![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 90823A REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTOR 400Volt, 0.22, MEGA RAD HARD HEXFET International Rectifier's RAD HARD technology HEXFETs demonstrate excellent threshold voltage stability and breakdown voltage stability at total radiaition doses as high as 1x106 Rads(Si). Under identical pre- and post-irradiation test conditions, International Rectifier's RAD HARD HEXFETs retain identical electrical specifications up to 1 x 105 Rads (Si) total dose. No compensation in gate drive circuitry is required. These devices are also capable of surviving transient ionization pulses as high as 1 x 1012 Rads (Si)/Sec, and return to normal operation within a few microseconds. Since the RAD HARD process utilizes International Rectifier's patented HEXFET technology, the user can expect the highest quality and reliability in the industry. RAD HARD HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments. (R) IRHM7360 IRHM8360 N CHANNEL MEGA RAD HARD Product Summary Part Number IRHM7360 IRHM8360 BVDSS 400V 400V RDS(on) 0.22 0.22 ID 22A 22A Features: n n n n n n n n n n n n n Radiation Hardened up to 1 x 106 Rads (Si) Single Event Burnout (SEB) Hardened Single Event Gate Rupture (SEGR) Hardened Gamma Dot (Flash X-Ray) Hardened Neutron Tolerant Identical Pre- and Post-Electrical Test Conditions Repetitive Avalanche Rating Dynamic dv/dt Rating Simple Drive Requirements Ease of Paralleling Hermetically Sealed Electrically Isolated Ceramic Eyelets Absolute Maximum Ratings Parameter ID @ VGS = 12V, TC = 25C ID @ VGS = 12V, TC = 100C IDM PD @ TC = 25C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction Storage Temperature Range Lead Temperature Weight 22 14 88 250 2.0 20 500 22 25 4.0 -55 to 150 Pre-Irradiation IRHM7230, IRHM8230 Units A W W/C V mJ A mJ V/ns o C g 300 (0.063 in. (1.6mm) from case for 10s) 9.3 (typical) www.irf.com 1 10/28/98 IRHM7360, IRHM8360 Devices Pre-Irradiation Electrical Characteristics @ Tj = 25C (Unless Otherwise Specified) Parameter BVDSS Drain-to-Source Breakdown Voltage BV DSS/T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance IDSS Zero Gate Voltage Drain Current Min 400 -- -- -- 2.0 6.0 -- -- -- -- -- -- -- -- -- -- -- -- -- Typ Max Units -- 0.45 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 8.7 8.7 -- -- 0.22 0.25 4.0 -- 50 250 100 -100 210 45 120 33 59 140 75 -- -- V V/C V S( ) A Test Conditions VGS = 0V, ID = 1.0mA Reference to 25C, ID = 1.0mA VGS = 12V, ID = 14A VGS = 12V, ID = 22A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 14A VDS= 0.8 x Max Rating,VGS=0V VDS = 0.8 x Max Rating VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VGS = 12V, ID =22A VDS = Max Rating x 0.5 VDD = 200V, ID = 22A, RG = 2.35 IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LD LS Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (`Miller') Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance nA nC ns nH Measured from drain Modified MOSFET symlead, 6mm (0.25 in) bol showing the internal from package to center inductances. of die. Measured from source lead, 6mm (0.25 in) from package to source bonding pad. Ciss C oss C rss Input Capacitance Output Capacitance Reverse Transfer Capacitance -- -- -- 5600 990 380 -- -- -- pF VGS = 0V, VDS = 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics Parameter IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min Typ Max Units -- -- -- -- -- -- -- -- -- -- 22 88 1.8 1000 11 Test Conditions Modified MOSFET symbol showing the integral reverse p-n junction rectifier. Tj = 25C, IS = 22A, VGS = 0V Tj = 25C, IF =22A, di/dt 100A/s VDD 50V A V ns C Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance Parameter RthJC RthCS RthJA Junction-to-Case Case-to-Sink Junction-to-Ambient Min Typ Max Units -- -- -- -- 0.21 -- 0.5 -- 48 C/W Test Conditions Typical socket mount 2 www.irf.com Radiation Characteristics Radiation Performance of Rad Hard HEXFETs International Rectifier Radiation Hardened HEXFETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier comprises three radiation environments. Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019 condition A. International Rectifier has imposed a standard gate condition of 12 volts per note 6 and a VDS bias condition equal to 80% of the device rated voltage per note 7. Pre- and post- irradiation limits of the devices irradiated to 1 x 105 Rads (Si) are identical and are presented in Table 1, column 1, IRHM7360. Post-irradiation limits of the devices irradiated to 1 x 106 Rads (Si) are presented in IRHM7360, IRHM8360 Devices Table 1, column 2, IRHM8360. The values in Table 1 will be met for either of the two low dose rate test circuits that are used. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. High dose rate testing may be done on a special request basis using a dose rate up to 1 x 1012 Rads (Si)/ Sec (See Table 2). International Rectifier radiation hardened HEXFETs have been characterized in heavy ion Single Event Effects (SEE) environments. Single Event Effects characterization is shown in Table 3. Table 1. Low Dose Rate Parameter BVDSS VGS(th) IGSS IGSS IDSS RDS(on)1 VSD IRHM7360 IRHM8360 100K Rads (Si) 1000K Rads (Si) Units Test Conditions VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS=0.8 x Max Rating, VGS =0V VGS = 12V, ID = 14A TC = 25C, IS = 22A, VGS = 0V Min Drain-to-Source Breakdown Voltage 400 Gate Threshold Voltage 2.0 Gate-to-Source Leakage Forward -- Gate-to-Source Leakage Reverse -- Zero Gate Voltage Drain Current -- Static Drain-to-Source -- On-State Resistance One Diode Forward Voltage -- Max -- 4.0 100 -100 50 0.22 1.8 Min 400 1.25 -- -- -- -- -- Max -- 4.5 100 -100 100 0.31 1.8 V nA A V Table 2. High Dose Rate Parameter VDSS IPP di/dt L1 1011 Rads (Si)/sec 1012 Rads (Si)/sec Drain-to-Source Voltage Min Typ Max Min Typ Max Units Test Conditions -- -- 320 -- -- 320 V Applied drain-to-source voltage during gamma-dot -- 6.4 -- -- 6.4 -- A Peak radiation induced photo-current -- -- 16 -- -- 2.3 A/sec Rate of rise of photo-current 20 -- -- 137 -- -- H Circuit inductance required to limit di/dt Table 3. Single Event Effects Ion Ni LET (Si) (MeV/mg/cm2) 28 Fluence (ions/cm2) 1x 105 Range (m) ~41 VDSBias (V) 275 VGS Bias (V) -5 www.irf.com 3 IRHM7360, IRHM8360 Devices Post-Irradiation Fig 1. Typical Response of Gate Threshold Voltage Vs. Total Dose Exposure Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure 4 www.irf.com Post-Irradiation IRHM7360, IRHM8360 Devices Fig 5. Typical Zero Gate Voltage Drain Current Vs. Total Dose Exposure Fig 6. Typical On-State Resistance Vs. Neutron Fluence Level Fig 8a. Gate Stress of VGSS Equals 12 Volts During Radiation Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x1012 Rad (Si)/Sec Exposure Fig 8b. VDSS Stress Equals 80% of BVDSS During Radiation Fig 9. High Dose Rate (Gamma Dot) Test Circuit www.irf.com 5 IRHM7360, IRHM8360 Devices Note: Bias Conditions during radiation: VGS = 12 Vdc, VDS = 0 Vdc Radiation Characterstics Fig 10. Typical Output Characteristics Pre-Irradiation Fig 11. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 12. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 13. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si) 6 www.irf.com Radiation Characterstics IRHM7360, IRHM8360 Devices Note: Bias Conditions during radiation: VGS = 0 Vdc, VDS = 320 Vdc Fig 14. Typical Output Characteristics Pre-Irradiation Fig 15. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 16. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 17. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si) www.irf.com 7 IRHM7360, IRHM8360 Devices Pre-Irradiation Fig 18. Typical Output Characteristics Fig 19. Typical Output Characteristics Fig 20. Typical Transfer Characteristics Fig 21. Normalized On-Resistance Vs. Temperature 8 www.irf.com Pre-Irradiation IRHM7360, IRHM8360 Devices 30 Fig 22. Typical Capacitance Vs. Drain-to-Source Voltage Fig 23. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 24. Typical Source-Drain Diode Forward Voltage Fig 25. Maximum Safe Operating Area www.irf.com 9 IRHM7360, IRHM8360 Devices Pre-Irradiation V DS VGS RG RD D.U.T. + -V DD 12V Pulse Width 1 s Duty Factor 0.1 % Fig 27a. Switching Time Test Circuit VDS 90% 10% VGS Fig 26. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 27b. Switching Time Waveforms Fig 28. Maximum Effective Transient Thermal Impedance, Junction-to-Case 10 www.irf.com Pre-Irradiation IRHM7360, IRHM8360 Devices 1 5V VD S L D R IV E R RG D .U .T IA S + - VD D A 12V 20V tp 0 .0 1 Fig 29a. Unclamped Inductive Test Circuit V (B R )D S S tp Fig 29c. Maximum Avalanche Energy Vs. Drain Current IAS Fig 29b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K QG 12V .2F .3F 12 V QGS VG QGD VGS 3mA D.U.T. + V - DS Charge IG ID Current Sampling Resistors Fig30a. Basic Gate Charge Waveform Fig 30b. Gate Charge Test Circuit www.irf.com 11 IRHM7360, IRHM8360 Devices See Figures 18 through 30 for pre-radiation curves Pre-Irradiation Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, codition A. Total Dose Irradiation with VDS Bias. VDS = 0.8 rated BVDSS (pre-irradiation) applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. This test is performed using a flash x-ray source operated in the e-beam mode (energy ~2.5 MeV), 30 nsec pulse. All Pre-Irradiation and Post-Irradiation test conditions are identical to facilitate direct comparison for circuit applications. Repetitive Rating; Pulse width limited by maximum junction temperature. Refer to current HEXFET reliability report. VDD = 25V, Starting TJ = 25C, Peak IL = 22A, RG =2.35 ISD 22A, di/dt 120A/s, VDD BVDSS, TJ 150C Suggested RG = 2.35 Pulse width 300 s; Duty Cycle 2% Case Outline and Dimensions -- TO-254AA .1 2 ( .0 0 5 ) 3.7 8 ( .14 9 ) 3.5 3 ( .13 9 ) -A 1 3 .8 4 ( .5 4 5 ) 1 3 .5 9 ( .5 3 5 ) 6 .6 0 ( .2 6 0 ) 6 .3 2 ( .2 4 9 ) -B 1 .2 7 ( .05 0 ) 1 .0 2 ( .04 0 ) 1 7 .4 0 ( .6 8 5 ) 1 6 .8 9 ( .6 6 5 ) 3 1 .4 0 ( 1 .2 3 5 ) 3 0 .3 9 ( 1 .1 9 9 ) 2 0 .3 2 ( .8 0 0 ) 2 0 .0 7 ( .7 9 0 ) 1 3 .84 ( .5 4 5 ) 1 3 .59 ( .5 3 5 ) LEG END 1 - C O L L E C TO R W 2 - E M ITTE R 3 - G A TE 1 2 3 -C- 123 3X 3 .81 ( .1 5 0 ) 2X N O TE S : 1 .1 4 ( .0 45 ) 0 .8 9 ( .0 35 ) .5 0 ( .0 2 0 ) .2 5 ( .0 1 0 ) M C AM B MC 3 .8 1 ( .1 5 0 ) 1 . D IM E N S IO N IN G & TO L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 98 2 . 2 . A L L D IM E N S IO N S A R E S H O W N IN M ILL IM E TE R S ( IN C H E S ). LEGEND 1- DRAIN 2- SOURCE 3- GATE LEGEND 1- DRAIN 2- SOURCE 3- GATE Conforms to JEDEC Outline TO-254AA Dimensions in Millimeters and ( Inches ) CAUTION BERYLLIA WARNING PER MIL-PRF-19500 Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium. WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 10/98 12 www.irf.com |
Price & Availability of IRHM7360
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |