Part Number Hot Search : 
MTEZ320A BU705F TC1920 1006C BAW567DW SD103CW CT0201F SP507CB
Product Description
Full Text Search
 

To Download MB3825APFV Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FUJITSU SEMICONDUCTOR DATA SHEET
DS04-27220-2E
ASSP For Power Supply Applications
6-ch DC/DC Converter IC With Synchronous Rectifier
MB3825A
s DESCRIPTION
The MB3825A is a pulse width modulation (PWM) type 6-channel DC/DC converter IC with synchronous rectification (2-channels) designed for low voltage, high efficiency operation in high precision and high frequency applications, ideal for down conversion. The MB3825A is an ideal device offering low power consumption, compact size and light weight for products such as self-contained camcorders and digital still cameras.
s FEATURES
* * * * * * * Synchronous rectification (channels 1 and 4) High efficiency drive with power-on output enhanced by built-in speed-up circuit Wide range of operating power supply voltage : 2.5 V to 12 V Built-in high-precision reference voltage generator : 1.5 V1% Wide operating oscillator frequency range, high frequency capability : 50 kHz to 800 kHz Wide input voltage range (all channels) : 0 V to Vcc - 0.9 V Error amplifier output for soft start (channels 1, 2, 4) (All channels may be set for same soft start time regardless of duty factor setting.)
s PACKAGE
64-pin, Plastic LQFP
(FPT-64P-M03)
MB3825A
s PIN ASSIGNMENT
GND (O) 4, 5, 6
VCC (O) 4, 5, 6
GND (O) 1, 2, 3
VCC (O) 2
OUT2-4
OUT1-4
OUT1-3
OUT1-5
OUT1-2 50
CB1-4
CB2-4
CB2-3
CB1-3
64
63
62
61
60
59
58
57
56
55
54
53
52
51
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
CB2-2
VB4
VB3
CB2-5 CB1-5 VB5 OUT1-6 CB2-6 CB1-6 VB6 OVP5, 6 IN (C) 6 +IN (E) 6 -IN (E) 6 FB6 SCP IN (C) 5 +IN (E) 5 -IN (E) 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
CB1-2 VB2 OUT1-1 CB2-1 CB1-1 OUT2-1 VCC (O) 1, 3 VB1 IN (C) 1 -IN (E) 1 FB1 IN (C) 2 -IN (E) 2 FB2 IN (C) 3 -IN (E) 3
CSCP
CS
IN (C) 4
-IN (E) 4
GND1
GND2
VREF
FB5
FB4
RT
CT
VCC
CTL2
CTL1
DTC3
2
FB3
MB3825A
s PIN DESCRIPTION
Pin No. 38 39 40 CH 1 46 43 44 45 41 35 36 37 CH 2 50 48 49 47 32 33 34 CH 3 56 54 55 52 31 20 19 18 CH 4 57 60 59 58 62 Symbol FB1 -IN(E)1 IN(C)1 OUT1-1 OUT2-1 CB1-1 CB2-1 VB1 FB2 -IN(E)2 IN(C)2 OUT1-2 CB1-2 CB2-2 VB2 FB3 -IN(E)3 IN(C)3 OUT1-3 CB1-3 CB2-3 VB3 DTC3 FB4 -IN(E)4 IN(C)4 OUT1-4 OUT2-4 CB1-4 CB2-4 VB4 I/O O I I O O -- -- -- O I I O -- -- -- O I I O -- -- -- I O I I O O -- -- -- Descriptions Channel 1 error amplifier output pin. Channel 1 error amplifier inverted input pin. Channel 1 short detection comparator input pin. Channel 1 main side output pin. Channel 1 synchronous rectifier side output pin. Channel 1 boot capacitor connection pin. Channel 1 output sink current setting pin. Channel 2 error amplifier output pin. Channel 2 error amplifier inverted input pin. Channel 2 short detection comparator input pin. Channel 2 output pin. Channel 2 boot capacitor connection pin. Channel 2 output sink current setting pin. Channel 3 error amplifier output pin. Channel 3 error amplifier inverted input pin. Channel 3 short detection comparator input pin. Channel 3 output pin. Channel 3 boot capacitor connection pin. Channel 3 output sink current setting pin. Channel 3 dead time control pin. Channel 4 error amplifier output pin. Channel 4 error amplifier inverted input pin. Channel 4 short detection comparator input pin. Channel 4 main side output pin. Channel 4 synchronous rectifier side output pin. Channel 4 boot capacitor connection pin. Channel 4 output sink current setting pin.
(Continued)
3
MB3825A
(Continued) Pin No.
17 16 15 14 CH 5 64 2 1 3 8 12 11 10 9 CH 6 4 6 5 7 8 Triangular-Wave Oscillator Circuit 21
Symbol FB5 -IN(E)5 +IN(E)5 IN(C)5 OUT1-5 CB1-5 CB2-5 VB5 OVP5,6 FB6 -IN(E)6 +IN(E)6 IN(C)6 OUT1-6 CB1-6 CB2-6 VB6 OVP5,6 RT
I/O O I I I O -- -- -- I O I I I O -- -- -- I --
Descriptions Channel 5 error amplifier output pin. Channel 5 error amplifier inverted input pin. Channel 5 error amplifier non-inverted input pin. Channel 5 short detection comparator input pin. Channel 5 output pin. Channel 5 boot capacitor connection pin. Channel 5 output sink current setting pin. Channel 5, 6 output maximum voltage setting pin. Channel 6 error amplifier output pin. Channel 6 error amplifier inverted input pin. Channel 6 error amplifier non-inverted input pin. Channel 6 short detection comparator input pin. Channel 6 output pin. Channel 6 boot capacitor connection pin. Channel 6 output sink current setting pin. Channel 5, 6 output maximum voltage setting pin. Triangular wave frequency setting resistor connection pin.
22
CT
--
Triangular wave frequency setting capacitor connection pin. Power supply control circuit. "H" level: Power supply operating mode "L" level: Standby mode Channel 3 control circuit. When CTL1 pin is "H" level "H" level: Channel 3 in operating mode "L" level: Channel 3 in OFF mode Short detection comparator input pin. Short protection circuit capacitor connection pin. Soft start circuit capacitor connection pin.
30
CTL1
I
Control Circuit
29 13 23 26
CTL2 SCP CSCP CS
I I -- --
(Continued)
4
MB3825A
(Continued)
Pin No. 28 42 Power Supply Circuit 51 63 27 24 25 53 61 Symbol VCC VCC(O)1,3 VCC(O)2 VCC(O)4,5,6 VREF GND1 GND2 GND(O)1,2,3 GND(O)4,5,6 I/O -- -- -- -- O -- -- -- -- Description Reference voltage and control circuit power supply pin. Output circuit power supply pin (Channel 1, 3). Output circuit power supply pin (Channel 2). Output circuit power supply pin (Channel 4,5,6). Reference voltage output pin. Ground pin. Ground pin. Output circuit ground pin (Channel 1,2,3). Output circuit ground pin (Channel 4,5,6).
5
MB3825A
s BLOCK DIAGRAM
* General view
< CH1>
FB1 38 39 -IN(E)1 - + + 1.5 V 70 mV 40 IN(C)1 - + 1.5 V SCP Comp.1 + - PWM Comp.1-2 Drive 1-2 43 OUT2-1 Error Amp.1 + - PWM Comp.1-1 Drive 1-1 VCC(O)1, 3 42 CB1-1 44 45 CB2-1 46 OUT1-1 41 VB1
A

FB2 35 36 -IN(E)2 - + + 1.5 V 47 VB2 37 - + 1.5 V SCP Comp.2 Error Amp.2 PWM Comp.2 + - Drive 2 VCC(O)2 51 CB1-2 48 49 CB2-2 50 OUT1-2
IN(C)2

FB3 32 33 -IN(E)3 - + 1.5 V CTL2 29 IN(C)3 34 - + 1.5 V 31 SCP Comp.3 53 GND(O)1, 2, 3 52 VB3 Error Amp.3 + + - PWM Comp.3 Drive 3 CB1-3 54 55 56 OUT1-3 CB2-3
DTC3

FB4 20 19 -IN(E)4 - + + 1.5 V 70 mV SCP Comp.4 + - PWM Comp.4-2 Drive 4-2 Error Amp.4 PWM Comp.4-1 + - Drive 4-1
VCC(O)4, 5, 6 63 CB1-4 59 58 57 OUT1-4 62 VB4 60 OUT2-4 CB2-4
B
IN(C)4
18
- +
1.5 V
FB5 17 16 -IN(E)5 - + + Error Amp.5 PWM Comp.5 + -

2 1 Drive 5 64 OUT1-5 3 VB5 CB1-5
CB2-5
IN(C)5 14 15 +IN(E)5
0.6 V - +
SCP Comp.5
FB6 12 11 -IN(E)6 - + + Error Amp.6 + - PWM Comp.6

6 5 Drive 6 4 OUT1-6 7 VB6 CB1-6
CB2-6
C
IN(C)6 9 +IN(E)6 10
0.6 V
- +
SCP Comp.6
GND(O)4, 5, 6 61 8 SCP Comp.
OVP5, 6
13 SCP
- +
VCC Comp.
1.5 V 1 A CS 26 Buff Soft Start Comp.
- - - +
0.65 V
1 A CSCP 23
- +
-1.35V -0.65V -1.35V -0.65V 28
VCC CTL1 30
1.5 V
SCP
UVLO
OSC
Ref
Power ON/OFF 25 24 GND1 GND2
1.5 V 21 22 27 RT CT VREF
6
MB3825A
* Enlarged view of A
< CH1>
FB1 38 39 -IN(E)1 - + + 1.5 V 70 mV 40 IN(C)1 - + 1.5 V SCP Comp.1 + - PWM Comp.1-2 Drive 1-2 Error Amp.1 + - PWM Comp.1-1 Drive 1-1
VCC(O)1, 3 42 CB1-1 44 45 CB2-1 46 OUT1-1 41 VB1 43 OUT2-1

FB2 35 36 -IN(E)2 - + + 1.5 V Error Amp.2 PWM Comp.2 + - Drive 2
VCC(O)2 51 CB1-2 48 49 CB2-2 50 OUT1-2 47 VB2
IN(C)2
37
- +
SCP Comp.2
1.5 V
7
MB3825A
* Enlarged view of B

FB3 32 33 -IN(E)3 - + 1.5 V CTL2 29 IN(C)3 34 - + 1.5 V 31 SCP Comp.3 53 GND(O)1, 2, 3 52 VB3 Error Amp.3 + + - PWM Comp.3 Drive 3 CB1-3 54 55 56 OUT1-3 CB2-3
DTC3

FB4 20 19 -IN(E)4 - + + 1.5 V 70 mV SCP Comp.4 + - PWM Comp.4-2 Drive 4-2 Error Amp.4 PWM Comp.4-1 + - Drive 4-1
VCC(O)4, 5, 6 63 CB1-4 59 58 57 OUT1-4 62 VB4 60 OUT2-4 CB2-4
IN(C)4
18
- +
1.5 V
8
MB3825A
* Enlarged view of C
FB5 17 16 -IN(E)5 - + + Error Amp.5 PWM Comp.5 + -

2 1 Drive 5 64 OUT1-5 3 VB5 CB1-5
CB2-5
IN(C)5 14 15 +IN(E)5
0.6 V - +
SCP Comp.5
FB6 12 11 -IN(E)6 - + + Error Amp.6 + - PWM Comp.6

6 5 Drive 6 4 OUT1-6 7 VB6 CB1-6
CB2-6
IN(C)6 9 +IN(E)6 10
0.6 V
- +
SCP Comp.6
GND(O)4, 5, 6 61 8 SCP Comp.
OVP5, 6
13 SCP
- +
VCC Comp.
1.5 V 1 A CS 26 Buff Soft Start Comp.
- - - +
0.65 V
1 A CSCP 23
- +
-1.35V -0.65V -1.35V -0.65V 28
VCC CTL1 30
1.5 V
SCP
UVLO
OSC
21 RT
Ref
Power ON/OFF 25 24 GND1 GND2
1.5 V 22 27 CT VREF
9
MB3825A
s ABSOLUTE MAXIMUM RAGINGS
Rating Min. -- -- -- -- -55 Max. 17 50 200 800* +125
Parameter Power supply voltage Output current Output peak current Power dissipation Storage temperature
Symbol VCC Io Io PD Tstg
Conditions -- OUT pin OUT pin, Duty 5% Ta +25C --
Unit V mA mA mW C
*: The packages are mounted on the epoxy board (10 cm x 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
s RECOMMENDED OPERATING CONDITIONS
Value Min. 2.5 -1 0 0 2 2.7 50 50 20 -- -- -30 Typ. 6.0 -- -- -- -- 5.6 500 100 39 0.1 0.1 +25 Max. 12 0 VCC - 0.9 12 20 30 800 1500 82 1.0 1.0 +85
Parameter Power supply voltage Reference voltage output current Input voltage Control input voltage Output current Output current setting resistor Oscillator frequency Timing capacitor Timing resistor Soft-start capacitor Short detection capacitor Operating ambient temperature
Symbol VCC IOR VIN VCTL IO RB fOSC CT RT CS CSCP Ta
Conditions -- -- -IN(E),IN(C),OVP pin CTL pin Main side OUT pin -- -- -- -- -- -- --
Unit V mA V V mA k kHz pF k F F C
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.
10
MB3825A
s ELECTRICAL CHARACTERISTICS
(VCC = VCC(O) = +6 V, Ta = +25C) Parameter Reference voltage Reference voltage block Output voltage temperature stability Input stability Load stability Short-circuit output current
Under voltage lockout protection circuit block(U.V.L.O)
Symbol VREF VREF /VREF Line Load IOS VTH VH VRST VSTB ICS VTH VSTB VI ICSCP fOSC f/fdv f/fdt
Pin No. 27 27 27 27 27 46 46 46 26 26 23 23 23 23
Conditions -- Ta = -30C to +85C VCC = 2.5 V to 12 V VREF = 0 mA to -1 mA VREF = 2 V VCC = -- -- -- -- -- -- -- --
Value Min. 1.485 -- -- -- -10 -- -- 1.8 -- -1.4 0.65 -- -- -1.4 450 -- -- Typ. 1.500 0.5* 2 2 -6 2.1 0.1 2.0 50 -1.0 0.70 50 50 -1.0 500 1 1* Max. 1.515 -- 10 10 -1 -- -- -- 100 -0.6 0.75 100 100 -0.6 550 10 --
Unit V % mV mV mA V V V mV A V mV mV A kHz % %
Threshold voltage Hysteresis width Reset voltage Input standby voltage Charge current Threshold voltage Input standby voltage Input latch voltage Input source current Oscillator frequency Frequency stability for voltage Frequency stability for temperature
Short circuit detection block
Soft-start block
Triangular wave oscillator block
46,50,56, CT = 100 pF, 57,64,4 RT = 39 k 46,50,56, VCC = 2.5 V to 12 V 57,64,4 46,50,56, Ta = -30C to +85C 57,64,4
*: Standard design value.
(Continued)
11
MB3825A
(Continued)
(VCC = VCC(O) = +6 V, Ta = +25C) Parameter Threshold voltage VT temperature stability Input bias current Error amplifier block (CH1 to CH4) Voltage gain Frequency bandwidth Symbol Pin No VTH VT /VT IB AV BW VOM+ VOM- IO- IO+ VIO VT /VT IB Conditions Value Min. 1.45 -- -200 60 -- -- -- 1.45 -- -- 60 60 -1 -- -400 -200 -400 0 60 -- -- -- FB = 1.0 V FB = 1.0 V -- 1.45 -- -- 60 1.45 Typ. 1.50 0.5* -20 75 1.0* 1.55 20 -2.0 120 130 9 0.5* -40 -20 -40 -- 75 1.0* 1.55 20 -2.0 130 1.50 Max. 1.55 -- -- -- -- -- 200 -0.6 -- -- 19 -- -- -- -- VCC-0.9 -- -- -- 200 -0.6 -- 1.55 Unit V % nA dB MHz V mV mA A A mV % nA nA nA V dB MHz V mV mA A V
38,35, FB = 1.0 V 32,20 38,35, Ta = -30C to +85C 32,20 39,36, -IN = 0 V 33,19 38,35, DC 32,20 38,35, AV = 0 dB 32,20 38,35, 32,20 38,35, 32,20
Maximum output voltage width
Output source current Output sink current Input offset voltage VT temperature stability
38,35, FB = 1.0 V 32,20 38,35, FB = 1.0 V (CH1,CH4) 32,20 FB = 1.0 V (CH2,CH3) 17,12 17,12 15,10 FB = 1.0 V Ta = -30C to +85C +IN = 0 V, +IN(E) pin -IN = 0 V, -IN(E) pin OVP = 0 V, OVP pin -- DC AV = 0 dB
Error amplifier bolck (CH5, CH6)
Input bias current Common mode input voltage range Voltage gain Frequency bandwidth Maximum output voltage width Output source current Output sink current
16,11 8
VCM AV BW VOM
- + +
17,12 17,12 17,12 17,12 17,12 17,12 17,12 46,50, 56,57
VOM- IO IO
SCP Comp. block (CH1 to CH4, SCP)
Threshold voltage
VTH
Input bias current
IB
40,37, IN(C) = SCP = 0 V 34,18,13
-200
-20
--
nA
*: Standard design value.
(Continued)
12
MB3825A
(Continued)
(VCC = VCC(O) = +6 V, Ta = +25C) Parameter Input offset voltage Input bias current Common mode input voltage range Symbol Pin No. VIO IIN+ VCM VT0 Threshold voltage VT100 Input bias current Sink current at CTL2 = "L" Input voltage at CTL2 = "L" IB IIDTC 64,4 14,9 64,4 Conditions -- IN(C) = 0 V -- Value Min. 0.55 -400 0 0.55 Typ. 0.60 -40 -- 0.65 Max. 0.65 -- VCC-0.9 -- Unit V nA V V
SCP Comp. block (CH5, CH6)
PWM Comp. block (CH1 to CH6)
46,50, 56,57, Duty cycle = 0 % 64,4 46,50, 56,57, Duty cycle = 100 % 64,4 31 31 DTC = 0.4 V DTC = 1.5 V CTL2 = 0 V IDTC = 40 A CTL2 = 0 V
-- -1.0 80
1.35 -0.2 500
1.45 -- --
V A A
Dead time control block (CH3) (DTC pin)
VIDTC
31
--
0.2
0.3
V
Main side output block (CH1 to CH6) (Drive-1)
Output source current
IO-
46,50, 56,57, Duty cycle 5 % 64,4 46,50, 56,57, RB = 5.6 k 64,4 43,60 43,60 43,60 43,60 27 27 30 46,50, 56 Duty cycle 5 %, VO = 2 V Duty cycle 5 %, VO = 1 V -- -- IC active mode IC standby mode CTL = 5 V --
--
-100
--
mA
Output sink current
IO+
7
10
13
mA
Synchronous rectifier side output block (CH1, CH4) (Drive-2)
Output source current Output sink current
IO- IO+ VOH
-- -- 3.5 -- 2.1 0 -- VCC - 0.70
-70 70 4.0 0 -- -- 100 VCC - 0.65
-- -- -- 0.1 12 0.7 200 VCC - 0.60
mA mA V V V V A V
Output voltage
VOL VON VOFF ICTL VTH
Control block VCC Comp. block
CTL input condition Input current Threshold voltage
*: Standard design value.
(Continued) 13
MB3825A
(Continued)
(VCC = VCC(O) = +6 V, Ta = +25C) Parameter Symbol Pin No. ICCS General Standby current ICCS(O) Power supply current *: Standard design value. ICC 28 Conditions VCC pin, CTL = 0V Value Min. -- -- -- Typ. -- -- 6.3 Max. 10 10 9.0 Unit A A mA
42,51, VCC(O) pin, CTL = 0V 63 28,42, 51,63 --
14
MB3825A
s TYPICAL CHARACTERISTICS
Power supply current vs. power supply voltage Power supply current ICC (mA)
10.0
Reference voltage vs. power supply voltage
2.5
Reference voltage VREF (V)
10 15 20
Ta = +25 C VCTL1, 2 = 6 V 8.0
Ta = +25 C
2.0
6.0
1.5
4.0
1.0
2.0
0.5
0.0 0
0.0
5
0
5
10
15
20
Power supply voltage VCC (V) Reference voltage vs. power supply voltage
2.5
Power supply voltage VCC (V) Reference voltage vs. ambient temperature
1.55
Reference voltage VREF (V)
2.0
Reference voltage VREF (V)
2 3 4 5
Ta = +25 C
VCC = 6 V 1.54 VCTL1, 2 = 6 V IO = 0 mA 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46
1.5
1.0
0.5
0.0
0
1
Power supply voltage VCC (V) Reference voltage vs. control voltage
2.0 Ta = +25 C VCC = 6 V 1.5
1.45 -50
-25
0
25
50
75
100
Ambient temperature Ta (C) Control current vs. control voltage
500 Ta = +25 C VCC = 6 V
Reference voltage VREF (V)
Control current ICTL1 (A)
400
300
1.0
200
0.5
100
0.0
0
1
2
3
4
5
0 0
5
10
15
20
Control voltage VCTL1 (V)
Control voltage VCTL1 (V)
(Continued) 15
MB3825A
(Continued)
Control current vs. control voltage
500
Triangular wave upper and lower limit voltage vs. timing capacitor Triangular wave upper and lower limit voltage VCT (V)
1.6 Ta = +25 C VCC = 6.0 V RT = 39 k
Control current ICTL2 (A)
Ta = +25 C VCC = 6 V VCTL1 = 6 V
400
Upper
1.4
300
1.2
200
100
1.0
Lower
0
0
5
10
15
20
0.8 10
102
103
104
Control voltage VCTL2 (V) Triangular wave time vs. timing capacitor CT1,CT2 oscillator frequency fOSC (Hz)
100 Ta = +25 C VCC = 6 V RT = 39 k
10 M
Timing capacitor CT (pF) Oscillator frequency vs. timing resistor
Ta = +25 C VCC = 6.0 V
Triangular wave time (s)
1M
10
CT = 47 pF CT = 100 pF CT = 150 pF CT = 300 pF CT = 1500 pF
100 k
1
10 k
0 10
102
103
104
1k 1k
10 k
100 k
1M
Timing capacitor CT (pF) Triangular wave frequency stability vs. ambient temperature Triangular wave frequency stability (%)
15 VCC = 6.0 V CT = 100 pF 10 RT = 39 k 5
Timing resistor RT () Triangular wave upper and lower limit voltage vs. ambient temperature
1.7 1.6 VCC = 6.0 V RT = 39 k CT = 100 pF
Triangular wave upper and lower limit voltage VCT (V)
1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8
upper
0 -5 -10 -15 -50
lower
-25 0 25 50 75 100
-25
0
25
50
75
100
0.7 -50
Ambient temperature Ta (C)
Ambient temperature Ta (C)
(Continued)
16
MB3825A
(Continued)
Duty vs. oscillator frequency (ch1)
100 Ta = +25 C 90 VCC = 6.0 V VFB = 1.0 V 80 70
Duty vs. oscillator frequency (ch4)
100 Ta = +25 C 90 VCC = 6.0 V VFB = 1.0 V 80 70
Duty Dtr (%)
60 50 40 30 20 10 0 1k 10 k 100 k 1M 10 M
Duty Dtr (%)
60 50 40 30 20 10 0 1k 10 k 100 k 1M 10 M
Oscillator frequency fOSC (Hz) Output sink current vs. output sink current setting resistor
20 Ta = +25 C VCC = 6.0 V
Oscillator frequency fOSC (Hz)
Output sink current IO (mA)
18 16 14 12 10 8 6 4 2 0 0 5 10 15 20
25
30
Output sink current setting resistor RB (k)
(Continued)
17
MB3825A
(Continued)
Error amplifier gain and phase vs. frequency (ch1)
40 Ta = +25 C 180 VCC = 6 V 4.7 k IN - + 2.4 k 10 F 4.7 k VREF CS 39 26
Gain AV (dB)
Phase (deg)
20 AV
90
240 k - + +
0 -20 -40 1k 10 k 100 k
0 -90 -180 1M 10 M
38 OUT
Frequency f (Hz) Error amplifier gain and phase vs. frequency (ch5)
40 Ta = +25 C 180 3V VCC = 6 V 240 k
Gain AV (dB)
20 AV
90
Phase (deg)
4.7 k IN - + 10 F 4.7 k
4.7 k 2.4 k
0 -20 -40 1k 10 k 100 k
0 -90 -180 1M 1M
4.7 k
16 - 15 + 8+ 6V
17 OUT
Frequency f (Hz) Power dissipation vs. ambient temperature
1000
Power dissipation PD (mW)
800
600
400
200
0 -50
-25
0
25
50
75
100
Ambient temperature Ta (C)
18
MB3825A
s FUNCTIONAL DESCRIPTION
1. Switching Regulator Function
(1) Reference voltage circuit The reference voltage circuit generates a temperature-compensated reference voltage (= 1.500 V) using the voltage : supplied from the power supply terminal (pin 28). This voltage is used as the reference voltage for the internal circuits of the IC. The reference voltage of up to 1mA can also be supplied to an external device from the VREF terminal (pin 27). (2) Triangular-wave oscillator circuit By connecting a timing capacitor and a resistor to the CT (pin 22) and the RT (pin 21) terminals, it is possible to generate any desired triangular oscillator waveform (CT : amplitude 1.0V to 1.4V, CT1 : amplitude 0.65V to 1.35V in phase with CT1, and CT2 : amplitude 0.65V to 1.35V in inverse phase with CT). The triangular wave is input to CT1, CT2 and the PWM comparator within the IC. (3) Error amplifier This amplifier detects the output voltage of the switching regulator and outputs a PWM control signal accordingly. It has a wide common-mode input voltage range from 0 V to VCC -0.9 V on channels 5 and 6 allows easy setting from an external power supply, making the system suitable for DC motor speed control. By connecting a feedback resistor and capacitor from the error amplifier output pin to the inverted input pin, you can form any desired loop gain, for stable phase compensation. (4) PWM comparator The PWM comparators in these channels are a voltage comparator with one inverted input and one non-inverted input (channels 1, 2, 4, 5, 6) as well as one inverted input and two non-inverted inputs (channel 3), and voltage pulse width modifier to control output duty according to input voltage. In the interval when the error amplifier output voltage is higher than the triangular waveform, the output transistor is turned on (channels 1, 2, 4, 5, 6). In the interval when the error amplifier output voltage is lower than the triangular waveform, the output transistor is turned on (channel 1,4 synchronous rectifier side). In the interval when the error amplifier output voltage and DTC3 voltage are higher than the triangular waveform, the output transistor is switched on (channel 3). (5) Output circuit The output circuits is comprised of a totem-pole configuration on both the main side and synchronous rectifier side, and can drive an external PNP transistor (main side) or N-ch MOSFET (synchronous rectifier side). Sink current (on the main side) can be set up to 20 mA depending on the resistance of the VB pin.
2. Channel Control Function
Channel on and off levels are dependent on the voltage levels of the CTL1 terminal (pin 30) and CTL 2 terminal (pin 29). Table 1 Channel by Channel On/Off Setting Conditions. CTL pin voltage level CTL1 L H CTL2 X L H Power supply circuit On/Off state of channel Channel 1 Channel 2 Channel 4 Channel 5 OFF (standby mode)* ON OFF ON Channel 6 Channel 3
*: The power supply current in standby mode is 10 A or less. 19
MB3825A
3. Protective Functions
(1) Timer-latch short-circuit protection circuit The short detection comparator in each channel detects the output voltage level, and when any channel output voltage falls below the short detection voltage, or the SCP terminal (pin 13) voltage falls below the reference voltage, the timer circuit starts operating and the capacitor CSCP connected to the CSCP terminal (pin 23) starts charging. When the capacitor charge reaches approximately 0.7 V, the output transistor is turned off and the idle interval becomes 100%. When actuated, this protection circuit can be reset by turning on the power supply again.(See "METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT".) (2) Under voltage lockout protection circuit A transient state at power-on or a momentary drop of the power supply voltage causes the control IC to malfunction, resulting in system breakdown or system deterioration. By detecting the internal reference voltage with respect to the power supply voltage, this protection circuit resets the latch circuit to turn off the output transistor and set the duty (OFF) = 100 %, while at the same time holding the CSCP terminal (pin 23) at the "L". The reset is cleared when the power supply voltage becomes greater than or equal to the threshold voltage level of this protection circuit. (3) Output Supply Monitor Comparator (Vcc Comp.) The output supply monitor comparator compares the output circuit power supply (VCC(O)1, 3,VCC(O)2, VCC(O) 4, 5, 6) to the VCC level, and operates the timer-latch short protection circuit if any of the output circuit power supplies fall below Vcc -0.65V.
20
MB3825A
s METHODS OF SETTING THE OUTPUT VOLTAGE
Figure 1. CH1 to CH4
VO VO = R1 VO > R2 39 R3 -IN (E) 1 - + + 1.5 V 1.5 V (R1 + R2 + R3) R3 1.5 V R2 + R3 (R1 + R2 + R3)
Error Amp.1
40 IN (C) 1
- + 1.5 V
SCP Comp.1
Figure 2. CH5 and CH6
VO FB5 17 R1 16 R2 -IN (E)5 - + + Error Amp.5 VO = V+IN (E) 5 (R1 + R2) R2
VOVP5, 6 > V+IN (E) 5 VOVP5, 6 (R1 + R2) R2
VO =
VOVP5, 6 < V+IN (E) 5
IN (C) 5 14
Motor control signal
0.6 V - +
SCP Comp.5
15 +IN (E) 5 8 OVP5, 6
21
MB3825A
s METHOD OF SETTING THE OUTPUT CURRENT
Figure 3 shows the configuration of the output circuits, and Figure 4 illustrates how the sink current value of the output current waveform has a constant current setting. Note that the sink current is set by the following formula * Sink current = (VB/RB) x 60 = 56/RB [A] :
Figure 3. Output circuit (main side)
VB RB VCC(O) VB
External PNP transistor
Output ON base current speed-up
100 k
Source current
CB1 OUT1
10 k
To PWM comparator
Output OFF driver
CB2
Sink current
x1
x 60 GND (O)
Figure 4. Output current waveform
Speed-up current
Sink current
Output current 0
Source current (peak)
t
22
MB3825A
Precautions:
Output current setting resistance RB1 to RB6 should be connected to each channel as shown in Figure 5 below. * For channel 1 and 3, connect the respective VB terminals to VCC(O) 1, 3 through the setting resistor RB. * For channel 2, connect the VB2 terminal to VCC(O)2 through setting resistor RB2. * For channels 4 to 6, connect the respective VB terminals to VCC(O)4, 5, 6 through setting resistor RB.
Figure 5. Output sink current setting pin connections
VCC(O) 1, 3 VB1 VB3 VCC(O) 2 MB3825A VB2 VCC(O) 4, 5, 6 VB4 VB5 VB6 RB4 RB5 RB6 RB2 RB1 RB3
23
MB3825A
s METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT
The short detection comparator (SCP comparator) in each of the channels constantly compares the error amplifier output level to the reference voltage and the SCP terminal (pin 13). While the switching regulator load conditions are stable on all channels, or when the voltage level at the SCP terminal is higher than the reference voltage, the short detection comparator output remains at "L" level, transistor Q3 is turned on, and the CSCP terminal (pin 23) is held at input standby voltage (VSTB = 50mV). : If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to drop, or if the voltage at the SCP terminal falls below the reference voltage level, the output from the short detection comparator on the corresponding channel or the input at the SCP pin goes to "H" level. This causes transistor Q3 to turn off and the external short protection capacitor CSCP connected to the CSCP terminal to charge at 1.0 A. Short Detection Time (tPE) : tPE(sec) = 0.7 x CSCP (F) : When the capacitor CSCP is charged to the threshold voltage VTH = 0.7 V the SR latch is set, and the external PNP is turned off (inactive interval is set to 100%). At this point the SR latch input is closed and the CSCP pin is held at input latch voltage (VI = 50 mV). :
Figure 6. Protection timer-latch short protection circuit
A
External PNP transistor
R1 40 R2 IN (C) 1 + 1.5 V R3 13 SCP 1.5 V 1 A CS 26 Buff - + -
SCP Comp.1
Output stage Output stage
46 OUT1-1
43 OUT2-1
SCP Comp.
Output stage
56 OUT1-3
Q2
Soft Start Comp.
- +
Output stage
4 OUT1-6 29 CTL2 28 VCC
CSCP 23
1 A
1.5 V bias bias
S
CSCP Q1 Q3
R
Timer-latch short circuit protection circuit
UVLO
Ref
Power ON/OFF
30 CTL1 27 VREF
24
MB3825A
s TREATMENT WITHOUT USING CSCP
When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 23) to GND with the shortest distance.
Figure 7. Treatment when not using CSCP
23 CSCP 24 GND1 25 GND2
25
MB3825A
s METHOD OF SETTING SOFT START TIME
* Channels 1, 2, 4 To provide a soft start by preventing current surges at power-on, soft start capacitor (Cs) can be connected to the CS terminal (pin 26). When the IC is started (when the CTL1 terminal (pin 30) goes to "H" level, and Vcc UVLO threshold voltage), transistors Q2 switches off and the CS terminal begins charging the external soft start capacitors (Cs) at 1.0 A. The error amplifier makes a soft start in a proportion to the output voltage to the CS teminal voltage regardless of the load current on the DC/DC converter. Note that the soft start time can be calculated by the following formula. Soft start time (output rise time) : tS(sec) = 1.5 x CS (F)
Figure 8. Soft start circuit
A FB1 38 R1 39 R2 -IN (E )1 - + + 1.5 V R3 Error Amp.1
External PNP transistor
Output stage Output stage
46 OUT1-1
43 OUT2-1
Output stage
1 A CS 26 Buff
56 OUT1-3
CS
Q2
Soft Start Comp.
- +
Output stage
bias
4 OUT1-6 29 CTL2 28 VCC
CSCP 23
1 A
1.5 V
CSCP Q1
SCP
UVLO
Ref
Power ON/OFF
30 CTL1 27 VREF
26
MB3825A
* Channel 3 The capacitor CDTC3 is placed between the DTC3 terminal (pin 31) and GND, so that when the CTL2 terminal (pin 29) goes from "L" to "H" level, the transistor Q4 is turned off and the output voltage is in proportion to the DTC3 terminal voltage providing the soft start operation. As the short detection function is not turned off during soft start operation, this setting should be made under the following condition. Channel 3 soft start circuit time < Short detection time
Figure 9. Channel 3 soft start circuit
A
FB3 32 Error Amp.3 + + -
External PNP transistor
33 -IN (E) 3
- + 1.5 V
PWM Comp.3
Output stage
56 OUT1-3
H:ON (CH3) CTL2 L:OFF 29 34 IN (C) 3 - + 1.5 V DTC3 34 Rb CDTC3 SCP Comp.3
Q4
To VREF
Ra
To CT1 To CSP
To UVLO
27
MB3825A
s PROCESSING WITHOUT USING CS PIN
If the soft start function is not used, the CS terminal (pin 26) for channels 1, 2, and 4 should be left open. For channel 3, connect the DTC3 terminal (pin 31) to the VREF terminal (pin 27).
Figure 10. When no soft start time is set (1,2,4 channel)
Open
26 CS
Figure 11. When no soft start time is set (3 channel)
27 VREF
31 DTC3
28
MB3825A
s METHOD OF SETTING THE DEAD TIME
When the device is set for step-up inverted output based on the flyback method, the output transistor is fixed to full-on state (ON-duty = 100 %) at power switch-on.To prevent this problem, you may determine the voltages on the DTC3 terminal (pin 31) from the VREF voltage so you can easily set the output transistor's dead time (maximum ONduty) independently for each channel as shown Figure.12. When the voltage on the DTC3 terminal is lower than the triangular-wave (CT1) output voltage from the oscillator, the output transistor turns off. The dead time calculation formula assuming that triangular-wave amplitude = 0.7 V : and triangular-wave maximum voltage = 1.35 V is given below. : Duty (ON) MAX = : Vdt - 0.65 x 100 [%] 0.7
When you do not use this DTC3 terminal, connect then to VREF terminal (pin 27) as shown Figure.13..
Figure 12. When using DTC to set dead time
27 VREF Ra 31 DTC3 Vdt Rb
Figure 13. When not using DTC to set dead time
27 VREF
31 DTC3
29
MB3825A
s APPLICATION EXAMPLE
* General view
VFB1 A 13.5 k 3.5 k 15 k 0.033 F VOUT1-1 10 H 4.7 F VC1 A 68 H VO1 VO1(3.2 V)
< CH1>
FB1 38 - + + 1.5 V 70 mV 40 IN(C)1 - + 1.5 V SCP Comp.1 + - PWM Comp.1-2 Drive 1-2 Error Amp.1 + - Drive 1-1 PWM Comp.1-1
39 -IN(E)1
VCC(O)1, 3 42 CB1-1 44 560 pF 45 CB2-1 46 OUT1-1 41 VB1 43 OUT2-1 22 k
FMMT717
2SK2316
6.8 F U1FWJ44N
30
VOUT2-1 10 H 4.7 F
B 23.5 k 12 k 15 k 0.033 F

FB2 35 - + + 1.5 V Error Amp.2 PWM Comp.2 - + Drive 2
36 -IN(E)2
VCC(O)2 51 CB2-2 48 560 pF 49 CB1-2 50 OUT1-2 47 VB2 22 k
B 33 H 6.8 F U1FWJ44N
VO2(5.05 V)
A
FMMT717
50
IN(C)2
37
- +
SCP Amp.2
1.5 V
C 42.5 k 2.5 k 5 k 0.033 F
C

FB3 32 - + 1.5 V CTL2 H : ON(CH3) 29 L : OFF 34 IN(C)3 30 k 120 k 10 H 52 VB3 - + 1.5 V 31 SCP Comp.3 GND(O)1, 2, 3 53 Error Amp.3 + + - PWM Comp.3 Drive 3 CB1-3 54 560 pF 55 56 OUT1-3 22 k CB2-3 2.2 F 2SB1121 1SS196
VO3(15 V)
33 -IN(E)3
750
DTC3
B
4.7 F D 33 H VO4(4.89 V) FMMT717
D 13.5 k 7.5 k 9.3 k 0.033 F
VCC(O)4, 5, 6

FB4 20 - + + 1.5 V SCP Comp.4 Error Amp.4 PWM Comp.4-1 + - 70mV + - PWM Comp.4-2 Drive 4-2 Drive 4-1
63 CB1-4 59 560 pF 58 57 OUT1-4 22 k 62 VB4 60 OUT2-4 CB2-4 2SK2316
19 -IN(E)4
6.8 F U1FWJ44N 50
IN(C)4
18
- +
1.5 V E E 30 k 15 k FB5 17 - + + Error Amp.5 + - Drive 5 PWM Comp.5

2 1 64 OUT1-5 3 VB5 22 k CB1-5 560 pF CB2-5 FMMT717 47 H 2.2 F U1FWJ44N
VO5(4.5 V)
0.033 F
16 -IN(E)5
100
IN(C)5 14 15 +IN(E)5 VIN (6V) FB6 12
0.6 V - +
SCP Comp.5
F

- + + Error Amp.6 + - Drive 6 PWM Comp.6 6 5 4 OUT1-6 22 k 7 VB6 CB1-6 560 pF CB2-6 FMMT717 47 H 2.2 F U1FWJ44N
VO6(4.5 V)
F 30 k 15 k
0.033 F
11 -IN(E)6
100
IN(C)6 9 +IN(E)6 10
0.6 V
- +
SCP Comp.6
C
GND(O)4, 5, 6 61 8 SCP Comp.
OVP5, 6
Over voltage threshold setting voltage
13 SCP
- +
VCC Comp.
1.5 V 1 A CS 26 0.1 F Buff Soft Start Comp.
- - - +
0.65 V
FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION
10 H VCC 28 CTL1 30 4.7 F
1 A CSCP 0.1 F 23
- + 1.5 V
-1.35V -0.65V -1.35V -0.65V
U1FWJ44N : TOSHIBA CORPORATION
SCP
UVLO
RT 39 k
OSC
21 22 CT
Ref
1.5 V
Power ON/OFF
25 27 24 VREF GND1 GND2 100 pF VCT
H : ON (CH1,2,4 to 6) L : OFF (standby state)
30
VFB1 10 H 4.7 F A VO1(3.2 V) 68 H VO1
VOUT1-1
VC1
Over voltage threshold setting voltage
A
13.5 k 38 FMMT717 Error Amp.1 + - OUT1-1 22 k 41 + - OUT2-1 VOUT2-1 10 H 4.7 F PWM Comp.1-2 Drive 1-2 43 VB1 2SK2316 70 mV - + 1.5 V SCP Comp.1 Drive 1-1 46 30 6.8 F U1FWJ44N PWM Comp.1-1
< CH1>
FB1
* Enlarged view of A
3.5 k - + + 1.5 V
0.033 F
15 k
39 -IN(E)1
VCC(O)1, 3 42 CB1-1 44 560 pF 45 CB2-1
40 IN(C)1
B
B 33 H
23.5 k Error Amp.2 - + OUT1-2 47 - + 1.5 V SCP Amp.2 VB2 22 k Drive 2 50 PWM Comp.2

VO2(5.05 V)
FB2 35
FMMT717
12 k - + + 1.5 V
0.033 F
15 k
36 -IN(E)2
VCC(O)2 51 CB2-2 48 560 pF 49 CB1-2
6.8 F U1FWJ44N 50
IN(C)2
37
FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd.
H : ON (CH1,2,4 to 6) L : OFF (standby state)
2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION
MB3825A
31
32
C
C
42.5 k FB3 32 CB1-3 54 560 pF 55 CB2-3 750 OUT1-3 22 k 52 VB3 - + 1.5 V 31 10 H VCC(O)4, 5, 6 4.7 F 53 SCP Comp.3 GND(O)1, 2, 3 2.2 F Drive 3 56 2SB1121 1SS196 - + 1.5 V + + - Error Amp.3 PWM Comp.3

VO3(15 V)
MB3825A
2.5 k 33 -IN(E)3
0.033 F
Over voltage threshold setting voltage
* Enlarged view of B
5 k
CTL2 H : ON(CH3) 29 L : OFF 34 IN(C)3
30 k DTC3
120 k D 33 H FMMT717 560 pF 58 CB2-4 OUT1-4 22 k 62 VB4 Drive 4-2 60 OUT2-4 2SK2316 Drive 4-1 57 6.8 F U1FWJ44N 50 VO4(4.89 V)
D
13.5 k 63 CB1-4 Error Amp.4 PWM Comp.4-1 + - 70mV SCP Comp.4 - PWM Comp.4-2 + 59 FB4 20

7.5 k 19 -IN(E)4 1.5 V - + +
0.033 F
9.3 k
IN(C)4 + 1.5 V
18
-
FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd.
H : ON (CH1,2,4 to 6) L : OFF (standby state)
1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION
E

2 560 pF 1 CB2-5 U1FWJ44N 100 22 k OUT1-5 3 VB5 Drive 5 64 2.2 F CB1-5 FMMT717 47 H Error Amp.5 PWM Comp.5 + -
VO5(4.5 V)
E 0.033 F 16 -IN(E)5 - + +
FB5 17
30 k
* Enlarged view of C
15 k
IN(C)5 14 15 +IN(E)5 + -
0.6 V
SCP Comp.5
VIN (6V)
F

Error Amp.6 560 pF 5 CB2-6 OUT1-6 22 k 7 VB6 Drive 6 4 + - PWM Comp.6 6 CB1-6 FMMT717 47 H 2.2 F U1FWJ44N
VO6(4.5 V)
F 0.033 F 11 -IN(E)6 - + +
FB6 12
30 k
15 k
100
IN(C)6 9 +IN(E)6 OVP5, 6 8 13 SCP + 1.5 V 1 A CS 26 Buff Soft Start Comp. - + 1.5 V 0.1 F 1 A CSCP 23 0.1 F - VCC Comp. SCP Comp. 10 + -
0.6 V
SCP Comp.6
GND(O)4, 5, 6 61
Over voltage threshold setting voltage
- - - +
0.65 V
H : ON (CH1,2,4 to 6)
10 H VCC 28
L : OFF (standby state)
4.7 F CTL1
-1.35V -0.65V -1.35V -0.65V
SCP
UVLO
RT 39 k
OSC
21 22 CT
Ref
1.5 V
Power ON/OFF 25 24 27 VREF GND1 GND2 100 pF VCT
30
FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION
MB3825A
33
MB3825A
s REFERENCE DATA
Channel 1 switching operation waveform (operation at 500 kHz)
1V VC1 (V) 6 Vin = 6 V RL = 30 CT = 100 pF RT = 39 k
4
2
0 500 nS
0
1
2
3
4
5 t (s)
expansion
500 mV VC1 (V) 3
2
1
0 200 nS
0
0.4
0.8
1.2
1.6
2.0 t (s)
Synchronous rectifier length
= 150 ns :
= 120 ns :
34
MB3825A
Channel 1 main side output waveform (operation at 500 kHz)
500 mV VC1 (V) 6 4 2 0 VCT VCT (V) VFB1 (V) 1.0 0.5 500 mV 0 0 1 2 3 4 5 t (s) VFB1 500 nS 2V VC1 Vin = 6 V RL = 30 CT = 100 pF RT = 39 k
Channel 1 main side base current waveform (operation at 500 kHz)
IOUT1-1 (mA) 60 500 mV 40 IOUT1-1 20 0 -20 VCT VCT (V) VFB1 (V) 1.0 0.5 500 mV 0 0 1 2 3 4 5 t (s)
Peak current when turned ON = 42 mA : Peak current when turned OFF = 50 mA :
Vin = 6 V RL = 30 CT = 100 pF RT = 39 k
-40 -60
VFB1 10 mV 500 nS
-80 -100
(Continued)
35
MB3825A
(Continued)
Channel 1 synchronous rectifier side output waveform (operation at 500 kHz)
2V VC1 (V) 6 4 2 0 VOUT2-1 (V) 6 4 2 2V 0 0 1 2 3 4 5 t (s) 500 nS Vin = 6 V RL = 30 CT = 100 pF RT = 39 k
Channel 1 synchronous rectifier side output waveform (operation at 500 kHz)
IOUT2-1 (mA) 60 10 mV 40 20 0 -20 -40 VOUT2-1 (V) 4 2 2V 0 0 1 2 3 4 5 t (s)
Output source current peak value = 30 mA : Output sink current peak value = 52 mA :
Vin = 6 V RL = 30 CT = 100 pF RT = 39 k
500 nS
36
MB3825A
s USAGE PRECAUTIONS
1. Printed circuit board ground lines should be set up with consideration for common impedance. 2. Take the following measures for protection against static charge:
* For containing semiconductor devices, use an antistatic or conductive container. * When storing or transporting device-mounted circuit boards, use a conductive bag or container. * Ground the workbenches, tools, and measuring equipment to earth. * Make sure that operators wear wrist straps or other appropriate fittings grounded to earth via a resistance of 250 k to 1 M placed in series between the human body and earth.
s ORDERING INFORMATION
Part number MB3825APFV Package 64-pin plastic LQFP (FPT-64P-M03) Remarks
37
MB3825A
s PACKAGE DIMENSION
64-pin Plastic LQFP (FPT-64P-M03)
12.000.20(.472.008)SQ 10.000.10(.394.004)SQ
48 33
49
32
0.08(.003)
Details of "A" part
INDEX
1.50 -0.10 .059 -.004
17
+0.20 +.008
(Mounting height)
64
"A" LEAD No.
1 16
0~8
+0.08 -0.03 +.003 -.001
0.500.08 (.020.003)
0.18 .007
0.08(.003)
M
0.1450.055 (.006.002) 0.500.20 (.020.008) 0.45/0.75 (.018/.030)
0.100.10 (.004.004) (Stand off) 0.25(.010)
C
1998 FUJITSU LIMITED F64009S-3C-6
Dimensions in: mm (inches)
38
MB3825A
FUJITSU LIMITED
For further information please contact:
Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
http://www.fujitsu.co.jp/
North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220
http://www.fmap.com.sg/
F9906 (c) FUJITSU LIMITED Printed in Japan
39


▲Up To Search▲   

 
Price & Availability of MB3825APFV

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X