![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
IRF6618/IRF6618TR1 VDSS Application Specific MOSFETs Ideal for CPU Core DC-DC Converters l Low Conduction Losses l Low Switching Losses l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l l PD - 94726D HEXFET(R) Power MOSFET RDS(on) max 2.2m@VGS = 10V 3.4m@VGS = 4.5V Qg 43 nC 30V MT Applicable DirectFET Package/Layout Pad (see p.8,9 for details) DirectFET ISOMETRIC SQ SX ST MQ MX MT Description The IRF6618 combines the latest HEXFET(R) Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6618 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6618 has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6618 offers particularly low Rds(on) and high Cdv/ dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter VDS VGS I D @ TC = 25C I D @ TA = 25C I D @ TA = 70C I DM PD @TA = 25C PD @TA = 70C PD @TC = 25C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Max. 30 20 170 30 24 240 2.8 1.8 89 0.022 -40 to + 150 Units V A g g W W/C C Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Parameter Single Pulse Avalanche Energyd Avalanche CurrentA Typ. --- --- Avalanche Characteristics Max. 210 24 Units mJ A EAS I AR Thermal Resistance RJA RJA RJA RJC RJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Parameter i fj g h Typ. --- 12.5 20 --- 1.0 Max. 45 --- --- 1.4 --- Units C/W Junction-to-PCB Mounted Notes through are on page 9 www.irf.com 1 11/3/04 IRF6618/IRF6618TR1 Static @ TJ = 25C (unless otherwise specified) Parameter BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th)/TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 30 --- --- --- 1.35 --- --- --- --- --- --- 100 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 23 1.7 --- 1.64 -5.7 --- --- --- --- --- --- 43 12 4.0 15 12 19 28 1.0 21 71 27 8.1 5640 1260 570 --- --- 2.2 3.4 2.35 --- 5.0 1.0 150 100 -100 --- 65 --- --- 23 --- --- --- 2.2 --- --- --- --- --- --- --- pF VGS = 0V VDS = 15V ns nC nC VDS = 15V VGS = 4.5V ID = 24A S nA A V mV/C V Conditions VGS = 0V, ID = 250A mV/C Reference to 25C, ID = 1mA m VGS = 10V, ID = 30A VGS = 4.5V, ID VDS = VGS, ID = 250A VDS = 30V, VGS = 0V VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 150C VGS = 20V VGS = -20V VDS = 15V, ID = 24A e = 24A e See Fig. 16 VDS = 15V, VGS = 0V VDD = 15V, VGS = 4.5VAe ID = 24A Clamped Inductive Load = 1.0MHz Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units --- --- --- --- --- --- --- 0.78 43 46 30 A 240 1.2 65 69 V ns nC Conditions MOSFET symbol showing the integral reverse G S D p-n junction diode. TJ = 25C, IS = 24A, VGS = 0V TJ = 25C, IF = 24A di/dt = 100A/s e e 2 www.irf.com IRF6618/IRF6618TR1 1000 TOP VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V 1000 TOP VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) BOTTOM 100 2.7V 2.7V 10 60s PULSE WIDTH 1 0.1 1 Tj = 25C 60s PULSE WIDTH 10 Tj = 150C 0.1 1 10 100 10 100 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 1.5 100 T J = 150C 10 T J = 25C RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current () ID = 30A VGS = 10V 1.0 1 VDS = 10V 60s PULSE WIDTH 0.1 1.5 2.0 2.5 3.0 3.5 4.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (C) Fig 4. Normalized On-Resistance vs. Temperature 6.0 ID= 24A VGS, Gate-to-Source Voltage (V) 5.0 4.0 3.0 2.0 1.0 0.0 VDS= 24V VDS= 15V C, Capacitance(pF) 10000 Ciss Coss 1000 Crss 100 1 10 100 0 10 20 30 40 50 60 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRF6618/IRF6618TR1 1000.00 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100.00 T J = 150C 100 100sec 10.00 1.00 T J = 25C 10 T C = 25C 1msec Tj = 150C Single Pulse VGS = 0V 0.10 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-to-Drain Voltage (V) 1 0 1 10 10msec 100 1000 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 180 VGS(th) Gate threshold Voltage (V) Fig 8. Maximum Safe Operating Area 2.5 160 140 ID, Drain Current (A) 2.0 120 100 80 60 40 20 0 25 50 75 100 125 150 T C , Case Temperature (C) 1.5 ID = 250A 1.0 0.5 0.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( C ) Fig 9. Maximum Drain Current vs. Case Temperature 100 Fig 10. Threshold Voltage vs. Temperature 10 Thermal Response ( Z thJA ) 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 J R1 R1 J 1 2 R2 R2 R3 R3 3 R4 R4 C 1 2 3 4 4 0.1 Ri (C/W) 0.6784 17.299 17.566 9.4701 i (sec) 0.00086 0.57756 8.94 106 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= i/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 0.1 1 10 100 0.0001 1E-006 1E-005 0.0001 0.001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com IRF6618/IRF6618TR1 RDS(on), Drain-to -Source On Resistance (m ) 6 900 EAS , Single Pulse Avalanche Energy (mJ) ID = 30A 5 4 3 2 1 0 2 3 4 5 6 7 8 9 10 T J = 25C T J = 125C 800 700 600 500 400 300 200 100 0 25 50 75 ID 9.3A 11A BOTTOM 24A TOP 100 125 150 VGS, Gate -to -Source Voltage (V) Starting T J , Junction Temperature (C) Fig 12. On-Resistance vs. Gate Voltage Fig 13. Maximum Avalanche Energy vs. Drain Current Current Regulator Same Type as D.U.T. V(BR)DSS 15V tp 12V .2F DRIVER 50K .3F VDS L D.U.T. RG 20V VGS + V - DS D.U.T IAS tp + - VDD A VGS 0.01 I AS 3mA IG ID Current Sampling Resistors Fig 14. Unclamped Inductive Test Circuit and Waveform LD VDS Fig 15. Gate Charge Test Circuit + VDD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1% 90% VDS 10% VGS td(on) tr td(off) tf Fig 16. Switching Time Test Circuit Fig 17. Switching Time Waveforms www.irf.com 5 IRF6618/IRF6618TR1 D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt - - + RG * dv/dt controlled by RG * Driver same type as D.U.T. * I SD controlled by Duty Factor "D" * D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform 6 www.irf.com IRF6618/IRF6618TR1 DirectFET Outline Dimension, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 3.85 C 0.45 D 0.35 0.82 E 0.78 0.92 F 0.88 1.82 G 1.78 0.98 1.02 H 0.67 J 0.63 1.01 K O.88 2.63 L 2.46 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN MAX 0.246 0.250 0.189 0.199 0.152 0.156 0.014 0.018 0.031 0.032 0.035 0.036 0.070 0.072 0.039 0.040 0.025 0.026 0.035 0.039 0.097 0.104 0.023 0.028 0.001 0.003 0.003 0.007 NOTE: CONTROLLING DIMENSIONS ARE IN MM www.irf.com 7 IRF6618/IRF6618TR1 DirectFET Board Footprint, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 6 5 7 3 4 1 2 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel, order IRF6618TR1 STANDARD OPTION METRIC CODE MAX MIN A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL METRIC IMPERIAL MAX MIN MIN MAX MAX MIN N.C 6.9 12.992 N.C 177.77 N.C N.C 0.75 0.795 N.C 19.06 N.C 0.50 0.53 0.504 0.520 13.5 12.8 0.059 0.059 N.C 1.5 N.C N.C 2.31 3.937 N.C N.C 58.72 N.C N.C N.C 0.53 N.C 13.50 0.724 0.47 0.488 N.C 11.9 0.567 12.01 0.47 0.469 N.C 0.606 11.9 12.01 8 www.irf.com IRF6618/IRF6618TR1 DirectFET Part Marking Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.75mH, RG = 25, IAS = 24A. Pulse width 400s; duty cycle 2%. Surface mounted on 1 in. square Cu board. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. R is measured at TJ of approximately 90C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04 www.irf.com 9 |
Price & Availability of IRF6618
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |