![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
ICs for Communications Mixer/Amplifier PMB 2333 Version 1.2 Preliminary Data Sheet 09.97 T2333-XV12-P3-7600 Edition 09.97 Published by Siemens AG, Bereich Halbleiter, MarketingKommunikation, Balanstrae 73, 81541 Munchen (c) Siemens AG 1995. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. Ausgabe 09.97 Herausgegeben von Siemens AG, Bereich Halbleiter, MarketingKommunikation, Balanstrae 73, 81541 Munchen (c) Siemens AG 1995. Alle Rechte vorbehalten. Wichtige Hinweise! Gewahr fur die Freiheit von Rechten Dritter leisten wir nur fur Bauelemente selbst, nicht fur Anwendungen, Verfahren und fur die in Bauelementen oder Baugruppen realisierten Schaltungen. Mit den Angaben werden die Bauelemente spezifiziert, nicht Eigenschaften zugesichert. Liefermoglichkeiten und technische Anderungen vorbehalten. Fragen uber Technik, Preise und Liefermoglichkeiten richten Sie bitte an den Ihnen nachstgelegenen Vertrieb Halbleiter in Deutschland oder an unsere Landesgesellschaften im Ausland. Bauelemente konnen aufgrund technischer Erfordernisse Gefahrstoffe enthalten. Auskunfte daruber bitten wir unter Angabe des betreffenden Typs ebenfalls uber den Vertrieb Halbleiter einzuholen. Die Siemens AG ist ein Hersteller von CECCqualifizierten Produkten. Verpackung Bitte benutzen Sie die Ihnen bekannten Verwerter. Wir helfen Ihnen auch weiter - wenden Sie sich an Ihren fur Sie zustandigen Vertrieb Halbleiter. Nach Rucksprache nehmen wir Verpackungsmaterial sortiert zuruck. Die Transportkosten mussen Sie tragen. Fur Verpackungsmaterial, das unsortiert an uns zuruckgeliefert wird oder fur das wir keine Rucknahmepflicht haben, mussen wir Ihnen die anfallenden Kosten in Rechnung stellen. Bausteine in lebenserhaltenden Geraten oder Systemen mussen ausdrucklich dafur zugelassen sein! Kritische Bauelemente1 des Bereichs Halbleiter der Siemens AG durfen nur mit ausdrucklicher schriftlicher Genehmigung des Bereichs Halbleiter der Siemens AG in lebenserhaltenden Geraten oder Systemen2 eingesetzt werden. 1 Ein kritisches Bauelement ist ein in einem lebenserhaltenden Gerat oder System eingesetztes Bauelement, bei dessen Ausfall berechtigter Grund zur Annahme besteht, da das lebenserhaltende Gerat oder System ausfallt bzw. dessen Sicherheit oder Wirksamkeit beeintrachtigt wird. 2 Lebenserhaltende Gerate und Systeme sind (a) zur chirurgischen Einpflanzung in den menschlichen Korper gedacht, oder (b) unterstutzen bzw. erhalten das menschliche Leben. Sollten sie ausfallen, besteht berechtigter Grund zur Annahme, da die Gesundheit des Anwenders gefahrdet werden kann. PMB 2333 Revision History: Previous Version: Page (in 06.96 Version) 10 10 10 Page (in new Version) 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 25 26 32 26 27 33 Current Version: 09.97 06.96 Subjects (major changes since last revision) Supply Voltage -> 5.0V max. Input Voltage VLO/X -> 5.0V max. Input Voltage VAI -> VAO+0.3V max. Input Voltage VAI AC Peak -> -2V min. Input Voltage VGC -> -0.3V min. / VS+0.3 max. Input Voltage VSTB -> 5.0V max. Open Collector Output Voltage VMO/X ->1.7V min. / 5.0V max. Amplifier Current (Base, Peak) IAI -> 6mA Amplifier Power dissipation PAMPtot -> 105mW Thermal Resistance RthJA -> 213K/W Thermal Resistance RthSO -> 160K/W ESD Integrity Amplifier f=0.9GHz -> OPT Amplifier f=1.8GHz -> OPT Diagram 5 - Identical Values - New Printout Update Of / Additional Application Information Correction Of Printing Mistakes PMB 2333 Revision History: Previous Version: Page (in 11.95 Version) Page (in 06.96 Version) Current Version: 06.96 11.95 Subjects (major changes since last revision) Update of RF/S-parameters becauce of cavitiy change, correction of printing mistakes, update of application circuits PMB 2333 Table of Contents 1 1.1 1.2 1.3 1.4 1.5 1.6 2 2.1 2.2 2.3 2.4 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 3.3.2 3.3.3 3.3.4 4 Page Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Functional Description, Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Operational Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Application Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Receiver Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Application hint - Mixer metrics versus mixer current . . . . . . . . . . . . . . . . . . .40 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Upconversion Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Receiver/SAW Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 System calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Semiconductor Group 4 09.97 Mixer/Amplifier PMB 2333 Version 1.2 1 1.1 * * * * * * Overview Functional Description, Benefits Bipolar IC New B6HF bipolar technology, 25GHz fT Small outline P-TSSOP 16 package Reduced external components Frequency range up to 3.0GHz Amplifier may be used as LNA or Driver LNA mode *1.7dB typ. noise figure at 1.8GHz *5mA typ. current consumption P-TSSOP-16 * Driver mode * +12dBm output at 1dB compression * 20mA current consumption * * * * * * Gilbert cell mixer with high gain 2.7 - 4.5V voltage supply -40C to +85C operational temperature range Standby function High isolation values for amplifier and mixer Good crosstalk performance Applications 1.2 * Cellular radio systems * Cordless telephone systems * WLAN-Systems Type PMB 2333 Semiconductor Group Version V1.2 5 Ordering Code Q67006-A6128 Package P-TSSOP-16 09.97 PMB 2333 1.3 Pin Configuration (top view) AREF AI GND1 GND1 MO MOX VCC LOX 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 GC AO GND1 STB MIX MI GND2 LO P-TSSOP16 Semiconductor Group 6 09.97 PMB 2333 1.4 Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pin Definitions and Functions Symbol AREF AI GND1 GND1 MO MOX VCC LOX LO GND2 MI MIX STB GND1 AO GC Function Amplifier bias supply for signal input Amplifier signal base input Amplifier ground Amplifier ground Mixer signal open collector output Mixer signal open collector output Voltage supply total circuit Mixer local oscillator signal base input, inverted Mixer local oscillator signal base input, not inverted Mixer ground Mixer signal emitter input, not inverted Mixer signal emitter input, inverted Standby mixer and bandgap Amplifier ground Amplifier signal open collector output Amplifier gain control Semiconductor Group 7 09.97 PMB 2333 1.5 Functional Block Diagram 14 GND1 12 MIX 10 GND2 13 STB 16 GC 15 AO 11 MI MO MOX Bias1 LO LOX Amplifier Bias Bias2 Mixer MIX MI 1 2 GND1 4 MOX 6 VCC 7 AREF GND1 Semiconductor Group 8 LOX 8 3 MO AI 5 9 LO 09.97 PMB 2333 1.6 MIXER Circuit Description The mixer used in this design is a general purpose up-/down conversion gilbert cell mixer. Via the pins MI/MIX the RF enters the IC. Using an external supplied local oscillator at LO/LOX a converted output signal is created at the open collector output pins MO/MOX. The open collector pins need to be connected to an external voltage supply. The RF connection to the mixer inputs can be single ended on balanced, capacitive or inductive. To improve the mixer performance external resistors at MI/MIX make it possible to adjust the mixer current. Voltage supply for the mixer has to be connected to the pin VCC and to GND2. AMPLIFIER The amplifier may be used as a low noise amplifier LNA or as a driver. At pin AI the RF signal enters the IC, at the open collector output AO, which need to be connected to supply voltage, the amplified signal is external available for further use. Matching networks at in-/and output can be used for improving the gain and the noise performance. To reduce the series feedback of the emitter line the amplifier is connected to ground via three GND1 pins. At AREF a internal supplied reference voltage is available for the DC biasing of AI. This dc output should be implemented in an input matching network. The voltage supply for the amplifier is also VCC. The dc-level at the pin GC allows to adjust the amplifier current. Lower current is recommended for using the amplifier as an LNA, high current for using it as a driver. COMMON Differential signals and symmetrical circuits are used throughout the mixer part of the IC. An internal bias driver generates supply voltage and temperature compensated reference voltages. The STB pin allows the mixer and bandgap part of the IC to be switched in a low power mode. All pins with the exception of GND1,2 and AI/AO are ESD protected. Semiconductor Group 9 09.97 PMB 2333 2 2.1 Electrical Characteristics Absolute Maximum Ratings The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Ambient temperature Tamb = -40C...+85C # Parameter Symbol Limit Values Min 1 2a 2b Supply Voltage Input Voltage Input Voltage VS VMI/MIX VLO/LOX -0.3 -0.3 0.6 Units Remarks Max 5.0 1.9 VS+0.3 5.0max. V V V V V V V VS+0.3 2.7max. V V V V V V V V V mA mA mW VPP C DC and AC Freq.>1MHz VS = 0 2c Input Voltage VAI -0.3 VAO+0.3 3.5max. 2d 2e Input Voltage (AC Peak) Input Voltage VAI VGC -2 -0.3 IAI < nA 2f Input Voltage VSTB -0.3 VS+0.3 5.0max. 3a 3b Output Voltage Open Collector Output Voltage VAREF VMO/MOX -0.3 1.7 2.0 VS+0.3 5.0max. 3c 3d 4a 4b 4c 5 6 Open Collector Output Voltage Open Collector Output Voltage Amplifier Current (Collector) Amplifier Current (Base, Peak) Amplifier Power Dissipation Differential Input Voltage Junction Temperature VAO VAO IAO IAI PAMPtot VIDIFF Tj -0.3 -0.3 3.5 7.0 30 6.0 105 2.0 125 Base open RB<50k Semiconductor Group 10 09.97 PMB 2333 Absolute Maximum Ratings The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Ambient temperature Tamb = -40C...+85C # Parameter Symbol Limit Values Min 7 8a 8b 9 Storage Temperature Thermal Resistance Thermal Resistance ESD integrity, all pins without AI,AO and GND1/2 TS RthJA RthSO VESD -500 -40 Units Remarks Max 125 213 160 500 C K/W K/W V 1) 2) 3) 1) Attention: Do not exceed the max. junction temperature 2) Junction to soldering point, simulated with FEM 3) HBM according MIL STD 883D, method 3015.7,and EOS/ESD assn. standard S5.1-1993 Semiconductor Group 11 09.97 PMB 2333 2.2 Operational Range Within the operational range the IC operates as described in the circuit description. The AC/DC characteristic limits are not guaranteed. Supply voltage VVCC = 2.7V...4.5V, Ambient temperature Tamb = -40C...85C # Parameter Symbol Limit Values Min Max 3000 3000 3000 3000 2.0 0 2.0 0 Units Remarks 1 2 3 4 5 6 7 8 AI Input Frequency MI/X Input Frequency LO/X Input Frequency IF Intermediate Frequency Standby Voltage On Standby Voltage Off Gain Control Voltage, High Gain Control Voltage, Low fAI fMI fLO MHz MHz MHz MHz V V V V Diagram 5 Diagram 5 fIF STBON STBOFF GCHigh GCLow VS 0.5 2.7 0.6 Note: Power levels refer to 50 Ohms impedance Semiconductor Group 12 09.97 PMB 2333 2.3 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V...4.5V, Ambient temperature Tamb = +25C # Parameter Symbol Limit Values Min Typ Units Test Test Conditions Circuit Max Supply Current 1a Supply current, total IC I5,6,7,15 23.6 mA STB ON, no external resistors at MI/MIX* STB ON, no external resistors at MI/MIX* STB OFF, GC=0V 1, IAO=20 mA 1, IAO=0 mA 1 1b Supply current, total IC I5,6,7,15 1.6 mA 2 Supply current, total IC I5,6,7,15 <20 A * Minimum value for external resistors at MI/MIX: R1=R2=33Ohm Semiconductor Group 13 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25 # Parameter Symbol Limit Values Min Typ Unit Test Test Conditions Circuit Max AMPLIFIER-Driver, Signal Input AI, IAO=20mA, VAO=3.3V, f=2.5GHz 3 4 5 Input impedance, vs. freq. S11 Max. input level, 1db compression PAI 0.0 10.0 dbm dbm Diagram 3a f=2.5GHz f=2.5GHz 3 1 1 Input intercept, third order IICPDAI AMPLIFIER-Driver, Signal Output AO, IAO=20mA, VAO=3.3V, f=2.5GHz 6 7 8 Output current Output freq. impedance IAO vs. S22 S21Amp +12.5 db 20.0 mA Diagram 3a f=2.5GHz 1 3 1 Power gain AMPLIFIER-Driver, Signal Input AI, IAO=0mA, VAO=3.3V, f=2.5GHz 9 10 11 Input impedance, vs. freq. S11 Max. input change level, 1db PAI 0.0 20.0 dbm dbm Diagram 3c f=2.5GHz f=2.5GHz 3 1 1 Input intercept, third order IICPAI AMPLIFIER-Driver, Signal Output AO, IAO=0mA, VAO=3.3V, f=2.5GHz 12 13 14 Output current Output freq. impedance IAO vs. S22 S21Amp < -13 db 0 mA Diagram 3c f=2.5GHz 1 3 1 Power gain All amplifier measurements have be done with Siemens RT5880 Duroid (Teflon) Boards Semiconductor Group 14 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25 # Parameter Symbol Limit Values Min Typ Unit Test Test Conditions Circuit Max AMPLIFIER-LNA, Signal Input AI, IAO=5mA, VAO=3.3V, f=1.8GHz 15 Input impedance, vs. freq. S11 Diagram 3b 16 17 18 Max.input level, 1dB compression Input intercept, third order Noise figure PAI IICPAI FAI -12.0 1.0 1.7 dBm dBm dB f=1.8GHz f=1.8GHz f=1.8GHz 3 1 1 1 AMPLIFIER-LNA, Signal Output AO, IAO=5mA, VAO=3.3V, f=1.8GHz 19 20 21 Output current Power gain IAO S21LNA 5.0 12.0 mA Diagram 3b dB f=1.8GHz 1 3 1 Output impedance vs. freq. S22 AMPLIFIER-LNA, Signal Input AI, IAO=0mA, VAO=3.3V, f=1.8GHz 22 23 23 Input impedance, vs. freq. Max. input level, 1db change Input intercept, third order S11 PAI IICPAI 0.0 20.0 dbm dbm Diagram 3c f=1.8GHz f=1.8GHz 3 1 1 AMPLIFIER-LNA, Signal Output AO, IAO=0mA, VAO=3.3V, f=1.8GHz 24 25 26 Output current Power gain IAO S21A 0 < -17 mA Diagram 3c db f=1.8GHz 1 3 1 Output impedance vs. freq. S22 All LNA measurements have be done with Siemens RT5880 Duroid (Teflon) Boards Semiconductor Group 15 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25 # Parameter Symbol Limit Values Min Typ Unit Test Test Conditions Circuit Max MIXER, Signal Input MI/MIX, Upconversion, R1,2=33Ohm 27 28 29 Input impedance vs .freq. Max. input level, 1 db compression Input intercept point ZMI PMI IICP3MI -7 6 dbm dbm Diagram 4a fMI=0.66GHz fMI=0.66GHz 4 1* 1* MIXER, Local Oscillator Input LO/LOX, Upconversion, R1,2=33Ohm 30 31 Input impedance vs freq. Input level ZLO PLO 0 dbm Diagram 4c fLO=2.0GHz 4 1* MIXER, Signal Output MO/MOX, fout = 2.66GHz, Upconversion, R1,2=33Ohm 32 Output current IMO/X 10.4 mA with ext. resistors at MI/MIX fMO=2.66GHz fMO=2.66GHz fMO=2.66GHz 1* 1* 33 34 35 Output resistance Output capacitance Power gain RMODiff CMODiff PMI 600 0.57 8 Ohm pF db MIXER, Isolation Between In-/Output, fout = 2.66GHz, Upconversion, R1,2=33Ohm 37 38 39 40 LO to MO LO to MI MO to MI MO to LO ALO-MO ALO-MI AMO-MI AMO-LO 30 35 40 45 db db db db 1* 1* 1* 1* * MI/MO Input/Output including matching network Semiconductor Group 16 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25 # Parameter Symbol Limit Values Min Typ Unit Test Test Conditions Circuit Max MIXER, Signal Input MI/MIX, Downconversion, R1,2=180Ohm 41 42 43 44 45 46 47 48 49 50 51 52 53 Blocking level, f=800kHz, IF=45MHz Pin, wanted = -20dBm Noise figure, ssb (NFssbNFdsb+3dB) IF=45MHz Input intercept point, f=800kHz, IF= 45MHz Input impedance vs .freq. ZMI Max. input level, 1 db PMI compression at MO/MOX, IF=45MHz PMI PMI IICP3MI IICP3MI IICP3MI Pin,unwan. PBL,unwan. PBL,unwan. FMI FMI FMI -15 -14 -9 0 -1 +5 -16 -16 -10 9 11 14 dBm dBm dBm dBm dBm dBm dBm dBm dBm dB dB dB Diagram 4b f=0.9GHz f=1.8GHz f=2.5GHz f=0.9GHz f=1.8GHz f=2.5GHz f=0.9GHz f=1.8GHz f=2.5GHz f=0.9GHz f=1.8GHz f=2.5GHz 4 2a 2a 2a 2a 2a 2a 2a 2a 2a * * * MIXER, Local Oscillator Input LO/LOX, Downconversion, R1,2=180Ohm 54 55 56 57 Input impedance vs freq. Input level ZLO PLO PLO PLO -3 -3 -3 dBm dBm dBm Diagram 4d f=0.9GHz f=1.8GHz f=2.5GHz 4 2a, ** 2a, ** 2a, ** * matching network used ** referenced for specified mixer performance Semiconductor Group 17 09.97 PMB 2333 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25 # Parameter Symbol Limit Values Min Typ Max Unit Test Test Conditions Circuit MIXER, Signal Output MO/MOX, Downconversion, R1,2=180Ohm 58 59 60 61 62 63 64 65 66 67 68 Power gain, IF=300MHz Power gain, IF=45MHz Output capacitance Output current Output resistance IMO+MOX RMODiff RMODiff CMODiff CMODiff PMI PMI PMI PMI PMI PMI 4.0 32 25 0.36 0.39 15 14 9 7 7 2.5 mA incl. R1,R2 2a 2b 2a 2b 2a 2a 2a 2b 2b 2b kOhm IF=45MHz kOhm IF=300MHz pF pF db db db db db db IF=45MHz IF=300MHz f=0.9GHz f=1.8GHz f=2.5GHz f=0.9GHz f=1.8GHz f=2.5GHz MIXER, Isolation Between In-/Output, 0.9GHz, Downconversion, R1,2=180Ohm 69 70 71 72 73 MI to MO LO to MO LO to MI MO to MI MO to LO AMI-MO ALO-MO ALO-MI AMO-MI AMO-LO 50 40 35 60 60 db db db db db fMI=945MHz, 2a fLO=900MHz " " " " 2a 2a 2a 2a Semiconductor Group 18 09.97 PMB 2333 2.4 Test Circuits Test Circuit 1 LO Input Toko Balun TokoBalun 1:2 u=1:2617DB-1016 CK CK 9 33 82nH MI Input C1 C2 C3 33 L1 82nH CB 8 CB L0 VCC VCC CB C1 MO Output PMB 2333 L1 C3 C2 VCC VCC Bias Tee CB AO Output Bias Tee AI Input VGC CB 16 1 DC Mixer/Driver Amplifier, Upconversion mode Test Circuit 1/MI 1/MO f IF[MHz] 660 2660 L1[nH] 8.2 2.7 C1[pF] 4.7 1.8 C2[pF] 56 1.2 C3[pF] 10 1 CK[pF] 15 X Semiconductor Group 19 09.97 PMB 2333 Test Circuit 2a LO Input Toko Balun Toko Balun 1:2 u=1:1617DB-1023 u=1:2617DB-1016 CK CK 9 8 CB VCC MI Input PMB 2333 CK Toko Balun 1:1 CK 180 MO Output CB VCC u=20:2 180 Vogt Transformer Kit, 0.05mm wire u=20:2 VCC VCC CB Bias Tee CB AO Output Bias Tee DC AI Input VGC CB 16 1 Mixer/Driver Amplifier, Downconversion mode Test Circuit 2a f IF[MHz] 45 CB[pF] 15/100 CK[pF] 15 X X X X Semiconductor Group 20 09.97 PMB 2333 Test Circuit 2b LO Input Toko Balun TokoBalun 1:2 u=1:1617DB-1023 u=1:2617DB-1016 CK CK 9 8 L0 CB VCC VCC CB C1 MO Output CK MI Input Toko Balun 1:1 CK 180 CB 180 PMB 2333 L1 C3 C2 VCC VCC Bias Tee CB AO Output Bias Tee DC AI Input VGC CB 16 1 Mixer/Driver Amplifier, Downconversion mode Test Circuit 2b f IF[MHz] 300 L0[nH] 680 L1[nH] 150 C1[pF] 2.7 C2[pF] 12 C3[pF] 1.8 CK[pF] 15p Semiconductor Group 21 09.97 PMB 2333 Test Circuit 3 Port 1 Network analyzer ZL=50Ohm Port 2 Pin x DUT Pin y S-Parameter Measurement of Amplifier S11, S12, S21, S22 The S-Parameters are tested at the indicated frequency on Duroid 5880 Teflon Boards. Via the NWA the capacitive coupling is done. The output levels at port1 and 2 for pin x and y are -30dbm. S11 and S22 have to be considered as design hints and are measured with SIEMENS testboards. Test Amp.S11, S12, S21, S22 Test frequency MHz 30 - 3000 Pin X AI Pin Y AO Semiconductor Group 22 09.97 PMB 2333 Diagram 3a S-Parameter Amplifier IAO=20mA, VCC=3.3V, f=30-3000MHz 50 3.0 GHz 100 25 2.4 GHz 3.0 GHz 1.8 GHz 2.4 GHz 25 50 250 100 0 250 10 1.8 GHz 900 MHz 900 MHz 10 s11 1k 50 900 MHz 900 MHz 1.8 GHz s21 s12 40 S21 30 20 10 1.8 GHz 2.4 GHz 0.05 3.0 GHz 0.1 100 25 2.4 GHz 0.15 0.2 S12 3.0 GHz Semiconductor Group 23 1k 250 10 1k s22 09.97 PMB 2333 Diagram3b S-Parameter Amplifier IAO=5mA, VCC=3.3V, f=30-3000MHz 50 3.0 GHz 100 25 250 100 0 250 10 25 50 1k 1.8 GHz 250 10 900 MHz 900 MHz 50 900 MHz 1.8 GHz s21 20 S21 15 10 5 900 MHz 1.8 GHz 2.4 GHz 0.1 0.15 0.2 S12 s12 2.4 GHz 0.05 3.0 GHz 100 25 3.0 GHz Semiconductor Group 24 1k 10 2.4 GHz 3.0 GHz 1k 1.8 GHz 2.4 GHz s11 s22 09.97 PMB 2333 S-Parameter Amplifier IAO=0mA, VCC=3.3V, f=30-3000MHz 50 100 25 250 100 0 250 10 25 50 3.0 GHz s22 s11 25 900 MHz 100 1.8 GHz 1.8 GHz 900 MHz 50 900 MHz s21 0.3 S21 0.2 0.1 0.1 1.8 GHz 0.2 0.3 S12 2.4 GHz 3.0 GHz Semiconductor Group 25 250 10 1k 3.0 GHz 1k 10 1k 09.97 PMB 2333 Diagram 3d Noise Circles Amplifier IAO=5mA, VCC=3.3V;f=0.9GHz 35 40 110 30 45 50 100 90 80 70 60 10 75 120 13 14 0 20 25 0 50 40 0 15 0 200 150 160 170 100 150 200 250 500 10 15 20 25 30 35 40 45 50 75 180 0 1k 5 -170 -160 0 -15 15 40 20 -1 0 10 25 30 35 40 45 50 FMIN = 1.055dB Rn = 10.17 GOPT = 16.01mS BOPT = -2.36mS OPT = 0.128 exp(j 34.4) Semiconductor Group 26 75 250 10 200 2.00 2.50 3.00 15 0 500 5 1.40 1.60 1k -5 0 -60 -70 -80 -90 -100 -110 -12 0 -1 30 15 30 250 10 500 20 10 5 1.055 1.10 1.20 1k 0 -10 -20 -30 -4 0 09.97 PMB 2333 Diagram 3e Noise Circles Amplifier IAO=5mA, VCC=3.3V;f=1.8GHz 35 40 110 30 45 50 100 90 80 70 120 60 10 0 75 13 0 20 25 0 50 40 14 15 0 200 150 160 170 100 150 200 250 500 10 15 20 25 30 35 40 45 50 75 180 0 1k 5 -170 1.60 -160 250 10 2.00 15 0 -15 40 20 -1 25 00 30 35 40 45 50 FMIN = 1.278dB Rn = 7.52 GOPT = 21.54mS BOPT = -1.59mS OPT = 0.053 exp(j 136.2) Semiconductor Group 27 75 1 200 2.50 3.00 15 0 500 5 1.40 1k -5 0 -60 -70 -80 -90 -100 -110 -12 0 -1 30 15 30 250 10 500 1k 20 10 5 1.278 1.30 0 -10 -20 -30 -4 0 09.97 PMB 2333 Test Circuit 4 Network analyzer ZL=50Ohm Pin x Port 1 DUT Port 2 Pin y S-Parameter Measurement of Mixer S11, S12, S21, S22 Test LO-Input impedance Mi-Input impedance MO-Output impedance Test Frequency [MHz] 30 - 3000 30 - 3000 30 - 3000 Pin X 8 11 5 Pin Y 9 12 6 The S-Parameters are tested at the indicated frequency and the equivalent parallel or series circuit is calculated on this base. Via the NWA the capacitive coupling is done and the open collector pins are connected to VCC. The output levels at port1 and 2 for pin x and y are -30dbm for MI and MOimpedances and -5dbm for the LO impedance.S-Parameters have to be considered as design hints and are measured with SIEMENS testboards. Semiconductor Group 28 09.97 PMB 2333 Test Circuit 4a DC Supply VS MI STB MO R P1 50 NWA P2 DUT MIX LO MOX LOX 33p 50 33p R 1:2 DC Supply 50 Mixer Input Impedance Measurement Test Circuit 4b DC Supply R MI VS STB MO 15n 1H 5,6p 5,6p 50 10p 50 10p DUT MIX MOX LO LOX 1:1 680nH 15n P2 NWA P1 5,6p R Mixer Local Oscilllator Impedance Measurement Semiconductor Group 29 09.97 PMB 2333 Test Circuit 4c R 10p 1n 100n 50 MI VS STB Internal Bias Tees P1 DUT MO NWA MOX 50 MIX LO P2 LOX 33p 33p R 1:2 Power Supply 3.3V 50 Mixer Output Impedance Measurement Semiconductor Group 30 09.97 PMB 2333 Diagram 4a Mixer MI Input Impedance ZMI, IMO/MOX = 10mA, f=30-3000MHz 50 Rdiff 1.8 GHz 3.0 GHz 3.0 GHz 900 MHz 10 Rsingle 1.8 GHz 100 25 250 900 MHz 1k 100 0 250 10 25 50 1k 250 1k Diagram 4b Mixer MI Input Impedance ZMI, IMO/MOX = 4mA, f=30-3000MHz 50 50 3.0 GHz 1.8 GHz 900 MHz 0 10 25 Rdiff 3.0 GHz 1.8 GHz 900 MHz 100 25 100 25 100 Rsingle 250 50 Semiconductor Group 31 50 100 25 250 10 1k 250 10 1k 10 1k 09.97 PMB 2333 Diagram 4c Mixer LO Input Impedance ZLO, IMO/MOX = 10mA, f=30-3000MHz 50 100 25 250 100 0 250 10 25 50 1k 3.0 GHz 900 MHz Rsingle 25 Rdiff 2.4 GHz 2.4 GHz 50 1.8 GHz 100 1.8 GHz Diagram 4d Mixer LO Input Impedance ZLO, IMO/MOX = 4mA, f=30-3000MHz 50 100 25 250 100 0 250 10 25 50 1k 900 MHz 900 MHz 3.0 GHz 3.0 GHz Rsingle 25 250 10 Rdiff 1.8 GHz 2.4 GHz 1.8 GHz 100 2.4 GHz 50 Semiconductor Group 32 1k 250 10 3.0 GHz 900 MHz 1k 1k 10 10 1k 09.97 PMB 2333 Diagram 5 30 25 gain / noise figure [dB] 20 15 10 5 0 -5 -10 -15 -20 0.5 1 1.5 VGC [V] 2 2.5 IAO noise figure gain 20 18 16 14 10 8 6 4 2 0 IAO [mA] 09.97 12 Gain, Noise Figure and IAO versus Gain Control voltage Noise Figure values without correction of attenuation ( 0.4 dB ) at input of the amplifier ->NFmin=1.7dB at VGC=1.91V, amplifier current IAO=5mA, open collector voltage VAO=3.3V ( according test circuit 2, f=1.8GHz). Semiconductor Group 33 PMB 2333 3 3.1 3.1.1 Application Data Receiver Application Shortform Data Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 2.7 V LNA and Mixer input signal fRF = 1960 MHz, PRF = -30 dBm LO signal fLO = 1735 MHz, PLO = -6 dBm IF output fIF = 225 MHz All measurements refer to SMA connectors without consideration of PCB losses Parameter Mixer section Mixer current Conversion gain Noise Figure (DSB) 3rd order input intercept point 1dB-compression point Input blocking level Port matching RF return loss LO return loss IF return loss Isolations LO to IF output ALO-IF 40 dB f = 1735 MHz |S11,RF| |S11,LO| |S11,IF| 12 10 11 dB dB dB IMixer GC NFDSB IICP3 P1dB PBL 4 8.5 6.4 +1 -8 -7 mA dB dB dBm dBm dBm f = 800 kHz, -3dB for wanted signal IMO+IMOX Symbol min. Limit values typ. max. Unit Remarks Semiconductor Group 34 09.97 PMB 2333 Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 2.7 V LNA and Mixer input signal fRF = 1960 MHz, PRF = -30 dBm LO signal fLO = 1735 MHz, PLO = -6 dBm IF output fIF = 225 MHz All measurements refer to SMA connectors without consideration of PCB losses Parameter LO to RF input Symbol min. ALO-RF Limit values typ. 43 25 35 48 4.6 12.5 1.8 max. dB dB dB dB mA dB dB assuming a PCB loss of 0.25 dB at AI, typical noise figure at matching circuit results to 1.55 dB fLO = 1735 MHz fimage,min= 1480 MHz fsignal,max= 1990 MHz f = 1960 MHz Unit Remarks RF input to LO LNA section LNA current Gain Noise Figure ARF-LO ILNA G NF 3rd order input intercept point 1dB-compression point AI return loss AO return loss IICP3 P1dB |S11,AI| |S11,AO| 0 -10 11 14 dBm dBm dB dB Semiconductor Group 35 09.97 PMB 2333 3.1.2 Measurement results Mixer section : 12 11 10 9 [dB] 8 7 6 DSB Noise Figure 5 4 1200 Conversion Gain 1400 1600 1800 2000 RF frequency [MHz] 2200 2400 Figure 1: Conversion Gain an Noise Figure versus Frequency 10 Conversion Gain 9 8 [dB] 7 6 DSB Noise Figure 5 4 -20 -18 -16 -14 -12 -10 -8 -6 LO power level [dBm] -4 -2 0 Figure 2: Conversion Gain and Noise Figure versus LO power Semiconductor Group 36 09.97 PMB 2333 12 Conversion Gain 10 8 DSB Noise Figure [dB] 6 4 2 0 200 205 210 215 220 225 230 frequency [MHz] 235 240 245 250 Figure 3: Conversion Gain and Noise Figure versus IF frequency 0 -10 -20 [dB] -30 -40 -50 -60 1000 fully balanced LO unbalanced MI unbalanced LO+MI unbalanced 1500 2000 frequency [MHz] 2500 3000 Figure 4: Isolation LO to IF In unbalanced case the matching network is replaced by a 10pF series capacitor to one port pin. The other port pin is tied to ground via a second 10pF capacitor. This means no power matching is done. Semiconductor Group 37 09.97 PMB 2333 0 -5 -10 -15 -20 [dB] -25 -30 -35 -40 -45 -50 1000 1500 2000 frequency [MHz] LO+MI unbalanced fully balanced MI unbalanced LO unbalanced 2500 3000 Figure 5: Isolation LO to RF 0 -10 -20 [dB] -30 -40 -50 -60 -70 1000 LO+MI unbalanced fully balanced MI unbalanced LO unbalanced 1500 2000 frequency [MHz] 2500 3000 Figure 6: Isolation RF to LO Semiconductor Group 38 09.97 PMB 2333 LNA section 16 15 14 13 Gain [dB] 12 11 10 9 8 7 6 1000 1500 2000 frequency [MHz] 2500 Noise Figure Gain 3 2.8 2.6 Noise Figure [dB] 2.4 2.2 2 1.8 1.6 1.4 1.2 1 3000 Figure 7: Gain and noise figure versus frequency 0 -5 |S11| -10 [dB] -15 -20 |S12| -25 -30 1000 |S22| 1500 2000 frequency [MHz] 2500 3000 Figure 8: Reverse isolation and return loss versus frequency Semiconductor Group 39 09.97 PMB 2333 3.1.3 Application hint - Mixer metrics versus mixer current Mixer current may be increased to obtain a higher Input 3rd Order Intercept (IIP3), higher 1 dB Compression Point (P1dB), and increased Conversion Gain (G). In a typical application, in order to increase mixer current from the minimum level of 800A, R5 and R6 are added as shown in the circuit diagram at the end of this section. These external resistors are placed in parallel to existing bias resistors internal to the PMB2333, thereby reducing the aggregate resistance in the emitters and increasing current. As current is increased by further reduction of the value of R5 and R6, the mixer inputs MI and MIX may begin to suffer `RF Loading' unless RF chokes are used between the MI/MIX pins and R5 / R6 (compare test circuit 1). For the data presented in this section, mixer current was varied in a different manner. To eliminate the effects of RF impedance variation (due to `RF Loading') at MI / MIX caused by changing the values of R5 and R6 for different mixer currents, these resistors were set equal to 1k. Mixer current was then varied by adjusting the power supply voltage Vx. Note that Vx may take on positive values with respect to ground for low (e.g. 1mA) mixer currents, or negative values for higher currents. MI PMB 2333 mixer MIX 1 pF 3.9 nH 1 k 1 k 2.2 pF + Vx - 10 pF Figure 9: Modified mixer input circuitry Semiconductor Group 40 09.97 PMB 2333 Note that the mixer input impedance seen at MI / MIX is a strong function of mixer current. The mixer input balanced-to-unbalanced transformer/matching circuitry was originally tuned for a current of 4mA, and was not re-optimized for each of the other current levels. Despite this limitation, the return loss at the 50 port is better than 10dB over the entire 1 to 10 mA current range. The mixer output (MO / MOX) and local oscillator (LO / LOX) ports exhibit negligible change in impedance over this same current range. Measurement conditions: TA = 25 C Vcc = 2.7 V and 4.5V fRF = 1960 MHz fLO = 1735 MHz, PLO = -6 dBm The Effect of Power Supply Voltage on Mixer Metrics In seeking to improve Mixer Input Third-Order Intercept and 1dB Compression Point, it is important to understand the constraints on these parameters imposed by power supply voltage. Refer to Figure 10. Receiver `Blocking' is predominantly influenced by the Mixer's 1 dB Compression Point (P1dB) and not the Input 3rd Order Intercept Point (IIP3). For a supply voltage of 4.5V, mixer P1dB (referred to the input of the application circuitry) increases with additional mixer current, and begins to flatten out above 8mA. When supply voltage is decreased to 2.7V, mixer P1dB starts flattening out at around 5mA. Note how, at the 2.7V supply voltage, IIP3 continues to increase at currents over 6mA while P1dB flattens out. For a given conversion gain G, while operating at 2.7 Volts, considering only the mixer's Input 3rd Order Intercept (IIP3) might lead one to falsely conclude that increasing current beyond 6mA improves receiver blocking. If, however, conversion gain is decreased, it may be possible to improve the receiver's blocking level with additional mixer current. As shown in Figure 10, the 1 dB compression level, referred to the input, is limited by either current or the available voltage swing at the mixer output. The transition between these two regions takes place at 4mA for the specified conversion gain and supply voltage. Figure 11 gives the DSB mixer noise figure versus the mixer current. Semiconductor Group 41 09.97 PMB 2333 15 10 5 [dB] / 0 [dBm] -5 -10 -15 0 2 4 6 8 Mixer Current [mA] 10 12 IICP3 P1dB / 2.7V G P1dB / 4.5V Figure 10: Mixer Input Intercept Point (IIP3), 1 dB Compression Point (P1dB) Referred to Input, Gain (G). 10 DSB Noise Figure [dB] 9 8 7 6 5 0 2 4 6 8 mixer current [mA] 10 12 Figure 11: Mixer DSB Noise Figure Semiconductor Group 42 09.97 PMB 2333 3.1.4 Circuit diagram and PCB layout Figure 12: Circuit diagram Semiconductor Group 43 09.97 PMB 2333 PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm Figure 13: PCB top side Semiconductor Group 44 09.97 PMB 2333 Figure 14: PCB bottom side Semiconductor Group 45 09.97 PMB 2333 Figure 15: PCB component placement Semiconductor Group 46 09.97 PMB 2333 List of Components Item 1 2 3 4 5 6 7 Quantity Reference 3 C9, C17, C23 1 C6 1 C8 1 C16 1 C7 1 C22 10 C3, C5, C10, C11, C12, C13, C14, C15, C18, C19 1 C2 1 C4 1 C1 1 C20 1 C21 1 3 2 1 1 1 1 1 1 1 1 5 R1 R3, R5, R6 R4, R7 L6 L4 L5 L2 L1 L3 IC1 Value 1.0 pF 1.5 pF 1.8 pF 2.2 pF 2.7 pF 4.7 pF 10 pF Part SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 12 pF 33 pF 680 pF 1.0 nF 1 F 0 180 1.0 k 3.3 nH 3.9 nH 6.8 nH 22 nH 82 nH 100 nH PMB 2333 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/A SMD/0603 SMD/0603 SMD/0603 SMD/0805 SMD/0805 SMD/0805 SMD/0805 SMD/0805 SMD/0805 Siemens Tantalum Murata LQP21A or LQP11A Murata LQP21A or LQP11A Murata LQP21A or LQP11A Coilcraft 0805 Coilcraft 0805 Coilcraft 0805 J1 connector X1, X2, X3, SMA X4, X5 connector Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2 Semiconductor Group 47 09.97 PMB 2333 3.2 3.2.1 Upconversion Application Shortform Data Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 2.7 V Mixer input signal fIF = 190 MHz, PIF = -30 dBm LO signal fLO = 1717 MHz, PLO = -6 dBm Mixer output and driver amplifier input signal fRF = 1907 MHz Parameter Mixer section Mixer current Conversion gain 3rd order input intercept point 1dB-compression point Port matching RF return loss LO return loss IF return loss Isolations RF to LO input LO to RF output Driver section Driver current Gain 3rd order input intercept point 1dB-compression point IAO G IICP3 P1dB 11.0 13.1 +4.5 -6 mA dB dBm dBm 17mA @ 3.3V ARF-LO ALO-RF 38 30 dB dB |S11,RF| |S11,LO| |S11,IF| 10 18 20 dB dB dB IMixer GC IICP3 P1dB 9.5 6 +3.5 -7 mA dB dBm dBm Symbol min. Limit values typ. max. Unit Remarks Semiconductor Group 48 09.97 PMB 2333 Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 2.7 V Mixer input signal fIF = 190 MHz, PIF = -30 dBm LO signal fLO = 1717 MHz, PLO = -6 dBm Mixer output and driver amplifier input signal fRF = 1907 MHz Parameter AI return loss AO return loss 3.2.2 Symbol min. |S11,AI| |S11,AO| Limit values typ. 14 12 max. dB dB Unit Remarks Measurement results 7 6 5 gain [dB] 4 3 2 1 0 1800 1850 1900 frequency [MHz] 1950 2000 Figure 16: Mixer conversion gain versus frequency Semiconductor Group 49 09.97 PMB 2333 20 15 10 5 0 [dB] -5 -10 -15 -20 -25 -30 1000 1500 2000 frequency [MHz] 2500 3000 |S11| |S12| |S22| |S21| Figure 17: Driver amplifier gain, reverse isolation, return loss versus frequency 0 -10 -20 [dB] LO to RF -30 -40 -50 -60 1000 RF to LO 1500 2000 frequency [MHz] 2500 3000 Figure 18: Mixer isolations versus frequency Semiconductor Group 50 09.97 PMB 2333 3.2.3 Circuit diagram and PCB layout Figure 19: Circuit diagram Semiconductor Group 51 09.97 PMB 2333 PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm Figure 20: PCB top side Semiconductor Group 52 09.97 PMB 2333 Figure 21: PCB bottom side Semiconductor Group 53 09.97 PMB 2333 Figure 22: Component placement top side Semiconductor Group 54 09.97 PMB 2333 Figure 23: Component placement bottom side Semiconductor Group 55 09.97 PMB 2333 Upconversion Application - List of Components Item 1 2 3 4 5 6 7 Quantity 1 1 1 1 1 2 7 Reference C9 C6 C8 C3 C7 C2, C4 C1, C5, C11, C12, C13, C14, C15 C17 C16 C18, C19, C20 C21 J3, J4 R1 R3 R5, R6 R4, R7 L1, L6 L4, L5 L3 IC1 Value 1.0 pF 1.5 pF 1.8 pF 2.2 pF 2.7 pF 3.3 pF 10 pF Part SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 1 3 1 2 1 1 2 2 2 2 1 1 1 5 27 pF 68 pF 1.0 nF 1.0 F 0 10 27 33 1 k 3.3 nH 22 nH 33 nH PMB 2333 SMD/0603 SMD/0603 SMD/0603 SMD/A SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0805 SMD/0805 Siemens Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2 Murata LQP11A Coilcraft 0805 Coilcraft 0805 Tantalum J1 connector X1, X2, X3, SMA X4, X5 connector Semiconductor Group 56 09.97 PMB 2333 3.3 3.3.1 Receiver/SAW Application Shortform Data Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 3.6 V LNA and Mixer input signal fRF = 890 MHz, PRF = -40 dBm LO signal fLO = 972 MHz, PLO = -6 dBm IF output fIF = 82 MHz All measurements refer to SMA connectors without consideration of PCB losses The figures in the mixer section are calculated from a measurement SAW filter + mixer assuming an insertion loss of 3.1dB for the filter at measurement frequency (890MHz). Parameter Mixer section Mixer current Conversion gain Noise Figure (SSB) 3rd order input intercept point input 1dB-compression point LNA section LNA current Gain Noise Figure 3rd order input intercept point input 1dB-compression point AI return loss AO return loss ILNA GLNA NF IICP3 P1dB |S11, AI| |S11, AO| 17 20 1.75 0 -11 14 15 mA dB dB dBm dBm dB dB IMixer GC NFSSB IICP3 P1dB 10 4.5 12 +6.5 -3 mA dB dB dBm dBm IMO+IMOX Symbol typ. Value Unit Remarks Semiconductor Group 57 09.97 PMB 2333 Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 3.6 V LNA and Mixer input signal fRF = 890 MHz, PRF = -40 dBm LO signal fLO = 972 MHz, PLO = -6 dBm IF output fIF = 82 MHz All measurements refer to SMA connectors without consideration of PCB losses The figures in the mixer section are calculated from a measurement SAW filter + mixer assuming an insertion loss of 3.1dB for the filter at measurement frequency (890MHz). Parameter Symbol typ. Value Unit Remarks Cascade figures LNA, resistive 3.1 dB pad (see schematic), SAW filter, mixer Cascade Gain Cascade Noise Figure (SSB) 3rd order input intercept point input 1dB-compression point G NF IICP3 P1dB 18 3.35 -8 -17 dB dB dBm dBm Semiconductor Group 58 09.97 PMB 2333 3.3.2 System calculations Due to the use of a SAW filter for mixer input matching and balancing an isolated measurement of the mixer figures is not possible. The following system calculations have valid entries only for the Gain, IP3, and Noise Figure. The input values are either from extra measurements (e.g. SAW filter insertion loss) or adjusted to give a cascade figure that can be measured (e.g. filter+mixer IP3). All non-fat typeface figures have no meaning. LNA measurement Hewlett-Packard NoiseCalc +---+ +---+ -| 1 +---| 2 ++---+ +---+ Noise Figure (dB) 0.10 1.65 Gain (dB) -0.10 20.00 IP3 (dBm) 100.00 20.00 System Temp. (C) 25.0 Input Power (dBm) -30.0 Pout (dBm) -30.1 -10.1 Cascade NF (dB) 1.75 Noise Temperature (K) 143.9 Signal-to-Noise Ratio (dB) 82.2 Spur Free Dynamic Range (dB) 74.9 Nominal Detectable Sig (dBm) -112.2 AppCAD Reference Temperature (C) Noise Bandwidth (MHz) Cascade Gain (dB) Input Intercept Point (dBm) Output Intercept Point (dBm) IM3 Output Level (dBm) 25.0 1.00000 19.90 0.1 20.0 -70.3 1) 2) PCB loss PMB 2333 LNA Semiconductor Group 59 09.97 PMB 2333 SAW filter and Mixer Hewlett-Packard NoiseCalc +---+ +---+ -| 1 +---| 2 ++---+ +---+ Noise Figure (dB) 3.10 12.00 Gain (dB) -3.10 4.50 IP3 (dBm) 100.00 11.00 System Temp. (C) 25.0 Input Power (dBm) -30.0 Pout (dBm) -33.1 -28.6 Cascade NF (dB) 15.10 Noise Temperature (K) 9094.2 Signal-to-Noise Ratio (dB) 68.9 Spur Free Dynamic Range (dB) 72.3 Nominal Detectable Sig (dBm) -98.9 AppCAD Reference Temperature (C) Noise Bandwidth (MHz) Cascade Gain (dB) Input Intercept Point (dBm) Output Intercept Point (dBm) IM3 Output Level (dBm) 25.0 1.00000 1.40 9.6 11.0 -107.8 1) 2) SAW filter S+M B4672 PMB 2333 Mixer Overall figures Hewlett-Packard NoiseCalc AppCAD +---+ +---+ +---+ +---+ +---+ -| 1 +---| 2 +---| 3 +---| 4 +---| 5 ++---+ +---+ +---+ +---+ +---+ Noise Figure (dB) 0.10 1.65 3.10 3.10 12.00 Gain (dB) -0.10 20.00 -3.10 -3.10 4.50 IP3 (dBm) 200.00 20.00 200.00 40.00 11.00 System Temp. (C) 25.0 Reference Temperature (C) 25.0 Input Power (dBm) -30.0 Noise Bandwidth (MHz) 1.00000 Pout (dBm) -30.1 -10.1 -13.2 -16.3 -11.8 Cascade NF (dB) 3.35 Cascade Gain (dB) 18.20 Noise Temperature (K) 337.0 Input Intercept Point (dBm) -7.9 Signal-to-Noise Ratio (dB) 80.7 Output Intercept Point (dBm) 10.3 Spur Free Dynamic Range (dB) 68.5 IM3 Output Level (dBm) -55.9 Nominal Detectable Sig (dBm) -110.6 1) 2) 3) 4) 5) PCB loss PMB 2333 LNA Resistive pad, 3.1dB attenuation SAW filter S+M B4672 PMB 2333 Mixer Semiconductor Group 60 09.97 PMB 2333 3.3.3 Measurement results Cascaded figure measurements 20 15 10 5 gain [dB] 0 -5 -10 -15 -20 -25 800 850 image response 900 frequency [MHz] 950 gain NF 9 8 7 6 5 4 3 2 1 0 1000 noise figure [dB] SSB noise figure [dB] Figure 24: Cascade gain, SSB noise figure versus frequency 20 18 16 conversion gain [dB] 14 12 10 8 6 4 2 0 -30 -25 -20 -15 -10 LO power level [dBm] -5 0 5 NF gain 10 9 8 7 6 5 4 3 2 1 0 Figure 25: Cascade gain, SSB noise figure versus LO power Semiconductor Group 61 09.97 PMB 2333 0 -5 |S11, AI| -10 -15 -20 -25 0 500 1000 frequency [MHz] 1500 2000 Figure 26: AI input return loss versus frequency Semiconductor Group 62 09.97 PMB 2333 3.3.4 Circuit diagram and PCB layout Figure 27: Circuit diagram Semiconductor Group 63 09.97 PMB 2333 PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm Figure 28: PCB top side Semiconductor Group 64 09.97 PMB 2333 Figure 29: PCB bottom side Semiconductor Group 65 09.97 PMB 2333 : Figure 30: PCB component placement top Semiconductor Group 66 09.97 PMB 2333 Figure 31: PCB component placement bottom Semiconductor Group 67 09.97 PMB 2333 Receiver/SAW Application - List of Components Item 1 2 3 4 5 6 7 Quantity 1 2 2 2 1 2 8 Reference C9 C8, C18 C6, C7 C2, C3 C4 C16, C17 C5, C10, C12, C14, C15, C19, C24, C25 C11, C20 C1 C21 J2 R1 R5, R6 R3 R4, R7 L1 L4 L6 L5 L3, L7 L2, L8, L9 IC1 FIL1 Value 1.8 pF 4.7 pF 5.6 pF 15 pF 18 pF 27 pF 33 pF Part SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2 1 1 1 1 2 1 2 1 1 1 1 2 3 1 1 1 5 1 nF 3.3 nF 1 F 0 27 33 56 1.0 k 3.3 nH 4.7 nH 8.2 nH 33 nH 68 nH 100 nH PMB 2333 B4672 SMD/0603 SMD/0603 SMD/A SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0805 SMD/0805 Siemens S+M Tantalum Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH J1 connector X1, X2, X3, SMA X4, X5 connector Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2 Semiconductor Group 68 09.97 PMB 2333 4 Package Outlines P-TSSOP-16 (Plastic Package) Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device Semiconductor Group 69 Dimensions in mm 09.97 |
Price & Availability of PMB2333
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |