![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Dual Precision, Rail-to-Rail Output Operational Amplifier AD8698 FEATURES Low offset voltage: 100 V max Low offset voltage drift: 2 V/C max Low input bias current: 700 pA max Low noise: 8 nV/Hz High common-mode rejection: 118 dB min Wide operating temperature: -40C to +85C No phase reversal CONNECTION DIAGRAMS 8-Lead SOIC (R-8) OUT A 1 -IN A 2 +IN A 3 8 8-Lead MSOP (RM-8) V+ OUT B 04807-0-069 OUT A 1 -IN A 2 +IN A 3 8 V+ OUT B 04807-0-070 AD8698 7 AD8698 7 6 -IN B TOP VIEW V- 4 (Not to Scale) 5 +IN B 6 -IN B TOP VIEW V- 4 (Not to Scale) 5 +IN B Figure 1. APPLICATIONS Photodiode amplifier Sensors and controls Multipole filters Integrator GENERAL DESCRIPTION The AD8698 is a high precision, rail-to-rail output, low noise, low input bias current operational amplifier. Offset voltage is a respectable 100 V max and drift over temperature is below 2 V/C, eliminating the need for manual offset trimming. The AD8698 is ideal for high impedance sensors, minimizing offset errors due to input bias and offset currents. The rail-to-rail output maximizes dynamic range in a variety of applications, such as photodiode amplifiers, DAC I/V amplifiers, filters, and ADC input amplifiers. The AD8698 dual amplifiers are offered in 8-lead MSOP and narrow 8-lead SOIC packages. The MSOP version is available in tape and reel only. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 (c) 2004 Analog Devices, Inc. All rights reserved. AD8698 TABLE OF CONTENTS Specifications .................................................................................... 3 Absolute Maximum Ratings ........................................................... 5 Thermal Resistance ...................................................................... 5 ESD Caution.................................................................................. 5 Typical Performance Characteristics............................................. 6 Applications .................................................................................... 14 Input Overvoltage Protection................................................... 14 Driving Capacitive Loads .......................................................... 14 Instrumentation Amplifier ....................................................... 15 Composite Amplifier ................................................................. 15 Low Noise Applications ............................................................ 16 Driving ADCs ............................................................................. 16 Using the AD8698 in Active Filter Designs ........................... 16 Outline Dimensions....................................................................... 17 Ordering Guide .......................................................................... 17 REVISION HISTORY 4/04--Revision 0: Initial Version Rev. 0 | Page 2 of 20 AD8698 SPECIFICATIONS VS = 15 V, VCM = 0 V (@TA = 25oC, unless otherwise noted.) Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Offset Voltage Drift Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Swing VOS -40C < TA < +85C VOS/T IB IOS IVR CMRR AVO CDIFF CCM VOH VOH (Ref. to GND) POWER SUPPLY Power Supply Rejection Ratio Supply Current Supply Voltage DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Input Noise Voltage Input Voltage Noise Density Input Voltage Noise Density Current Noise Density VOL VOL PSRR ISY VS SR GBP OO en p-p en en in 0.1 Hz < f < 10 Hz f = 10 Hz f = 1 kHz f = 1 kHz 0.6 15 8 0.2 -40C < TA < +85C -40C < TA < +85C VCM = 13.5 V RL = 2 k, VO = 13.5 V -13.5V 118 900 -40C < TA < +85C -40C < TA < +85C 0.6 20 100 300 2 700 1500 700 1500 13.5 132 1450 6.5 4.6 14.93 14.8 -14.93 -14.82 114 132 2.8 -14.6 -14.5 V V V/C pA pA pA pA V dB V/mV pF pF V V V V dB mA mA V V/s MHz 60 Degrees V p-p nV/Hz nV/Hz pA/Hz Symbol Conditions Min Typ Max Unit (Ref. to GND) IL = 1 mA, -40C < TA < +85C IL = 5 mA, -40C < TA < +85C IL = 1 mA, -40C < TA < +85C IL = 5 mA, -40C < TA < +85C 2.5 V < VS < 15 V VO = 0 V -40C < TA < +85C -40C < TA < +85C RL = 2 k 14.85 14.6 2.5 0.4 1 3.2 3.8 15 Rev. 0 | Page 3 of 20 AD8698 VS = 2.5 V, VCM = 0 V (@TA = 25oC, unless otherwise noted.) Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Offset Voltage Drift Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Swing (Ref. to GND) (Ref. to GND) VOS -40C < TA < +85C VOS/T IB IOS IVR CMRR AVO CDIFF CCM VOH VOH VOL VOL POWER SUPPLY Power Supply Rejection Ratio Supply Current Supply Voltage DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Input Noise Voltage Input Voltage Noise Density Input Voltage Noise Density Current Noise Density -40C < TA < +85C -40C < TA < +85C VCM = 13.5 V RL = 2 k, VO = 13.5 V -1.5 105 600 -40C < TA < +85C -40C < TA < +85C 20 100 300 2 700 1500 700 1500 +1.5 120 1200 6.4 4.6 2.44 2.29 -2.43 -2.15 -2.2 -1.9 -1.6 114 132 2.3 dB mA mA V V/s MHz Degrees V p-p nV/Hz nV/Hz pA/Hz V V V/C pA pA pA pA V dB V/mV pF pF V V V V Symbol Conditions Min Typ Max Unit IL = 1 mA, -40C < TA < +85C IL = 5 mA, -40C < TA < +85C IL = 1 mA, -40C < TA < +85C IL = 5 mA, TA = 25C IL= 5mA, -40C PSRR ISY Vs SR GBP Oo en p-p en en in 2.5 V < VS < 15 V VO = 0 V -40C < TA < +85C -40C < TA < +85C RL = 2 k 2.5 0.4 1 60 2.8 3.3 15 0.1 Hz < f < 10Hz f = 10 Hz f =1 kHz f = 1 kHz 0.6 15 8 0.2 Rev. 0 | Page 4 of 20 AD8698 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to Gnd Storage Temperature Range R, RM Packages Operating Temperature Range Junction Temperature Range R, RM Packages Lead Temperature Range (Soldering, 60 Sec) Rating 15 V VS VS Indefinite -65C to +150C -40C to +85C -65C to +150C +300C THERMAL RESISTANCE JA is specified for the worst-case conditions, i.e., JA is specified for devices soldered in circuit boards for surface-mount packages. Table 4. Thermal Resistance Package Type MSOP-8 (RM) SOIC-8 (R) JA 210 158 JC 45 43 Unit C/W C/W Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 1000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 5 of 20 AD8698 TYPICAL PERFORMANCE CHARACTERISTICS 80 VS = 15V 70 60 50 GAIN (dB) 100 VS = 15V 80 60 40 20 0 -20 -40 10k 225 180 135 90 45 0 -45 -90 10M PHASE MARGIN (Degrees) 04807-0-007 04807-0-009 04807-0-001 NUMBER OF AMPLIFIERS 40 30 20 10 04807-0-034 0 0 0.2 0.4 0.6 TCVOS (V/C) 0.8 1.0 1.2 100k FREQUENCY (Hz) 1M Figure 2. Input Offset Voltage Drift Distribution 80 VS = 15V 70 CLOSED-LOOP GAIN (dB) Figure 5. Open-Loop Gain and Phase vs. Frequency 50 VS = 15V 40 AV = 100 30 20 AV = 10 10 0 AV = 1 -10 -20 NUMBER OF AMPLIFIERS 60 50 40 30 20 10 04807-0-058 0 -100 -80 -60 -40 -20 0 20 40 60 80 100 1k 10k 100k FREQUENCY (Hz) 1M 10M VOS (V) Figure 3. Offset Voltage Distribution 70 VS = 15V 60 NUMBER OF AMPLIFIERS Figure 6. Closed-Loop Gain vs. Frequency 60 VS = 15V 50 40 30 20 10 0 -400 -320 -240 -160 -80 OUTPUT IMPEDANCE () 45 30 AV = 100 AV = 10 15 AV = 1 0 10 04807-0-060 0 80 160 240 320 400 100 1k 10k 100k 1M IB (pA) FREQUENCY (Hz) Figure 4. Input Bias Distribution Figure 7. Output Impedance vs. Frequency Rev. 0 | Page 6 of 20 AD8698 VOLTAGE (mV) VS = 15V VIN = 4V p-p CL = 1nF 0 VIN VOLTAGE (1V/DIV) -200 15 VOLTAGE (V) VOUT 0 04807-0-037 VS = 15V VIN = 200mV p-p AV = -100 04807-0-041 TIME (100s/DIV) TIME (10s/DIV) Figure 8. Large Signal Transient Response Figure 11. Positive Overvoltage Recovery VOLTAGE (mV) VS = 15V VIN = 200mV p-p CL = 1nF VOLTAGE (100mV/DIV) 200 VIN VS = 15V VIN = 200mV AV = -100 0 0 VOLTAGE (V) -15 VOUT 04807-0-044 04807-0-040 TIME (100s/DIV) TIME (400s/DIV) Figure 9. Small Signal Transient Response 50 VS = 15V VIN = 200mV AV = 1 120 Figure 12. Negative Overvoltage Recovery VS = 15V 100 OVERSHOOT (%) 80 CMRR (dB) 04807-0-013 30 60 20 40 10 20 0 500 1000 1500 2000 2500 3000 1k 10k 100k FREQUENCY (Hz) 1M 10M CAPACITIVE LOAD (pF) Figure 10. Overshoot vs. Load Capacitance Figure 13. CMRR vs. Frequency Rev. 0 | Page 7 of 20 04807-0-003 0 0 AD8698 100 VS = 15V 80 CURRENT NOISE DENSITY (nV/Hz) 100 VS = 15V 10 60 -PSRR 40 +PSRR 1 20 04807-0-005 100 1k 10k 100k 1M 1 10 FREQUENCY (Hz) 100 1k FREQUENCY (Hz) Figure 14. PSRR vs. Frequency 20 VS = 15V Figure 17. Current Noise Density vs. Frequency -ISC VS = 15V SHORT-CIRCUIT CURRENT (mA) 10 VOLTAGE (200nV/DIV) 0 -10 -20 +ISC -30 04807-0-035 -40 -20 0 20 40 60 80 100 TIME (1s/DIV) TEMPERATURE (C) Figure 15. Input Voltage Noise 100 VS = 15V VOLTAGE NOISE DENSITY (nV/Hz) Figure 18. Short-Circuit Current vs. Temperature 14.96 14.95 14.94 VS = 15V IL = 1mA OUTPUT SWING (V) 14.93 14.92 14.91 14.90 14.89 14.88 -VOL VOH 10 04807-0-032 1 10 FREQUENCY (Hz) 100 1k -40 -20 0 20 40 60 80 100 TEMPERATURE (C) Figure 16. Voltage Noise Density vs. Frequency Figure 19. Output Swing vs. Temperature Rev. 0 | Page 8 of 20 04807-0-019 1 0.1 14.87 -60 04807-0-030 -40 -60 04807-0-033 0 10 0.1 0.1 AD8698 14.90 VS = 15V IL = 5mA 138 140 VS = 15V 14.85 OUTPUT VOLTAGE SWING (V) 14.80 14.75 PSRR (dB) 04807-0-020 VOH 136 134 14.70 -VOL 132 14.65 -40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) TEMPERATURE (C) Figure 20. Output Voltage Swing vs. Temperature 30 VS = 15V 20 100 Figure 23. PSRR vs. Temperature VS = 15V INPUT BIAS CURRENT (pA) OFFSET VOLTAGE (V) 50 10 0 0 -10 -50 -20 04807-0-023 -40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) TEMPERATURE (C) Figure 21. Offset Voltage vs. Temperature 155 VS = 15V 150 145 5 6 Figure 24. Input Bias Current vs. Temperature VS = 15V OUTPUT SWING (V) VOL 4 CMRR (dB) 140 135 130 125 120 -60 3 2 1 VOH 0 5 10 LOAD CURRENT (mA) 15 20 04807-0-015 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 04807-0-027 0 Figure 22. CMRR vs. Temperature Figure 25. Output Voltage Swing from Rails vs. Load Current Rev. 0 | Page 9 of 20 04807-0-025 -30 -60 -100 -60 04807-0-029 14.60 -60 130 -60 AD8698 3.5 VS = 15V 80 100 VS = 2.5V 180 135 90 45 0 -45 -90 10M 225 60 40 20 0 -20 2.5 2.0 04807-0-017 -40 -20 0 20 40 60 80 100 100k FREQUENCY (Hz) 1M TEMPERATURE (C) Figure 26. Supply Current vs. Temperature 0 VS = 15V -20 60 Figure 29. Open-Loop Gain and Phase vs. Frequency VS = 2.5V CHANNEL SEPARATION (dB) -40 -60 -80 -100 -120 -140 1k OUTPUT IMPEDANCE () 45 30 AV = 100 15 AV = 1 0 10 AV = 10 04807-0-010 10k 100k FREQUENCY (Hz) 1M 10M 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 27. Channel Separation 70 VS = 2.5V 60 Figure 30. Output Impedance vs. Frequency VS = 2.5V VIN = 2V p-p CL = 1nF NUMBER OF AMPLIFIERS 40 30 20 10 0 -100 -80 VOLTAGE (500mV/DIV) 50 0 04807-0-059 -60 -40 -20 0 20 40 60 80 100 VOS (V) TIME (100s/DIV) Figure 28. Offset Voltage Distribution Figure 31. Large Signal Transient Response Rev. 0 | Page 10 of 20 04807-0-038 04807-0-008 04807-0-002 1.5 -60 -40 10k PHASE MARGIN (Degrees) SUPPLY CURRENT (mA) 3.0 GAIN (dB) AD8698 VS = 2.5V VIN = 200mV p-p CL = 1nF VOLTAGE (mV) 200 VIN VS = 2.5V VIN = 200mV p-p AV = -100 VOLTAGE (100mV/DIV) 0 0 VOLTAGE (V) -2.5 VOUT 04807-0-045 TIME (100s/DIV) TIME (4s/DIV) Figure 32. Small Signal Transient Response 50 VS = 2.5V VIN = 200mV AV = 1 120 Figure 35. Negative Overvoltage Recovery VS = 2.5V 100 40 OVERSHOOT (%) 80 CMRR (dB) 30 60 20 40 10 20 04807-0-014 0 500 1000 1500 2000 2500 3000 1k 10k 100k FREQUENCY (Hz) 1M 10M CAPACITIVE LOAD (pF) Figure 33. Overshoot vs. Load Capacitance 100 Figure 36. CMRR vs. Frequency VOLTAGE (mV) VS = 2.5V 0 80 VIN 2.5 PSRR (dB) -200 60 -PSRR 40 +PSRR VOLTAGE (V) VOUT 0 20 VS = 2.5V VIN = 200mV p-p AV = -100 04807-0-043 100 1k 10k 100k 1M TIME (4s/DIV) FREQUENCY (Hz) Figure 34. Positive Overvoltage Recovery Figure 37. PSRR vs. Frequency Rev. 0 | Page 11 of 20 04807-0-006 0 10 04807-0-004 0 0 04807-0-042 AD8698 20 -ISC VS = 2.5V 20 30 VS = 2.5V SHORT-CIRCUIT CURRENT (mA) 10 OFFSET VOLTAGE (V) 04807-0-031 10 0 0 -10 -10 -20 +ISC -20 -40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) TEMPERATURE (C) Figure 38. Short-Circuit Current vs. Temperature 2.46 2.45 2.44 2.43 VOH 2.42 2.41 -VOL 2.40 126 2.39 04807-0-021 Figure 41. Offset Voltage vs. Temperature 134 VS = 2.5V IL = 1mA 132 VS = 2.5V OUTPUT VOLTAGE (V) CMRR (dB) 130 128 -40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) TEMPERATURE (C) Figure 39. Output Swing vs. Temperature 2.5 VS = 2.5V IL = 5mA -20 Figure 42. CMRR vs. Temperature VS = 2.5V VOH 2.1 -VOL 1.9 INPUT OFFSET CURRENT (pA) OUTPUT VOLTAGE SWING (V) 2.3 -30 -40 -50 -60 1.7 -70 04807-0-022 -40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) TEMPERATURE (C) Figure 40. Output Voltage Swing vs. Temperature Figure 43. Input Bias Current vs. Temperature Rev. 0 | Page 12 of 20 04807-0-026 1.5 -60 -80 -60 04807-0-028 2.38 -60 124 -60 04807-0-024 -30 -60 -30 -60 AD8698 2500 VS = 2.5V 2000 2.5 3.0 SUPPLY CURRENT (mA) OUTPUT SWING (mV) 2.0 1500 VOL 1000 VOH 500 1.5 1.0 0.5 04807-0-016 0 5 10 LOAD CURRENT (mA) 15 20 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE (V) Figure 44. Output Voltage Swing from Rails vs. Load Current 3.0 VS = 2.5V 2.5 -20 0 Figure 47. Supply Current vs. Supply Voltage VS = 2.5V CHANNEL SEPARATION (dB) SUPPLY CURRENT (mA) -40 -60 -80 -100 -120 -140 1k 2.0 1.5 1.0 0.5 04807-0-018 -40 -20 0 20 40 60 80 100 10k 100k FREQUENCY (Hz) 1M 10M TEMPERATURE (C) Figure 45. Supply Current vs. Temperature Figure 48. Channel Separation VS = 5V VIN = 11.4V p-p VOLTAGE (2V/DIV) TIME (400s/DIV) Figure 46. No Phase Reversal Rev. 0 | Page 13 of 20 04807-0-039 04807-0-011 0 -60 04807-0-012 0 0 AD8698 APPLICATIONS INPUT OVERVOLTAGE PROTECTION The AD8698 has internal protective circuitry which allows voltages at either input to exceed the supply voltage. However, if voltages applied at either input exceed the supply voltage by more than 2 V, it is recommended to use a resistor in series with the inputs to limit the input current and prevent damaging the device. The value of the resistor can be calculated from the following formula: VOLTAGE (100mV/DIV) VS = 15V CL = 68nF RS = 30 CS = 5nF AV = 1 VIN - VS 5 mA RS + 500 TIME (10s/DIV) DRIVING CAPACITIVE LOADS The AD8698 is stable even when driving heavy capacitive loads in any configuration. Although the AD8698 will safely drive capacitive loads well over 10 nF, it is recommended to use external compensation should the amplifier be subjected to driving a load exceeding 50 nF. This is particularly important in positive unity gain configurations, the worst case for stability. Figure 49 shows the output of the AD8698 with a 68 nF load in response to a 400 mV signal at its positive input; the overshoot is less than 25% without any external compensation. Using a simple "snubber" network reduces the overshoot to less than 10% as shown in Figure 50. VS = 15V CL = 68nF AV = 1 Figure 50. Compensated Capacitive Load Drive with Snubber The snubber network consists of a simple RC network whose values are determined empirically. V- V+ RS + - 400mV CS Figure 51. Snubber Network Table 5 provides a few starting values for optimum compensation. Table 5. Compensation Values CL (nF) 47 68 100 RS () 20 30 50 CS (nF) 7 5 3 VOLTAGE (100mV/DIV) The use of the snubber network does not recover the loss of bandwidth incurred by the load capacitance. The AD8698 maintains a unity gain bandwidth of 1 MHz with load capacitances of up to 1 nF. TIME (10s/DIV) Figure 49. Heavy Capacitive Load Drive without Compensation Rev. 0 | Page 14 of 20 04807-0-057. 04807-0-063 CL 04807-0-061 AD8698 10M V1 V+ V- R1 1k R2 10k UNITY GAIN BANDWIDTH (MHz) 1M 1/2 AD8698 R3 9k 100k R4 2k R5 10k V+ V- OP184 10k R3 9k V+ R1 9.8k R7 400 04807-0-064 V- 04807-0-062 1k V2 1 10 LOAD CAPACITANCE (nF) 100 1/2 AD8698 Figure 53. Three Op Amp In-Amp Figure 52. Unity Gain Bandwidth vs. Load Capacitance COMPOSITE AMPLIFIER The dc accuracy of the AD8698 and the ac performance of the OP184 are combined in the circuit shown in Figure 54. The composite amplifier provides a higher bandwidth, a lower offset voltage, and a higher loop, thereby reducing the gain error substantially. The circuit shown exhibits a total output rms noise of less than 500 V, corresponding to less than 3 mV of peak-to-peak noise over approximately a 3 MHz bandwidth. Cf is used to minimize peaking. The circuit has an inverting gain of 10. In applications with higher closed-loop gains, Cf is necessary to maintain a sufficient phase margin and ensure stability. This results in a narrower closed-loop bandwidth. R2 10k R1 1k VIN V- V- V+ 04807-0-065 Figure 52 shows the unity gain bandwidth as a function of load capacitance. INSTRUMENTATION AMPLIFIER Instrumentation amplifiers are used in applications requiring precision, accuracy, and high CMRR. One popular application is signal conditioning in process control, test automation, and measurement instrumentation, where the amplifier is used to amplify small signals. The triple op amp implementation uses the AD8698 at the front end with the OP184 for optimum accuracy. The circuit in Figure 53 enjoys a high overall gain, excellent dc performance, high CMRR, as well as the benefit of an output that swings to the supplies. The CMRR of the in-amp will be limited by the choice of resistor tolerance. R5 is an optional potentiometer that can be used to calibrate the circuit for maximum gain. R7 can be trimmed for optimum CMRR. The output voltage is given by: 2R3 R 2 VO =VIN 1 + R 4 R1 Cf 20pF V+ OP184 1/2 AD8698 Figure 54. Composite Amplifier Circuit Rev. 0 | Page 15 of 20 AD8698 LOW NOISE APPLICATIONS In some applications, it is critical to minimize the noise, and although the AD8698 has a low noise of typically 8 nV/Hz at 1 kHz, paralleling the two amplifiers within the same package reduces the total noise referred to the input to approximately 5.5 nV/Hz. This simple technique is depicted in Figure 55. VIN V+ V- R1 1k R2 10k R3 100 If a higher gain is desired, the corner frequency should be chosen accordingly. For example, if the amplifier is configured with a gain of 10, the corner frequency of the filter should not be more than 10 kHz. An example of an active filter is the Sallen Key. This topology gives the user the flexibility of implementing a low-pass or a high-pass filter by simply interchanging the resistors and the capacitors. In the high-pass filter of Figure 56, the damping factor Q is set to 1/2 for a maximally flat response (Butterworth). VOUT The gain is unity and the bandwidth is 10 kHz with the values shown. C1 1nF R1 11k V- V+ R3 1k R4 10k R5 100 04807-0-066 VIN C2 1nF V+ R2 22k V- 04807-0-067 Figure 55. Paralleling Amplifiers DRIVING ADCs The AD8698 can drive extremely heavy capacitive loads without any compensation. Sometimes capacitors are placed at the output of the amplifier to absorb transient currents while the op amp is interfaced with the ADC. Most op amps need a small resistor with the output to isolate the load capacitance. This results in a loss of bandwidth and slows the amplifier down substantially. However, the AD8698 maintains a unity gain bandwidth of 1 MHz with loads of up to 1 nF, as shown in Figure 52. Figure 56. Two Pole High-Pass Filter R1 11k VIN R2 11k V+ C2 1nF V- 04807-0-068 C1 2nF USING THE AD8698 IN ACTIVE FILTER DESIGNS The AD8698 is recommended for unity gain filter designs with a corner frequency of up to 100 kHz, one tenth of the op amp's unity gain bandwidth. Figure 57. Two Pole Low-Pass Filter The circuit of Figure 57 has a bandwidth of 10 kHz and a maximally flat response. In this case, the damping factor is controlled by the ratio of the capacitors and the gain is unity. Rev. 0 | Page 16 of 20 AD8698 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 5 4 4.00 (0.1574) 3.80 (0.1497) 1 6.20 (0.2440) 5.80 (0.2284) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 1.75 (0.0688) 1.35 (0.0532) 0.50 (0.0196) x 45 0.25 (0.0099) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 8 0.25 (0.0098) 0 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 58. 8-Lead Small Outline IC [SOIC] (R-8)--Dimensions shown in millimeters 3.00 BSC 8 5 3.00 BSC 4 4.90 BSC PIN 1 0.65 BSC 0.15 0.00 0.38 0.22 COPLANARITY 0.10 1.10 MAX 8 0 0.80 0.60 0.40 0.23 0.08 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187AA Figure 59. 8-Lead Small Outline IC [SOIC] (RM-8)--Dimensions shown in millimeters ORDERING GUIDE Model AD8698ARM-R2 AD8698ARM-REEL AD8698AR AD8698AR-REEL AD8698AR-REEL7 Temperature Package -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C Package Description MSOP MSOP SOIC SOIC SOIC Package Option RM-8 RM-8 R-8 R-8 R-8 Branding A02 A02 Rev. 0 | Page 17 of 20 AD8698 NOTES Rev. 0 | Page 18 of 20 AD8698 NOTES Rev. 0 | Page 19 of 20 AD8698 NOTES (c) 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04807-0-4/04(0) Rev. 0 | Page 20 of 20 This datasheet has been download from: www..com Datasheets for electronics components. |
Price & Availability of AD8698ARZ
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |