power Dissipation Operating Temperature Range Storage Temperature Range Rating 15 -0.3~VIN+0.3 -0.3~VIN+0.3 -0.3~VIN+0.3 25 250 -40~+85 -55~+125 Unit V V V V mA mW C C 12345 Rev. 1.11 -3- n ELECTRICAL CHARACTERISTICS lR1223N**2A(,C,E,G) Output Voltage : Vo Symbol VIN VOUT Item Operating Input Voltage Step-down Output Voltage VIN=VCE=Vo+1.2V,IOUT=-10mA Conditions MIN. 2.3 Vo 0.98 DVOUT/ DT fosc DfOSC/ DT IDD1 Istb IEXTH IEXTL ICEH ICEL VCEH VCEL Maxdty VFMdty Tstart Step-down Output Voltage Temperature Coefficient Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current1 Standby Current EXT "H" Output Current EXT "L" Output Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Oscillator Maximum Duty Cycle VFM Duty Cycle Delay Time by Soft-Start function (Topt=25C) TYP. MAX. Unit 13.2 Vo Vo 1.02 100 ppm /C V V -40C Topt 85C VIN=VCE=Vo+1.2V,IOUT=-100mA -40C Topt 85C 240 300 0.3 360 kHz % /C VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=0V VIN=8V,VEXT=7.9V,VOUT=8V,VCE=8V VIN=8V,VEXT=0.1V,VOUT=0V,VCE=8V VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=13.2V VIN=8V,VOUT=0V(R)1.5V VIN=8V,VOUT=1.5V(R)0V 0.3 100 only for A, E version VIN= Vo+1.2V, VCE=0V(R)Vo+1.2V specified at 80% for rising edge 5 -0.5 10 100 0 -10 20 0 0 0.8 0.8 160 0.5 -6 mA mA mA mA 0.5 mA mA 1.2 V V % 25 10 16 % ms Tprot Delay Time for protection circuit VIN=VCE=Vo+1.2V VOUT= Vo+1.2V(R)0V 1 3 5 ms 12345 Rev. 1.11 -4- lR1223N**2B(,D,F,H) Output Voltage : Vo Symbol VIN VOUT Item Operating Input Voltage Step-down Output Voltage VIN=VCE=Vo+1.2V,IOUT=-10mA Conditions MIN. 2.3 Vo 0.98 DVOUT/ DT fosc DfOSC/ DT IDD1 Istb IEXTH IEXTL ICEH ICEL VCEH VCEL Maxdty VFMdty Tstart Step-down Output Voltage Temperature Coefficient Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current1 Standby Current EXT "H" Output Current EXT "L" Output Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Oscillator Maximum Duty Cycle VFM Duty Cycle Delay Time by Soft-Start function (Topt=25C) TYP. MAX. Unit 13.2 Vo Vo 1.02 100 ppm /C V V -40C Topt 85C VIN=VCE=Vo+1.2V,IOUT=-100mA -40C Topt 85C 400 500 0.3 600 kHz % /C VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=0V VIN=8V,VEXT=7.9V,VOUT=8V,VCE=8V VIN=8V,VEXT=0.1V,VOUT=0V,VCE=8V VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=13.2V VIN=8V,VOUT=0V(R)1.5V VIN=8V,VOUT=1.5V(R)0V 0.3 100 only for B, F version VIN= Vo+1.2V, VCE=0V(R) Vo+1.2V specified at 80% for rising edge 3 -0.5 10 140 0 -10 20 0 0 0.8 0.8 200 0.5 -6 mA mA mA mA 0.5 mA mA 1.2 V V % 25 6 10 % ms Tprot Delay Time for protection circuit VIN=VCE=Vo+1.2V VOUT= Vo+1.2V(R)0V 1 2 4 ms 12345 Rev. 1.11 -5- n TEST CIRCUITS A) PMOS L E) 5 4 3 5 4 3 V VIN 1 2 SD CIN VIN A 1 2 CL F) B) A 5 4 3 OSCILLOSCOPE PMOS L 5 4 3 V VIN VIN 1 2 CIN 1 2 SD CL CIN OSCILLOSCOPE C) A 5 4 3 G) OSCILLOSCOPE 5 4 3 VIN 1 2 VIN 1 2 VOUT D) 5 4 A VEXT 3 VIN VOUT 1 2 The typical characteristics were obtained by use of these test circuits. Test Circuit A : Typical characteristics 1), 2), 3), 4), 5), 6), 7) Test Circuit B : Typical characteristics 8) Test Circuit C : Standby Current Test Circuit D : Typical characteristics 12), 13) Test Circuit E : CE input current "H" and "L" Test Circuit F : Typical characteristics 9) Test Circuit G : Typical characteristics 10), 11) 12345 Rev. 1.11 -6- n TYPICAL APPLICATIONS AND APPLICATION HINTS PMOS L VIN CE CIN GND EXT VOUT SD1 COUT Load CE CONTROL PMOS : HAT1020R(Hitachi), Si3443DV(Siliconix) SD1 CIN : RB491D (Rohm) : 10mF52(Tantalum Type) L : CD105(Sumida, 27mH) COUT : 47mF(Tantalum Type) When you use these ICs, consider the following issues; l As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do not make its "H" level more than the voltage level of VIN pin. l The operation of Latch-type protection circuit is as follows; When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical Characteristics) the protection circuit works to shut-down Power MOSFET with its latching operation. Therefore when an input/output voltage difference is small, the protection circuit may work with small load current. To release the protection latch state, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on. However, in the case of restarting this IC with power-on, after the power supply is turned off, if a certain amount of charge remains in CIN, or some voltage is forced to VIN from CIN, this IC might not be restarted even after power-on. If rising transition speed of supply voltage is too slow, or the time which is required for VIN voltage to reach Output voltage of DC/DC converter is longer than soft-starting time plus delay time for protection circuit, protection circuit works before VIN voltage reaches Output voltage of DC/DC converter. To prevent this action, while power supply voltage is not ready, make this IC be standby mode(CE="L"), and when the power supply is ready (the voltage level of VIN is equal or more than the voltage level of VOUT), make it enable(CE="H"). l The operation of Reset-type protection circuit is as follows; When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical Characteristics) the protection circuit works to restart with soft-start operation. Therefore when an input/output voltage difference is small, the protection circuit may work with small load current. l Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. And make sufficient grounding and reinforce supplying. A large switching current flows through the connection of power supply, an inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC. l Use capacitors with a capacity of 22mF or more for VOUT pin, and with good high frequency characteristics such as tantalum capacitors. We recommend you to use capacitors with an allowable voltage which is at least twice as much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is generated by an inductor when an external transistor is on and off. l Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the absolute maximum rating at the maximum loading. 12345 Rev. 1.11 -7- Use an inductor with appropriate inductance. l Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity. l Do not use this IC under the condition at VIN voltage less than minimum operating voltage. P The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. n OPERATION of step-down DC/DC converter and Output Current The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams : 12345 Rev. 1.11 -8- tonc=TVIN/VOUTxxx Equation 2 When ton When LxTr is ON: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of LXTr is described as Rp the direct current of the inductor is described as RL.) VIN=VOUT+(Rp+RL)IOUT+LIRP/ton When LxTr is OFF: LIRP/toff = VF+VOUT+RLIOUT xxxEquation 3 xxxEquation 4 Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON, DON=(VOUT+VF+RLIOUT)/(VIN+VF-RpIOUT)xxxEquation 5 Ripple Current is as follows; IRP=(VIN-VOUT-RpIOUT-RLIOUT)DON/f/L 1/4Equation 6 wherein, peak current that flows through L, LxTr, and SD is as follows; ILmax=IOUT+IRP/2 1/4Equation 7 Consider ILmax, condition of input and output and select external components. HThe above explanation is directed to the calculation in an ideal case in continuous mode. n External Components 1. Inductor Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, magnetic saturation occurs and make transform efficiency worse. When the load current is same, the smaller value of L, the larger the ripple current. Provided that the allowable current is large in that case and DC current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of L and vice versa. 2. Diode Use a diode with low VF (Schottky type is recommended.) and high switching speed. Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax. 3. Capacitor As for CIN, use a capacitor with low ESR(Equivalent Series Resistance) and a capacity of at least 10mF for stable operation. COUT can reduce ripple of Output Voltage, therefore 47 to 100mF tantalum type is recommended. 4. Lx Transistor Pch Power MOS FET is required for this IC. Its breakdown voltage between gate and source should be a few volt higher than Input Voltage. In the case of Input Voltage is low, to turn on MOS FET completely, select a MOS FET with low threshold voltage. If a large load current is necessary for your application and important, choose a MOS FET with low ON resistance for good efficiency. If a small load current is mainly necessary for your application, choose a MOS FET with low gate capacity for good efficiency. Maximum continuous drain current of MOS FET should be larger than peak current, ILmax. 12345 Rev. 1.11 -9- n TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current R1223N332H 3.400 3.380 3.360 3.340 3.320 3.300 3.280 3.260 3.240 3.220 3.200 1E-05 0.0001 0.001 0.01 L=27uH R1223N152H 1.530 L=27uH Output Voltage VOUT(V) 12V 8V 4.5V Output Voltage VOUT(V) 1.520 1.510 1.500 13.2V 1.490 1.480 8V 5V 2.3V 0.1 1 1.470 1E-05 0.0001 0.001 0.01 0.1 1 Output Current IOUT(A) Output Current IOUT(A) 2) Efficiency vs. Output Current R1223N332A(VIN=4.5V) Si3443DV 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) CD104-27uH CD104-27uH R1223N332A(VIN=12V) Si3443DV 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 CD104-27uH Efficiency(%) Efficiency (%) 1000 Output Current IOUT(mA) R1223N332B(VIN=4.5V)Si3443DV R1223N332B(VIN=12V) Si3443DV CD104-27uH 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) Efficiency(%) 12345 Rev. 1.11 - 10 - Efficiency(%) R1223N332C(VIN=4.5V)Si3443DV 100 90 80 Efficiency(%) CD104-27uH R1223N332C(VIN=12V) Si3443DV 100 90 80 Efficiency(%) CD104-27uH 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) R1223N502A(VIN=6.0V)CD104-27uH 100 90 80 70 Efficiency(%) Si3443DV R1223N502A(VIN=12V) CD104-27uH Si3443DV 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) Efficiency(%) R1223N502B(VIN=6.0V)CD104-27uH 100 90 80 Efficiency(%) Si3443DV R1223N502B(VIN=12V) CD104-27uH Si3443DV 60 50 40 30 20 10 0 Efficiency(%) 70 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) 0.1 Output Current IOUT(mA) 1 10 100 1000 12345 Rev. 1.11 - 11 - R1223N502C(VIN=6.0V) Si3443DV 100 90 80 70 Efficiency(%) CD104-27uH R1223N502C(VIN=12V) Si3443DV CD104-27uH 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) 3) Ripple Voltage vs. Output Current Efficiency(%) R1223N332A 200 180 160 140 120 100 80 60 40 20 0 1 10 VIN4.5V VIN8V VIN12V L=27uH R1223N502A 200 Ripple Voltage Vrpp(mV) L=27uH Ripple Voltage Vrpp(mV) 180 160 140 120 100 80 60 40 20 0 1 10 VIN6V VIN8V VIN12V 100 1000 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) L=27uH R1223N332B 200 180 Ripple Voltage Vrpp(mV) R1223N502B 200 180 160 140 120 100 80 60 40 20 0 1 10 L=27uH 140 120 100 80 60 40 20 0 1 10 100 1000 Ripple Voltage Vrpp(mV) 160 VIN4.5V VIN8V VIN12V VIN6V VIN8V VIN12V 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) 12345 Rev. 1.11 - 12 - R1223N332C 200 180 Ripple Voltage Vrpp(mV) L=27uH R1223N502C 200 L=27uH 160 140 120 100 80 60 40 20 0 1 10 VIN4.5V VIN12V Ripple Voltage Vrpp(mV) VIN8V 180 160 140 120 100 80 60 40 20 VIN6V VIN8V VIN12V 100 1000 0 1 10 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) 4) Oscillator Frequency vs. Input Voltage R1223N152B 600 Oscillator Frequency fosc(kHz) L=27uH R1223N152A 600 Oscillator Frequency fosc(kHz) L=27uH 500 400 300 200 100 0 0 5 10 15 Input Voltage VIN(V) 500 400 300 200 100 0 0 5 10 15 Input Voltage VIN(V) 5) Output Voltage vs. Input Voltage R1223N152B 1.53 Output Voltage Vout(V) Output Voltage Vout(V) L=27uH R1223N152A 1.53 1.52 1.51 1.50 1.49 1.48 1.47 L=27uH 1.52 1.51 1.50 1.49 1.48 1.47 0 5 10 15 Input Voltage VIN(V) 0 5 10 15 Input Voltage VIN(V) 12345 Rev. 1.11 - 13 - R1223N332B 3.36 Output Voltage Vout(V) L=27uH R1223N332A 3.36 Output Voltage Vout(V) L=27uH 3.34 3.32 3.30 3.28 3.26 3.24 0 5 10 15 Input Voltage VIN(V) 3.34 3.32 3.30 3.28 3.26 3.24 0 5 10 15 Input Voltage VIN(V) 6) Output Voltage vs. Temperature R1223N332H 3.33 Output Voltage VOUT(V) L=27uH VIN=4.5V R1223N152B 1.51 Output Voltage VOUT(V) L=27uH VIN=2.7V 3.32 3.31 3.30 3.29 3.28 3.27 -50 0 50 100 Temperature Topt (C) 1.50 1.49 1.48 1.47 -50 0 50 100 Temperature Topt (C) 7) Oscillator Frequency vs. Temperature R1223N252A 360 Oscillator Frequency fosc(kHz) L=27uH VIN=3.7V R1223N332B 600 Oscillator Frequency fosc(kHz) L=27uH VIN=4.5V 340 320 300 280 260 240 -50 0 50 100 Temperature Topt 550 500 450 400 -50 0 50 100 Temperature Topt 12345 Rev. 1.11 - 14 - 8) Supply Current vs. Temperature R1223N332G 100 Supply Current1(uA) Supply Current1(uA) R1223N332H 140 130 90 80 70 60 50 -50 0 50 100 Temperature Topt (C) VIN15V VIN13.2V VIN8V 120 110 100 90 80 70 60 -50 0 50 100 Temperature Topt (C) VIN15V VIN13.2V VIN8V 9) Soft-start time vs. Temperature R1223N252A 16 14 Soft-start Time (msec) L=27uH VIN=3.7V R1223N332B 10 Soft-start Time(msec) L=27uH VIN=4.5V 8 6 4 2 0 12 10 8 6 4 2 0 -50 0 50 100 Temperature Topt (C) -50 0 50 100 Temperature Topt (C) 10) Delay Time for Latch-type protection vs. Temperature R1223N252A 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -50 0 50 Delay Time for Latch-type Protection(msec) VIN=3.7V R1223N332B VIN=4.5 4.0 Delay Time for Latch-type Protection(msec) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -50 0 50 100 100 Temperature Topt (C) Temperature Topt (C) 12345 Rev. 1.11 - 15 - 11) Delay Time for Reset-type Protection vs. Temperature R1223N332G 5 Delay Time for Reset-type Protection(msec) VIN=4.5V R1223N332H 5 Delay Time for Reset-type Protection(msec) VIN=4.5V 4 3 2 1 0 -50 0 50 100 Temperature Topt (C) 4 3 2 1 0 -50 0 50 100 Temperature Topt (C) 12) EXT "H" Output Current vs. Temperature R1223N332B 16 EXT"H" Output Current(mA) 14 12 10 8 6 4 2 0 -50 50 Temperature Topt (C) 0 100 13) EXT"L" Output Current vs. Temperature R1223N332B 30 EXT"L" Output Current(mA) 25 20 15 10 5 0 -50 0 50 100 Temperature Topt (C) 12345 Rev. 1.11 - 16 - 14) Load Transient Response R1223N332A 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0 VIN=5V L=27uH R1223N332A 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05 Time (sec) VIN=5V L=27uH Ourput Voltage VOUT(V) 500 Output Current IOUT(mA) Output Voltage VOUT(V) 500 Output Current IOUT(mA) 0. 1 0.0002 0.0004 0.0006 0.0008 0.001 Time (sec) 0.1 0.1 R1223N332B 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0 VIN=5V L=27uH R1223N332B 3.6 3.5 Output Voltage VOUT(V) VIN=5V L=27uH Output Voltage VOUT(V) 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05 Time (sec) 50 0 50 Output Current IOUT(mA) 0. 1 0.0002 0.0004 0.0006 0.0008 0.001 Time (sec) VIN=5V L=27uH Output Current IOUT(mA) 0. 0.1 R1223N332C 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0 R1223N332C 3.6 Output Voltage VOUT(V) 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 0.1 2.6 0 0.05 Time (sec) VIN=5V L=27uH Output Voltage VOUT(V) 500 Output Current IOUT(mA) 500 Output Current IOUT(mA) 0.1 0.0002 0.0004 0.0006 0.0008 0.001 Time (sec) 0.1 12345 Rev. 1.11 - 17 - R1223N332D 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0 VIN=5V L=27uH R1223N332D 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05 Time (sec) VIN=5V L=27uH Output Voltage VOUT(V) Output Voltage VOUT(V) 500 Output Current IOUT(mA) 500 Output Current IOUT(mA) 0.1 0.0002 0.0004 0.0006 0.0008 0.001 Time (sec) 0.1 0.1 15) Turn-on Waveform R1223N332A(VIN=10V,IOUT=0mA) L=27uH R1223N332A(VIN=5V,IOUT=0mA) L=27uH 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec) 10 0 0.02 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec) Output Voltage VOUT(V) Output Voltage VOUT(V) R1223N332B(VIN=10V,IOUT=0mA) L=27uH CE Voltage(V) R1223N332B(VIN=5V,IOUT=0mA) L=27uH CE Voltage(V) 0 0.02 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec) 1 0 0 0.02 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec) Output Voltage VOUT(V) Output Voltage VOUT(V) 5 CE Voltage(V) CE Voltage(V) 0 0.02 12345 Rev. 1.11 - 18 - R1223N332A(VIN=10V,IOUT=100mA) L=27uH R1223N332A(VIN=5V,IOUT=100mA) 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec) L=27uH 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec) Output Voltage VOUT(V) Output Voltage VOUT(V) 10 5 CE Voltage(V) R1223N332B(VIN=10V,IOUT=100mA) L=27uH CE Voltage(V) 0 0.02 0 0.02 R1223N332B(VIN=5V,IOUT=100mA) L=27uH 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec) 10 CE Voltage(V) 0 0.02 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec) Output Voltage VOUT(V) Output Voltage VOUT(V) 5 CE Voltage(V) 0 0.02 12345 Rev. 1.11 - 19 - |
Price & Availability of R1223N332A
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |