![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.fairchildsemi.com KA3017 Spindle + 4-CH Motor Driver Features * * * * * * * * * * * * Built-in Power Save Circuit Built-in Current Limit Circuit Built-in Thermal Shutdown Circuit (TSD) Built-in Hall Bias Built-in FG Signal Output Circuit Built-in Rotational Direction Detecting Circuit Built-in Protection Circuit For Reverse Rotation Built-in Short Brake Circuit Built-in Normal OP-AMP Built-in 4-CH Balanced Transformerless (BTL) Driver Built-in BTL MUTE Circuit (CH1-2, CH3 and CH4) Corresponds to 3.3V DSP Description The KA3017 is a monolithic integrated circuit suitable for a 4-CH motor driver which drives the tracking actuator, focus actuator, sled motor, loading motor and 3-phase BLDC spindle motor of the MDP/CAR-MD/CAR-NAVIGATION system. 48-QFPH-1414 Target Application * * * * Mini Disk Player Digital Video Disk Player Car Mini Disk Player Car Navigation System Ordering Information Device KA3017 Package 48-QFPH-1414 Operating Temp. -35C ~ +85C Rev. 1.0.3 (c)2002 Fairchild Semiconductor Corporation KA3017 Pin Assignments BTLSNGD MUTE12 MUTE3 38 FIN (GND) 48 47 46 45 44 43 42 41 40 39 37 VH MUTE4 AVM4 BIAS H3 + H2 + H1 + H3 - H2 - H1 - 1 36 DO4 + DO4 - AVM3 FG ECR 2 3 35 34 EC 4 33 DO3 + DO3 - BTLPGND2 (GND) FIN VCC2 PC1 5 32 31 6 (GND) FIN KA3017 7 30 SIGGND BTLPGND1 VM CS1 8 9 29 28 DO2 + DO2 - DO1 + DO1 - DI1 SS 10 11 27 DIR SB 26 25 12 13 PWRGND 14 A3 15 A2 16 A1 17 OPIN+ 18 OPIN- (GND) FIN 19 OPOUT 20 VCC1 21 AVM12 22 DI4 23 DI3 24 DI2 2 KA3017 Pin Definitions Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Pin Name VH FG ECR EC VCC2 PC1 SIGGND VM CS1 S/S DIR SB PWRGND A3 A2 A1 OPIN+ OPINOPOUT VCC1 AVM12 DI4 DI3 DI2 DI1 DO1DO1+ DO2DO2+ BTLPGND1 BTLPGND2 DO3DO3+ I/O I O I I I I O I O O O I I O I I I I O O O O O O Hall Bias FG Signal Output Torque Control Reference Torque Control Signal Supply Voltage Phase Compensation Capacitor Signal Ground Motor Supply Voltage Current Sensor Start/Stop 3-Phase Rotational Direction Output Short Brake Power Ground 3-Phase Output 3 3-Phase Output 2 3-Phase Output 1 OP-AMP Input (+) OP-AMP Input (-) OP-AMP Output Supply Voltage BTL CH-1, 2 Motor Supply Voltage BTL Drive Input 4 BTL Drive Input 3 BTL Drive Input 2 BTL Drive Input 1 BTL Drive 1 Output (-) BTL Drive 1 Output (+) BTL Drive 2 Output (-) BTL Drive 2 Output (+) BTL Power Ground 1 BTL Power Ground 2 BTL Drive 3 Output (-) BTL Drive 3 Output (+) Pin Function Description 3 KA3017 Pin Definitions (Continued) Pin Number 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Pin Name AVM3 DO4DO4+ MUTE4 MUTE3 MUTE12 AVM4 BIAS BTLSGND H1H1+ H2H2+ H3H3+ I/O O O I I I I I I I I I Pin Function Descrition BTL CH3 Motor Supply Voltage BTL Drive 4 Output (-) BTL Drive 4 Output (+) BTL Drive Mute CH4 BTL Drive Mute CH3 BTL Drive Mute CH1, 2 BTL CH4 Motor Supply Voltage BTL Bias Voltage BTL Drive Signal Ground Hall1(-) Input Hall1(+) Input Hall2(-) Input Hall2(+) Input Hall3(-) Input Hall3(+) Input 4 KA3017 Internal Block Diagram SIGGND VCC2 VM EC 12 11 10 9 8 7 6 5 4 +- 3 2 Short vrake PWRGND 13 VH 1 FG SB SS FIN (GND) ECR CS1 PC1 DIR Power Save A3 14 Absolute Values Hall bias 48 H3+ A2 15 +- FG Comparator 47 H3- TSD 46 H2+ A1 16 Direction Detector Detector 45 H2- Lower Distributor OPIN + 17 Direction select Hall amp matrix 44 H1+ OPIN - 18 Upper Distributor 43 H1- FIN (GND) - + - + OPOUT 19 42 BTLSGND VCC1 20 + AVM12 21 + - - + - + - + - 41 BIAS 10k 10k 10k 10k 40 AVM4 + - + - + - 39 MUTE12 x2 MUTE MUTE MUTE DI4 22 x2 x2 x2 x2 x2 x2 x2 DI3 23 38 MUTE3 2P 2P 2P 2P 2P 2P 2P 2P DI2 24 25 26 27 28 29 30 31 32 33 34 35 36 37 MUTE4 DI1 BTLPGND1 BTLPGND2 DO1 + DO2 + AVM3 DO3 + FIN (GND) DO3 - DO4 + DO1 - DO2 - DO4 - FIN (GND) 2P 5 KA3017 Equivalent Circuits Hall Bias FG Signal Output 10k 1 5 50 2 50k Torque Control Reference & Signal Phase Compensation Capacitor 2k 6 3 4 50 1k 2k Current Detector Start/Stop 2.7k 9 10 50 50k 30k 120 6 KA3017 Equivalent Circuits (Continued) 3-Phase Rotational Direction Output Short Brake 25k 50 11 50 12 80k 1k 3-Phase Output OP-AMP Input 7k 60k 14 15 16 17 50 7k 10k 7k 18 50 7k OP-AMP Ouput BTL Drive Input 22 50 19 50 23 24 25 50 100 7 KA3017 Equivalent Circuits (Continued) BTL Drive Output BTL Drive Mute 26 27 28 10k 29 32 33 35 20k 36 37 38 39 30k 50 50k BTL Bias Voltage Hall Input 43 45 41 50 200 47 50 1k 1k 50 44 46 48 8 KA3017 Absolute Maximum Ratings ( Ta=25C) Parameter Supply Voltage (BTL Signal) Supply Voltage (Spindle Signal) Supply Voltage (Motor) Supply Voltage (BTL Motor) Power Dissipation Operating Temperature Range Storge Temperature Range Maximum Output Current (Spindle Part) Maximum Output Current (BTL Part) Symbol VCC1max VCC2max VMmax VMBTLmax Pd Topr Tstg IOMAXS IOMAXB Value 15 7 15 15 3.0note -35 ~ +85 -55 ~ +150 1.3 1 Unit V V V V W C C A A Note: 1. When mounted on 70mm x 70mm x 1.6mm PCB (Phenolic resin material) 2. Power dissipation is reduced 24mW/C for using above Ta=25C 3. Do not exceed Pd and SOA (Safe Operating Area). Pd [mW] 3,000 2,000 1,000 0 0 25 50 75 100 125 150 175 Ambient Temperature, Ta [C] Recommended Operating Conditions ( Ta=25C) Parameter Operating Supply Voltage (BTL Signal) Operating Supply Voltage (Spindle Signal) Operating Supply Voltage ( Spindle Motor) Operating Supply Voltage (BTL Motor) Symbol VCC1 VCC2 VM VMBTL Min. 4.5 4.5 4.5 4.5 Typ. Max. 13.2 5.5 13.2 VCC1 Unit V V V V 9 KA3017 Electrical Characteristics (Ta=25C, VCC2=5V, VM=12V) Parameter Circuit Current 1 Circuit Current 2 START/STOP On Voltage Range Off Voltage Range HALL BIAS Hall Bias Voltage HALL AMP Hall Bias Current In-phase in Voltage Range Minimum in Level In Voltage Range Offset Voltage (-) In Current In/Output Gain FG FG Output Voltage (H) FG Output Voltage (L) Input Voltage Rangenote OUTPUT BLOCK Saturation Voltage (upper TR) Saturation Voltage (lower TR) Torque Limit Current DIRECTION DETECTOR Dir Output Voltage (H) Dir Output Voltage (L) SHORT BRAKE On Voltage Range Off Voltage Range VSBON VSBOFF 2.5 0 VCC 0.5 V V VDIRH VDIRL IFG = -10uA IFG = 10uA 3.0 VCC 0.5 V V VOH VOL ITL IO = -300mA IO = 300mA RCS = 0.5 560 0.9 0.2 700 1.6 0.6 840 V V mA VFGH VFHL VFGR IFG = -10uA IFG = 10uA Hn+, Hn- input D-range 3.0 1.5 VCC 0.5 4.0 V V V note note Symbol ICC 1 ICC2 VPSON VPSOFF VHB IHA VHAR VINH EC ECOFFECOFF+ ECIN GEC Condition Power Save = 0V Power Save = 5V L-H Circuit On H-L Circuit Off IHB = 20mA - Min. 2.5 1.5 60 0.5 Typ. 0 8.0 1.2 1 -50 50 -1 0.51 Max. 0.1 0.5 1.8 5 4.0 3.3 -20 80 0.61 Unit mA mA V V V uA V mVpp V mV mV uA A/V TORQUE CONTROL ECR = 2.5V ECR = 2.5V EC = ECR = 2.5V ECR = 2.5V, RCS = 0.5 -80 20 -5 0.41 Offset Voltage (+) Note: Guranteed field. (No EDS / Final test) 10 KA3017 Electrical Characteristics (Continued) BTL Drive Part (Ta=25C, VCC1=12V, VMBTL=12V, RL=24) Parameter Quiescent Circuit Current Output Offset Voltage Maximum Output Amplitude Voltage Voltage Gain Ripple Rejection Rationote Slew Rate note Symbol ICC VOO VOM GVC RR SR VMOFFCH VMONCH VOF IB1 VOH1 VOL1 ISINK ISOU1 GVO1 RR1 SR1 CMRR1 Gainnote note Condition VIN=0.1Vrms, 1kHz VIN=0.1Vrms, 120kHz 120Hz, 2Vpp Pin37, 38, 39 = Variation Pin37, 38, 39 = Variation f=1kHz, VIN= -75dB f=120Hz, VIN= -20dB f=120Hz, 2Vp-p f=1kHz, VIN= -20dB Min. -30 9.5 10.5 2.5 -10 11 10 10 - Typ. 9 10.5 12.0 60 1.0 20 20 75 65 1 80 Max. 15 30 13.5 0.5 +10 300 0.1 - Unit mA mV V dB dB V/us V V mV nA V V mA mA dB dB V/us dB CH Mute Off Voltage CH Mute On Voltage NORMAL OP- AMP Input Offset Voltage Input Bias Current High Level Output Voltage Low Level Output Voltage Output Sink Current Output Source Current Open Loop Voltage Slew Rate note Ripple Rejection Ratio Common Mode Rejection Rationote Note: Guranteed field. (No EDS / Final test) 11 KA3017 Calculation of Gain & Torque Limit Current VM IO VM RS Current / Voltage Convertor - Vin EC ECR + - Gm Absolute Values + + + + Vmax - VM Max. output current limiting H1 Driver R1 - - VS Output Current sense + CS1 (Pin 9) Negative Feedback loop U IO V W Power Transistors Commutation Distributor H2 H3 0.255 is made from GM times R1 and is a fixed value within IC. 0.255 Gain = -------------RS Vmax (see above block diagram) is set to 350mV. 350 [ mV ] --------------Itl [ mA ] = Vmax = ----------------------RS RS 12 KA3017 Application Information 1. Mute Function 1) Mute Control Voltage Condition When using the mute function, the applied control voltage condition is as follows. Mute On Voltage Mute Off Voltage 2.5[V] Above OPEN or 0.5[V] Below Mute Function Operation Normal Operation 2) Individual channel Mute Function These pins are used for individual channel mute operation. - When the mute pins (pin 37, 38 and 39) are OPEN or the voltages at the mute pins are below 0.5[V], the mute circuit is disabled and BTL output circuits operate normally. - When the mute pins (pin 37, 38 and 39) are above 2.5[V], the mute circuits are activated so that the BTL output circuit will be muted. - If the junction temperature rises above 175C, then the thermal shutdown (TSD) circuit is activated and all the output circuits (4-CH BTL Drivers and 3-phase BLDC Driver) are muted. 2. 4-CH Balanced Transformerless (Btl) Driver VCC Q1 DRIVE AMP X2 Q3 27 29 33 36 M 26 28 32 35 Q2 DRIVE AMP X2 Q4 GND 41 Vbias Vin Rextern 22 23 24 25 10k + AMP1 - LEVEL SHIFT - The voltage, Vbias, is the reference voltage given by the external bias voltage of pin 41. - The input signals, Vin, through the pins (pin 22, 23, 24 and 25) are amplified 10K/Rextern times and then fed to the level shift. - The level shift produces the current due to the difference between the input signal (Vin) and the arbitrary reference voltage (Vbias). The current produced as + I and - I are fed into the drive buffers. - The drive buffer operates the power TR of the output stage according to the state of the input signal(Vin). - The output stage is the BTL driver, and the motor (or actuator) rotates in forward direction, when TR Q1 and TR Q4 are on. On the other hand, if TR Q2 and TR Q3 are on, the motor (or actuator) rotates in reverse direction. - When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is below the Vbias, then the motor (actuator) moves in forward direction. 13 KA3017 - When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is above the Vbias, then the motor (actuator) moves in reverse direction. -To change the gain, modify the external resistor's value (Rextern) 3. Torque & Output Current Control Torque & Output Current Control VM VM RNF + Torque sense amp VAMP EC + - + - TSD ECR Current sense amp - VRNF IO Driver M Gain Controller - By amplifying the voltage difference between EC and ECR from the Servo IC, the torque sense AMP produces the input voltage (VAMP) for the current sense AMP. - The current sense AMP produces the input for the Gain controller to allow the output current (IO) of the driver to be controlled by the input voltage (VAMP), where the output current (IO) is detected by the sense resistor (RNF) and is converted into VRNF. - In the end, the signals of the Servo IC control the velocity of the motor by controlling the output current (IO) of the driver. - When the junction temperature rises up to 175C, the output drive circuit shuts down. - The range of the torque control input voltage is as shown below. VRNF [V] Reverse Forward Rotation Ec < ECR Forward rotation Stop after detecting reverse rotation Ecoff- Ecoff+ Ec > ECR 3 mV 0 ECR-EC[V] The input range (EC) of the Torque Sense AMP is 0.5V ~ 3.3V 14 KA3017 4. Power Save Function Bias block VCC 100k Start Stop 12K 10 30K Q1 - The power save circuit is activated by operating TR Q1. - When the SS (Start/Stop) pin 10 is high (VCC), the TR Q1 is turned on and the bias circuit is enabled. On the other hand, when the SS (Start/Stop) pin 10 is Open or Low (GND), the TR Q1 is turned off and the bias circuit is disabled. - The power save operation controlled by SS (pin 10) input conditions is as follows; Pin#10 High Open/Low KA3017 Start Stop 5. Short Brake Function VM Drive logic VCC OFF MOTOR 14 ON OFF 80K 12 1K Q1 ON 15 16 When the pick-up mechanism moves from the inner to the outer spindle of the MD(Mini Disk), the brake function of the reverse voltage is commonly employed to rate the rotational velocity of the spindle motor.However, if the spindle motor rotates rapidly, the brake function of the reverse voltage may produce too much heat at the drive IC. To remove these shortcomings and to enhance efficiency, the short brake function is added to KA3017. When the short brake function is active, all upper Power transistors are turned off and the lower Power transistors turned on, so as to reduce the rotational velocity of the motor. The short brake operation controlled by SB (pin 12), and the input conditions are as follows. 6. Thermal Shutdown (Tsd) Function Pin#12 HIGH LOW SHORT BRAKE ON OFF When the junction temperature rises up to 175C, the output drive circuit shuts down, when the junction temperature falls off to 160C, the output drive circuit operates normally. It has the temperature hysteresis of about 15C. 15 KA3017 7. Rotating Direction Detecting Function VCC H2+ H2- + - D R 11 Q DIR Rotation EC < ECR Forward Reverse DIR Low High CK H3+ H3- + - D-F/F EC > ECR - The forward and reverse rotations of the MD are detected by the circuit, as shown in the above Table. - The rotational direction of the MD can be learned by the output waveforms of the hall sensor and/or the driver. Hall sensors are turned on in the order, H1 H2 H3 for the reverse rotation. The output waveforms of the hall sensors are as shown below. H1 H2 H3 ( a) Inversely, if the hall sensors turn on in the order, H3 H2 H1, then this shows forward rotation. The output waveforms of the hall sensors are as shown below. 16 KA3017 H1 H2 H3 ( b) 8. Reverse Rotation Preventing Function EC ECR + - Current Sense Amp H2+ H2- + - D CK D-F/F Gain Controller Driver M Q H3+ H3- + - - The forward and reverse rotation of the motor are detected, as shown in the table below. Consequently at reverse rotation, the D-F/F output Q becomes Low and cuts off the output current sense Amp, resulting in the stoppage of the Gain controller function. - When the MD is rotating in forward direction, EC>ECR is sometimes controlled to retard and/or stop the MD. As the controlling time of EC>ECR gets longer, MD slows down, stops, and then rotates in the reverse direction. To prevent the MD from rotating in the reverse direction, a reverse rotation resistant function is required. Its operational principles are discussed below. Rotation Forward Reverse H2 H L H3 HL HL D-F/F H L Reverse Rotation Preventer EC 17 KA3017 9. Fg Output Function The FG output detects the number of rotations of the MD. This is generated from combination zero-crossing of the hall sensor output waveforms. The FG output circuit is as shown below. + H1 - + H2 - FG OUTPUT + H3 - 10. Hall Sensor Connection External Hall sensors are used in series or in parallel connection as shown below. VCC VCC HALL 1 HALL 1 HALL 2 HALL 3 HALL 2 HALL 3 1 VH 1 VH 18 KA3017 11. Hall Input Output Timming Chart The 3-phase hall signal is amplified in the hall amplifiers and sent to the matrix section, where the signal is further amplified. After the signal is converted to a current in the amplitude control circuit, the current is supplied to the output driver, which then provides a motor drive current. The phases of the hall input signal, output voltage, and output current are shown below. H1 + H2 + H3 + A1 output current A1 output voltage A2 output current A2 output voltage A3 output current A3 output voltage 19 KA3017 Typical Performance Characteristics Total Circuit Icc1(A) 0.015 Vcc vs Icc1 Icc2(mA) 10 8 0.010 6 4 2 0.000 0 2 4 6 8 10 12 14 16 18 20 Vcc(V) Icc1(mA) 11 10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10 35 Temp vs Icc1 Icc2(mA) 8 7.8 7.6 7.4 Vcc1 =12V 7.2 7 35 Vcc2 = 12V SS = 5V Temp vs Icc2 0 0 2 4 6 8 10 Vcc(V) SS = 5V Vcc vs Icc2 0.005 25 0 25 50 75 90 25 0 25 50 75 90 Temp( C) Vom(V) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 3 3.5 4 4.5 Temp( C) Gvo(dB) Vcc vs Vom 13 12.5 12 11.5 Vcc vs Gvo(5V) Input = 0.5V, 4.5V Bias = 2.5V Rin=10K 11 10.5 10 Vcc1 = 5V Vin = 0.1V rms f = 1KHz Rin=10K 4 4.5 5 5.5 6 6.5 7 Vcc(V) 5 5.5 6 6.5 7 Vcc(V) 20 KA3017 Typical Performance Characteristics (Continued) Spindle Drive Part Gvo(dB) 13 12.5 12 11.5 11 10.5 10 9 10 11 12 13 14 15 Vout(V) Vcc1 vs Gvo(12V) 4 3 2 1 0 Vin vs Vout (5V)_ Vcc1 = 12V Vin = 0.1V rms f = 1KHz Rin=10K 1 2 3 4 0 1 2 3 4 5 6 7 8 Vcc1 = 5V Bias = 2.5V Rin=10K Vcc(V) Vout(V) 15 10 5 0 5 10 15 0 1 2 3 4 5 6 7 8 Vin(V) Voh(V) 1.2 1 0.8 0.6 0.4 0.2 0 50 Io = source current 200 100 0 50 Io = source current Io vs Voh Vol(mV) 500 400 300 Io vs Vol Vcc1 = 12V Bias = 2.5V Rin=10K Vin vs Vout (12V) Vin(V) 150 225 275 325 375 450 Io(mA) 100 150 200 250 300 350 400 450 Io(mA) 500 21 KA3017 Typical Performance Characteristics (Continued) OP AMP Part Vrnf(mV) 350 300 250 200 150 100 50 0 0 1 2 3 4 5 Ec(V) Isource(mA) 40 35 30 25 20 15 10 5 0 3.5 4 4.5 5 5.5 6 6.5 7 Vcc(V) Rout=50 15 10 3 3.5 4 4.5 5 5.5 6 6.5 7 Vcc(V) 30 25 20 Rout=50 Vcc vs Isource Isink(mA) 40 35 Vcc vs Isink Ecr = 2.5V RNF=0.5 Ec vs Vrnf Vrnf(mV) 350 300 250 200 150 100 50 0 0 1 2 3 4 5 Ec(V) Ecr = 1.6V RNF=0.5 Ec vs Vrnf 22 KA3017 Test Circuits 1 BTL Drive Part 10F 12V VMUTE VMUTE 39 MUTE12 38 MUTE3 2.5V 48 H3+ 47 H3- 46 H2+ 45 H2- 44 H1+ 43 H1- 42 BTLSGND 41 BIAS 40 AVM4 VMUTE 37 MUTE4 V RL4' DO4+ 36 SW4 DO4- 35 AVM3 34 DO3+ 33 SW3 RL3' RL3 DO3- 32 BTLPGND2 31 V V BTLPGND1 30 SW2 DO2+ 29 DO2- 28 DO1+ 27 DO1- 26 SW1 RL1 V RL2 12V 10F RL4 DI1 25 D13 23 24 SERVO AMP D12 1 VH 2 FG 3 ECR 4 EC 5 VCC2 6 PC1 KA3017 7 SIGGND 8 VM 9 CS1 10 SS 11 DIR PWRGND AVM12 21 OPIN+ OPIN- VCC1 12 SB OPOUT 13 14 15 16 17 18 19 20 22 D14 A3 A2 A1 12V BTL SVCC A 10F 10F 12V CONTROL TRAY TRACKING FOCUS SLED OPIN (+) V OPIN (-) V 1 3 SW6 10F 3 VIN3 2 VIN3 + - Vs1 1M OPOUT VCC SW5 1 V 1M 2 1.2k 1 SW7 2 3 V VIN1 Vp1 23 KA3017 Test Circuits 2 Spindle Motor Drive Part H3+ H3- H2+ H2- H1+ H1- A V V 48 H3+ SW12 1 2 2.5V SW13 3 EC SW14 5 5V A 6 VCC2 PC1 4 VH FG ECR EC A A A A A 47 H3- 46 H2+ 45 H2- 44 H1+ 43 H1- 42 BTLSGND 41 BIAS 40 AVM4 39 MUTE12 38 MUTE3 37 MUTE4 DO4+ 36 DO4- 35 AVM3 34 DO3+ 33 DO3- 32 DO2+ 29 DO2- 28 DO1+ 27 DO1- 26 DI1 25 24 D12 BTLPGND2 31 KA3017 SW15 12V 7 8 V 9 SW16 10 SS V SW17 11 DIR PWRGND OPOUT OPIN+ OPIN- VCC1 12 SB AVM12 SIGGND VM CS1 BTLPGND1 30 D14 22 IFR SW18 13 14 15 16 17 18 19 20 21 23 VSB SW19 SW20 24 D13 A3 A2 A1 KA3017 Application Circuits FOCUS TRACKING MUTE HALL3 HALL2 HALL1 BTL BIAS VOLTAGE +5V 48 H3+ 47 H3- 46 H2+ 45 H2- 44 H1+ 43 H1- 42 BTLSGND 41 BIAS 40 AVM4 39 MUTE12 38 MUTE3 37 MUTE4 1 FG SIGNAL 100pF SERVO TORQUE CONTROL VCC 10K 2 3 4 5 6 0.1F VH FG ECR EC VCC2 PC1 TRAY MUTE DO4+ 36 DO4- 35 AVM3 34 +5V DO3+ 33 DO3- 32 SLED MOTOR TRAY MOTOR DO2+ 29 DO2- 28 DO1+ 27 DO1- 26 KA3017 7 12V 8 9 SYSTEM CONTROL ROTATE DIRECTION SHORT BREAK SIGGND VM CS1 BTLPGND1 30 FOCUS ACTUATOR 10 SS 11 DIR PWRGND AVM12 OPIN+ OPIN- VCC1 12 SB OPOUT SLED MUTE BTLPGND2 31 TRACKING ACTUATOR DI1 25 D14 D13 23 D12 24 SERVO AMP A3 A2 15 13 14 16 A1 17 18 19 20 21 22 VCC +5V TRACKING FOCUS SLED CONTROL TRAY 25 KA3017 DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. www.fairchildsemi.com 9/6/02 0.0m 001 Stock#DSxxxxxxxx 2002 Fairchild Semiconductor Corporation 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. |
Price & Availability of KA3017
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |