![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Data Sheet No. PD60161-R IR2108(4) (S) & (PbF) Features Fully operational to +600V Packages Tolerant to negative transient voltage dV/dt immune 14-Lead SOIC 8-Lead SOIC * Gate drive supply range from 10 to 20V IR21084S IR2108S * Undervoltage lockout for both channels * 3.3V, 5V and 15V input logic compatible 14-Lead PDIP * Cross-conduction prevention logic IR21084 Matched propagation delay for both channels * * High side output in phase with HIN input 8-Lead PDIP * Low side output out of phase with LIN input IR2108 * Logic and power ground +/- 5V offset. * Internal 540ns dead-time, and 2106/2301//2108//2109/2302/2304 Feature Comparison programmable up to 5us with one external RDT resistor (IR21084) CrossInput conduction * Lower di/dt gate driver for better Dead-Time Ground Pins Part logic prevention noise immunity logic * Available in Lead-Free 2106/2301 COM * Floating channel designed for bootstrap operation HALF-BRIDGE DRIVER Description Programmable 0.54~5 s The IR2108(4)(S) are high voltage, high speed Internal 540ns IN/SD yes power MOSFET and IGBT drivers with depenProgrammable 0.54~5 s dent high and low side referenced output yes Internal 100ns HIN/LIN COM 2304 channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. 21064 2108 21084 2109/2302 21094 HIN/LIN no none HIN/LIN yes Internal 540ns VSS/COM COM VSS/COM COM VSS/COM Typical Connection up to 600V VCC VCC HIN LIN VB HO VS LO TO LOAD HIN LIN COM up to 600V IR2108 VCC HIN LIN HO VCC HIN LIN DT V SS RDT VSS COM LO VB VS IR21084 TO LOAD (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2108(4) (S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO DT VIN VSS dV S/dt PD Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Programmable dead-time pin voltage (IR21084 only) Logic input voltage (HIN & LIN) Logic ground (IR21084 only) Allowable offset supply voltage transient Package power dissipation @ TA +25C (8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 VSS - 0.3 VCC - 25 -- -- -- -- -- -- -- -- -- -- -50 -- Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300 Units V V/ns W RthJA Thermal resistance, junction to ambient (8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC) C/W TJ TS TL Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V S and VSS offset rating are tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN DT VSS Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage IR2108 IR21084 Programmable dead-time pin voltage (IR21084 only) Logic ground (IR21084 only) Min. VS + 10 Note 1 VS 10 0 COM VSS VSS -5 Max. VS + 20 600 VB 20 VCC VCC VCC VCC 5 Units V C TA Ambient temperature -40 125 Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2108(4) (S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25C, DT = VSS unless otherwise specified. Symbol ton toff MT tr tf DT MDT Definition Turn-on propagation delay Turn-off propagation delay Delay matching | ton - toff | Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = | DTLO-HO - DTHO-LO | Min. -- -- -- -- -- 400 4 -- -- Typ. 220 200 0 150 50 540 5 0 0 Max. Units Test Conditions 300 280 30 220 80 680 6 60 600 usec nsec nsec VS = 0V VS = 0V RDT= 0 RDT = 200k (IR21084) RDT=0 RDT = 200k (IR21084) VS = 0V VS = 0V or 600V Static Electrical Characteristics VBIAS (VCC , VBS) = 15V, VSS = COM, DT= VSS and TA = 25C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic "1" input voltage for HIN & logic "0" for LIN Logic "0" input voltage for HIN & logic "1" for LIN High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent V BS supply current Quiescent VCC supply current Logic "1" input bias current Logic "0" input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.9 -- -- -- -- 20 0.4 -- -- 8.0 7.4 0.3 120 250 -- -- 0.8 0.3 -- 75 1.0 5 -- 8.9 8.2 0.7 200 350 -- 0.8 1.4 0.6 50 130 1.6 20 2 9.8 9.0 V -- -- -- mA VO = 0V, PW 10 s VO = 15V, PW 10 s A A mA V VCC = 10V to 20V VCC = 10V to 20V IO = 20 mA IO = 20 mA VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V RDT=0 HIN = 5V, LIN = 0V HIN = 0V, LIN = 5V www.irf.com 3 IR2108(4) (S) & (PbF) Functional Block Diagram VB 2108 HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS DT DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT VCC +5V LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS VB 21084 HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS DT +5V DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT VCC LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS 4 www.irf.com IR2108(4) (S) & (PbF) Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2108 and VSS for IR21084) Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2108 and VSS for IR21084) DT VSS VB HO VS VCC LO COM Programmable dead-time lead, referenced to VSS. (IR21084 only) Logic Ground (21084 only) High side floating supply High side gate driver output High side floating supply return Low side and logic fixed supply Low side gate driver output Low side return LIN Lead Assignments 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 8 Lead PDIP 8 Lead SOIC IR2108 IR2108S 1 2 3 4 5 6 7 VCC HIN LIN DT VSS COM LO VB HO VS 14 13 12 11 10 9 8 1 2 3 4 5 6 7 VCC HIN LIN DT VSS COM LO VB HO VS 14 13 12 11 10 9 8 14 Lead PDIP 14 Lead SOIC IR21084 www.irf.com IR21084S 5 IR2108(4) (S) & (PbF) HIN LIN HO LIN 50% 50% LO ton Figure 1. Input/Output Timing Diagram tr 90% toff 90% tf LO 10% 10% 50% 50% HIN ton tr 90% HIN LIN 50% 50% toff 90% tf HO 90% 10% 10% Figure 2. Switching Time Waveform Definitions HO LO DT LO-HO 90% 10% DT HO-LO 10% MDT= DT LO-HO - DT HO-LO Figure 3. Deadtime Waveform Definitions 6 www.irf.com IR2108(4) (S) & (PbF) Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 500 400 300 200 100 0 -50 T yp. 500 400 300 200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 4B. Turn-on Propagation Delay vs. Supply Voltage T yp. Max . Max. -25 0 25 50 o 75 100 125 Temperature ( C) Figure 4A. Turn-on Propagation Delay vs. Tem perature Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 500 400 300 200 100 Max . 500 400 300 200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage Max . T yp. T yp. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 5A. Turn-off Propagation Delay vs.Tem perature www.irf.com 7 IR2108(4) (S) & (PbF) 500 Turn-on Rise Time (ns) 400 300 200 100 Max . 500 Turn-on Rise Time (ns) 400 300 200 T yp. Max. T yp. 100 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature ( oC) Figure 6A.Turn-on Rise Tim e vs. Tem perature V BIAS Supply Voltage (V) Figure 6B. Turn-on Rise Time vs. Supply Voltage 200 Turn-off Fall Time (ns) 150 100 Max. 200 Turn-off Fall Time (ns) 150 100 50 0 -25 0 25 50 o Max. 50 T yp. T yp. 0 -50 75 100 125 10 12 14 16 18 20 Temperature ( C) Figure 7A. Turn-off Fall Tim e vs. Tem perature V BIAS Supply Voltage (V) Figure 7B. Turn-off Fall Tim e vs. Supply Voltage 8 www.irf.com IR2108(4) (S) & (PbF) 1000 800 Max. 1000 800 600 400 200 0 25 50 75 100 125 Deadtime (ns) Deadtime (ns) Max. T yp. 600 T yp. Min. 400 Mi n. 200 -50 -25 10 12 14 16 18 20 Temperature (oC) Figure 8A. Deadtim e vs. Tem perature V BIAS Supply Voltage (V) Figure 8B. Deadtime vs. Supply Voltage 7 6 Deadtime ( s) 5 4 3 2 1 0 0 50 100 RDT (K) Figure 8C. Deadtim e vs. RDT (IR21084 Only) 150 200 T yp. Mi n. 8 7 Input Voltage (V) Max . 6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Max . Temperature ( oC) Figure 9A. Logic "1" Input Voltage vs. Tem perature www.irf.com 9 IR2108(4) (S) & (PbF) 8 7 Input Voltage (V) 6 5 4 3 2 1 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 9B. Logic "1" Input Voltage vs. Supply Voltage Max . 4.0 Input Voltage (V) 3.2 2.4 1.6 0.8 Min. 0.0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 10A. Logic "0" Input Voltage vs. Tem perature Input Voltage (V) 3.2 2.4 1.6 0.8 0.0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 10B. Logic "0" Input Voltage vs. Supply Voltage Min. High Level Output Voltage (V) 4.0 4 3 2 1 Max . T yp. 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 11A. High Level Output vs. Temperature 10 www.irf.com IR2108(4) (S) & (PbF) High Level Output Voltage (V) Low Level Output Voltage (V) 4 3 2 1 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 11B. High Level Output vs. Supply Voltage 1.5 1.2 0.9 0.6 0.3 T yp. Max. Max. T yp. 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 12A. Low Level Output vs. Temperature Low Level Output Voltage (V) 1.5 1.2 0.9 Max . Offset Supply Leakage Current ( A) 500 400 300 200 100 Max . 0.6 T yp. 0.3 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 12B. Low Level Output vs. Supply Voltage 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 13A. Offset Supply Leakage Current vs. Tem perature www.irf.com 11 IR2108(4) (S) & (PbF) Offset Supply Leakage Current ( A) 500 400 300 200 100 0 0 100 200 300 400 500 600 V B Boost Voltage (V) Figure 13B. Offset Supply Leakage Current vs. Tem perature V BS Supply Current ( A) 400 300 200 100 Max . T yp. Min. Max . 0 -50 -25 0 25 50 75 Temperature ( oC) 100 125 Figure 14A. V BS Supply Current vs. Tem perature 400 Vcc Supply Current (mA) 3.0 2.5 2.0 1.5 T yp. Max. V BS Supply Current ( A) 300 200 100 0 10 12 14 16 18 20 V BS Supply Voltage (V) Figure 14B. V BS Supply Current vs. Supply Voltage Max. T yp. Min. 1.0 0.5 Min. 0.0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 15A. V CC Supply Current vs. Tem perature 12 www.irf.com IR2108(4) (S) & (PbF) 3.0 V CC Supply Current (mA) 2.5 2.0 1.5 1.0 0.5 0.0 10 12 14 16 18 V CC Supply Voltage (V) 20 Max . T yp. Min. 60 Logic "1" Input Current ( A) 50 40 30 20 10 Max . T yp. 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 16A. Logic "1" Input Current vs. Tem perature Figure 15B. V CC Supply Current vs. Supply Voltage 60 Logic "1" Input Current ( A) 50 40 30 20 10 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 16B. Logic "1" Input Current vs. Supply Voltage Max. 5 Logic "0" Input Current ( A) 4 3 Max . 2 1 0 -50 T yp. -25 0 25 50 75 100 125 Temperature ( oC) Figure 17A. Logic "0" Input Current vs . Te m pe rature www.irf.com 13 IR2108(4) (S) & (PbF) 5 V CC UVLO Threshold (+) (V) 12 11 10 9 8 7 -50 Max . T yp. Logic "0" Input Current ( A) 4 3 2 1 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 17B. Logic "0" Input Current vs. Supply Voltage Max. Mi n. -25 0 25 50 75 100 125 Temperature (oC) Figure 18. V CC Undervoltage Threshold (+) vs. Tem perature 11 VCC UVLO Threshold (-) (V) 10 9 8 Mi n. Max. 12 V BS UVLO Threshold (+) (V) 11 10 9 8 Max . T yp. T yp. 7 6 -50 Min. -25 0 25 50 75 100 125 7 -50 -25 0 25 50 o 75 100 125 Temperature ( oC) Figure 19. V CC Undervoltage Threshold (-) vs. Tem perature Temperature ( C) Figure 20. V BS Undervoltage Threshold (+) vs. Tem perature 14 www.irf.com IR2108(4) (S) & (PbF) 11 V BS UVLO Threshold (-) (V) 10 9 8 Min. Max . T yp. 500 Output Source Current ( A) 400 300 T yp. 200 Min. 7 6 -50 100 0 -50 -25 0 25 50 75 100 125 -25 0 25 50 o 75 100 125 Temperature (oC) Figure 21. V BS Undervoltage Threshold (-) vs. Tem perature Temperature ( C) Figure 22A. Output Source Current vs. Tem perature 500 Output Source Current ( A) Output Sink Current (mA) 400 300 200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 22B. Output Source Current vs. Supply Voltage T yp. 600 500 T yp. 400 300 200 100 0 -50 Min. Min. -25 0 25 50 75 100 125 Temperature (oC) Figure 23A. Output Sink Current vs. Tem perature www.irf.com 15 IR2108(4) (S) & (PbF) 600 500 400 300 T yp. 0 V S Offset Supply Voltage (V) -2 -4 -6 -8 -10 T yp. Output Sink Current ( A) 200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 23B. Output Sink Current vs. Supply Voltage Min. 10 12 14 16 18 20 V BS Flouting Supply Voltage (V) Figure 24. Maxim um V s Negative Offset vs. Supply Voltage 140 120 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 25. IR2108 vs. Frequency (IRFBC20), Rgate=33:, V CC=15V 140V 70V 0V 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 26. IR2108 vs. Frequency (IRFBC30), Rgate =22: , VC C=15V 140V 70V 0V Temprature (oC) 16 www.irf.com IR2108(4) (S) & (PbF) 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 27. IR2108 vs. Frequency (IRFBC40), Rgate=15:, V CC=15V 140 120 Temperature (oC) 1 40V 70V 0V 1 40V 70V 0V 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 28. IR2108 vs. Frequency (IRFPE50), Rgate=10: , V CC=15V 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 29. IR21084 vs. Frequency (IRFBC20), Rgate=33:, V CC=15V 140V 70V 0V 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 30. IR21084 vs. Frequency (IRFBC30), Rgate=22:, V CC=15V 1 40V 70V 0V www.irf.com 17 IR2108(4) (S) & (PbF) 140V 70V 140 120 Temperature (oC) Temperature (oC) 140 120 100 80 60 40 20 1 10 100 100 140V 0V 80 60 40 20 1 10 100 70V 0V 1000 1000 Frequency (KHz) Figure 31. IR21084 vs. Frequency (IRFBC40), Rgate=15: , V CC=15V Frequency (KHz) Figure 32. IR21084 vs. Frequency (IRFPE50), Rgate=10:, V CC=15V 140 120 Temperature (oC) Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 33. IR2108S vs. Frequency (IRFBC20), Rgate=33:, V CC=15V 1 40V 70V 0V 140 120 140V 100 80 60 40 20 1 10 100 70V 0V 1000 Frequency (KHz) Figure 34. IR2108S vs. Frequency (IRFBC30), Rgate=22:, V CC=15V 18 www.irf.com IR2108(4) (S) & (PbF) 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 140V70V 140 120 Tempreture (oC) 140V 70V 0V 0V 100 80 60 40 20 1 10 100 1000 1000 Frequency (KHz) Figure 35. IR2108S vs. Frequency (IRFBC40), Rgate=15:, V CC=15V Frequency (KHz) Figure 36. IR2108S vs. Frequency (IRFPE50), Rgate=10:, V CC=15V 140 120 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 1 40V 70V 0V Temperature (oC) 100 80 60 40 20 Frequency (KHz) Figure 37. IR21084S vs. Frequency (IRFBC20), Rgate=33:, V CC=15V 140V 70V 0V 1 10 100 1000 Frequency (KHz) Figure 38. IR21084S vs. Frequency (IRFBC30), Rgate =22: , VCC =15V www.irf.com 19 IR2108(4) (S) & (PbF) 140 Temperature (oC) Temperature (oC) 120 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 39. IR21084S vs. Frequency (IRFBC40), Rgate=15:, V CC=15V 1 40V 70V 0V 140 120 100 80 60 40 20 1 10 100 140V 70V 0V 1000 Frequency (KHz) Figure 40. IR21084S vs. Frequency (IRFPE50), Rgate=10:, V CC=15V 20 www.irf.com IR2108(4) (S) & (PbF) Case outlines 8-Lead PDIP DIM F OOT PRINT 8X 0.72 [.028] 01-6014 01-3003 01 (MS-001AB) D A 5 B INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A b c D A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L y .050 BAS IC .025 BAS IC .2284 .0099 .016 0 .2440 .0196 .050 8 1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0 6.20 0.50 1.27 8 6X e 3X 1.27 [.050] 8X 1.78 [.070] e1 A K x 45 C 0.10 [.004] y 8X c 8X b 0.25 [.010] NOT ES : A1 CAB 8X L 7 1. DIMENSIONING & TOLE RANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENSION: MILLIME TER 3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHE S]. 4. OUTLINE CONFORMS T O JEDEC OUT LINE MS-012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010]. 7 DIMENS ION IS T HE LE NGT H OF LEAD FOR SOLDERING T O A SUBS TRAT E. 8-Lead SOIC www.irf.com 01-6027 01-0021 11 (MS-012AA) 21 IR2108(4) (S) & (PbF) 14-Lead PDIP 01-6010 01-3002 03 (MS-001AC) 14-Lead SOIC (narrow body) 01-6019 01-3063 00 (MS-012AB) 22 www.irf.com IR2108(4) (S) & (PbF) ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2108 8-Lead SOIC IR2108S 14-Lead PDIP IR21084 14-Lead SOICIR21084S order order order order IR2108 IR2108S IR21084 IR21084S Lead-Free Part 8-Lead PDIP IR2108 8-Lead SOIC IR2108S 14-Lead PDIP IR21084 14-Lead SOIC IR21084S order order order order IR2108PbF IR2108SPbF IR21084PbF IR21084SPbF This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Website. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/08/04 www.irf.com 23 |
Price & Availability of IR2108S
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |