![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 95473 SMPS MOSFET IRFB260NPBF l l HEXFET(R) Power MOSFET Applications High frequency DC-DC converters Lead-Free VDSS 200V RDS(on) max 0.040 ID 56A Benefits Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current l TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw Max. 56 40 220 380 2.5 20 10 -55 to + 175 300 (1.6mm from case ) 10 lbf*in (1.1N*m) Units A W W/C V V/ns C Thermal Resistance Parameter RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. --- 0.50 --- Max. 0.40 --- 62 Units C/W Notes through are on page 8 www.irf.com 1 7/7/04 IRFB260NPBF Static @ TJ = 25C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 200 --- --- 2.0 --- --- --- --- Typ. --- 0.26 --- --- --- --- --- --- Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.040 VGS = 10V, ID = 34A 4.0 V VDS = VGS, ID = 250A 25 VDS = 200V, VGS = 0V A 250 VDS = 160V, VGS = 0V, TJ = 150C 100 VGS = 20V nA -100 VGS = -20V Dynamic @ TJ = 25C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 29 --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 150 24 67 17 64 52 50 4220 580 140 5080 230 500 Max. Units Conditions --- S VDS = 50V, ID = 34A 220 ID = 34A 37 nC VDS = 160V 100 VGS = 10V --- VDD = 100V --- ID = 34A ns --- R G = 1.8 --- VGS = 10V --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 160V, = 1.0MHz --- VGS = 0V, VDS = 0V to 160V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. --- --- --- Max. 450 34 38 Units mJ A mJ Diode Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 56 --- --- showing the A G integral reverse --- --- 220 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 34A, VGS = 0V --- 240 360 ns TJ = 25C, IF = 34A --- 2.1 3.2 C di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRFB260NPBF 1000 ID, Drain-to-Source Current (A) 100 ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 1000 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 4.5V 10 10 4.5V 1 1 20s PULSE WIDTH Tj = 25C 0.1 0.1 1 10 100 20s PULSE WIDTH Tj = 175C 0.1 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.00 3.5 I D = 56A ID, Drain-to-Source Current () T J = 175C RDS(on) , Drain-to-Source On Resistance 3.0 100.00 2.5 (Normalized) 2.0 10.00 TJ = 25C 1.5 1.0 1.00 3.0 5.0 7.0 VDS = 15V 20s PULSE WIDTH 9.0 11.0 13.0 15.0 0.5 0.0 -60 -40 -20 0 20 40 60 80 V GS = 10V 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRFB260NPBF 100000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + C ds gd 12 I D = 34A 10 VDS = 160V VDS = 100V VDS = 40V 10000 C, Capacitance(pF) Ciss 1000 VGS , Gate-to-Source Voltage (V) 7 Coss 100 5 Crss 2 10 1 10 100 1000 0 0 30 60 90 120 150 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.00 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100.00 T J = 175C 10.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 100sec 10 1msec Tc = 25C Tj = 175C Single Pulse 1 1 10 100 1.00 T J = 25C VGS = 0V 0.10 0.0 0.5 1.0 1.5 2.0 VSD, Source-toDrain Voltage (V) 10msec 1000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRFB260NPBF 60 V DS VGS RG RD 50 D.U.T. + 40 -VDD ID , Drain Current (A) 10V 30 Pulse Width 1 s Duty Factor 0.1 % 20 Fig 10a. Switching Time Test Circuit VDS 90% 10 0 25 50 75 100 125 150 175 TC , Case Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 1 (Z thJC ) D = 0.50 0.1 0.20 0.10 Thermal Response 0.05 0.02 0.01 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 0.01 t1/ t 2 +TC 1 J = P DM x Z thJC 0.1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFB260NPBF 15V 850 ID TOP 14A 24A 34A VDS L DRIVER 680 BOTTOM RG 20V D.U.T IAS tp + V - DD EAS , Single Pulse Avalanche Energy (mJ) A 510 0.01 Fig 12a. Unclamped Inductive Test Circuit 340 V(BR)DSS tp 170 0 25 50 75 100 125 150 175 Starting T , Junction Temperature J ( C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50K 12V .2F .3F 10 V QGS QGD VGS 3mA D.U.T. + V - DS VG Charge IG ID Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit 6 www.irf.com IRFB260NPBF Peak Diode Recovery dv/dt Test Circuit D.U.T + + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test + VDD Driver Gate Drive P.W. Period D= P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt VDD Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET(R) Power MOSFETs www.irf.com 7 IRFB260NPBF TO-220AB Package Outline 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- EMITTER 3- SOURCE 4 - DRAIN LEAD ASSIGNMENTS HEXFET 14.09 (.555) 13.47 (.530) 4- DRAIN 4.06 (.160) 3.55 (.140) 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPLE : T H IS IS AN IR F 1010 L OT CODE 1789 AS S E MB LE D ON WW 19, 1997 IN T H E AS S E MB L Y LINE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.78mH RG = 25, IAS = 34A. ISD 34, di/dt 480A/s, VDD V(BR)DSS, TJ 175C Pulse width 300s; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.7/04 8 www.irf.com |
Price & Availability of IRFB260NPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |