![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
TOSHIBA Original CMOS 16-Bit Microcontroller TLCS-900/L1 Series TMP91PW10 Preface Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions. **CAUTION** How to release the HALT mode Usually, interrupts can release all halts status. However, the interrupts (NMI , INT0), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of fFPH) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.) If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt. TMP91PW10 Low-Voltage CMOS 16-Bit Microcontroller TMP91PW10F 1. Outline and Device Characteristics The TMP91PW10 is an OTP-type MCU which includes a 128-K one-time programmable ROM. Data for TMP91PW10 can be written and verified using the adapter socket. The TMP91PW10 has the same pin-assignment as the TMP91CU10 (mask ROM-type). A program can be written to the TMP91PW10's built-in PROM in the same way as on the TMP91CU10. 000000H Internal I/O 000080H Internal RAM 001C80H External Area FE0000H Internal ROM (128 KB) FFFF00H Reserved FFFFFFH Figure 2.1.1 Memory map of TMP91PW1 MCU TMP91PW10F ROM 128-Kbyte OTP RAM 4 Kbytes Package QFP100 Adapter Socket BM11129 000707EBP1 For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions. TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. The products described in this document are subject to the foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. 91PW10-1 2003-03-31 TMP91PW10 AN0 to AN7 (P50 to P57) AVcc AVss VREFL VREFH 10-BIT 8-CH A/D CONVERTER DVCC [3] CPU (TLCS-900/H) DVSS [3] OSC1 Clock Gear OSC2 XT1 (P96) XT2 (P97) CLK ALE EA RESET X1 X2 TXD0 (P90) RXD0 (P91) SCLK0/ CTS0 (P92) TXD1 (P93) RXD1 (P94) SCLK1 (P95) TXD2 (P60) RXD2 (P61) SCLK2/ CTS2 (P62) TI0/INT1 (P70) TO1 (P71) 8-BIT TIMER (TIMER 0) 8-BIT TIMER (TIMER 1) 8-BIT TIMER (TIMER 2) TO3/INT2 (P72) TI4/INT3 (P73) TO5 (P74) 8-BIT TIMER (TIMER 3) 8-BIT TIMER (TIMER 4) 8-BIT TIMER (TIMER 5) 8-BIT TIMER (TIMER 6) TO7/INT4 (P75) 8-BIT TIMER (TIMER 7) SERIAL I/O (CH.2) SERIAL I/O (CH.1) SERIAL I/O (CH.0) XWA XBC XDE XHL XIX XIY XSP W B D H A C E L IX IY IZ SP 32 bits SR F PC RD (P30) WATCHDOG TIMER WR (P31) HWR (P32) BUSRQ (P34) BUSAK (P35) R/ W (P36) AM8/ 16 P37 (P00 to P07) AD0 to AD7 (P10 to P17) AD8/A8 to AD15/A15 (P20 to P27) A0/A16 to A7/A23 *PA0 to PA7 P63, P65 to P67 PORT 0 4 KB RAM PORT 1 PORT 2 PORT A PORT 6 128 KB RAM CS/WAIT CONTROLLER (3-BLOCK) CS0 (P40) CS1 (P41) CS2 (P42) WAIT (P33) NMI INTO (P64) INTERRUPT CONTROLLER 16-BIT TIMER (TIMER 8) TI8/INT5 (P80) TI9/INT6 (P81) TO8 (P82) TO9 (P83) TIA/INT7 (P84) 16-BIT TIMER (TIMER 9) TIB/INT8 (P85) TOA/TOB (P86) ( ) : Default function after reset Figure 2.1.2 TMP91PW10 Block Diagram 91PW10-2 2003-03-31 TMP91PW10 2. Pin Assignment and Functions The assignment of input and output pins for the TMP91PW10, their names and functions are described as follows: 2.1 Pin Assignment Figure 2.1.1 shows the pin assignment of the TMP91PW10. 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P65 P64/INT0 P63 P62/SCLK2/CTS2 P61/RXD2 P60/TXD2 P42/CS2 P41/CS1 P40/CS0 P37 P36/R/W P35/BUSAK P34/BUSRQ P33/WAIT P32/HWR P31/WR P30/RD P27/A7/A23 P26/A6/A22 P25/A5/A21 P24/A4/A20 P23/A3/A19 P22/A2/A18 P21/A1/A17 P20/A0/A16 DVCC DVSS NMI P17/AD15/A15 P16/AD14/A14 P15/AD13/A13 P14/AD12/A12 P13/AD11/A11 P12/AD10/A10 P11/AD9/A9 P10/AD8/A8 P07/AD7 P06/AD6 P66 P67 DVSS P50/AN0 P51/AN1 P52/AN2 P53/AN3 P54/AN4 P55/AN5 P56/AN6 P57/AN7 VREFH VREFL AVSS AVCC P70/TI0/INT1 P71/TO1 P72/TO3/INT2 P73/TI4/INT3 P74/TO5 P75/TO7/INT4 P80/TI8/INT5 P81/TI9/INT6 P82/TO8 P83/TO9 P84/TIA/INT7 P85/TIB/INT8 P86/TOA/TOB P90/TXD0 P91/RXD0 P92/SCLK0/CTS0 P93/TXD1 P94/RXD1 P95/SCLK1 AM8/16 CLK DVCC 89 90 91 92 93 94 95 96 97 98 99 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 DVSS X1 X2 EA RESET P96/XT1 P97/XT2 TEST1 TEST2 PA0 PA1 PA2 26 27 28 29 30 31 32 33 34 35 36 37 50 49 48 47 46 45 44 43 42 41 40 39 38 P05/AD5 P04/AD4 P03/AD3 P02/AD2 P01/AD1 P00/AD0 DVCC ALE PA7 PA6 PA5 PA4 PA3 Figure 2.1.1 Pin Assignment diagram 91PW10-3 2003-03-31 TMP91PW10 2.2 Pin Names and Functions The names of the input/output pins and their functions are described in Table 2.2.1. Table 2.2.1 Pin names and Functions (1/3) Pin name P00 to P07 AD0 to AD7 P10 to P17 AD8 to AD15 A8 to A15 P20 to P27 A0 to A7 A16 to A23 P30 RD Number of pins 8 8 I/O I/O I/O I/O I/O Output I/O Output Output Output Output Output Output I/O Output I/O Input I/O Input Functions Port 0: I/O port that allows I/O to be selected at the bit level Address (lower): Bits 0 to 7 for address and data bus Port 1: I/O port that allows I/O to be selected at the bit level Address and data (upper): Bits 8 to 15 for address and data bus Address: Bits 8 to 15 for address bus Port 2: I/O port that allows I/O to be selected at the bit level (with pull-up resistor) Address: Bits 0 to 7 for address bus Address: Bits 16 to 23 for address bus Port 30: Output port Read: Strobe signal for reading external memory When P3 WR , HWR , CS0 , CS1 and CS2 . 8 1 P31 WR 1 1 1 1 P32 HWR P33 WAIT P34 BUSRQ P35 BUSAK 1 I/O Output I/O Output I/O I/O Output I/O Output I/O Output Input Input I/O Output I/O Input I/O I/O Input I/O I/O Input I/O Port 35: I/O port (with pull-up resistor) Bus Acknowledge: Signal used to acknowledge high impedance on pins D0 to 15, A0 to 23, RD , WR , HWR , CS0 , CS1 and CS2 by receiving BUSRQ . Port 36: I/O port (with pull-up resistor) Read/Write: 1 represents Read or Dummy cycle; 0 represents Write cycle. Port 37: I/O port Port 40: I/O port (with pull-up resistor) Chip Select 0: Outputs 0 when address is within specified address area. Port 41: I/O port (with pull-up resistor) Chip Select 1: Outputs 0 when address is within specified address area. Port 42: I/O port (with pull-down resistor) Chip Select 2: Outputs 0 when address is within specified address area. Port 5: Input port Analog input: Pin used to input to AD converter Port 60: I/O port (level shift pin) Serial Send Data 2 Port 61: I/O port (level shift pin) Serial Receive Data 2 Port 62: I/O port (level shift pin) Serial Clock I/O 2 Serial Data Send Enable 2 (Clear to Send) Port 63: I/O port Port 64: I/O port Interrupt Request pin 0: Interrupt triggered on either level or rising edge (programmable) Port 65 to 67: I/O ports P36 R/ W P37 P40 CS0 1 1 1 1 1 8 1 1 1 P41 CS1 P42 CS2 P50 to P57 AN0 to AN7 P60 TXD2 P61 RXD2 P62 SCLK2 CTS2 P63 P64 INT0 P65 to P67 1 1 3 Note: A DMAC controller's internal memory or I/O devices cannot be accessed using BUSRQ and BUSAK . 91PW10-4 2003-03-31 TMP91PW10 Table 2.2.1 Pin names and Functions (2/3) Pin name P70 TI0 INT1 P71 TO1 P72 TO3 INT2 P73 TI4 INT3 P74 TO5 P75 TO7 INT4 P80 TI8 INT5 P81 TI9 INT6 P82 TO8 P83 TO9 P84 TIA INT7 P85 TIB INT8 P86 TOA TOB P90 TXD0 P91 RXD0 P92 SCLK0 CTS0 Number of pins 1 I/O I/O Input Input I/O Output I/O Output Input I/O Input Input I/O Output I/O Output Input I/O Input Input I/O Input Input I/O Output I/O Output I/O Input Input I/O Input Input I/O Output Output I/O Output I/O Input I/O I/O Input I/O Output I/O Input I/O I/O I/O Input I/O Output Functions Port 70: I/O port Timer Input 0: Timer 0 input pin Interrupt Request pin 1: Interrupt request on rising edge Port 71: I/O port Timer Output 1: Timer 0 or 1 output Port 72: I/O port Timer Output 3: Timer 2 or 3 output Interrupt Request pin 2: Interrupt request on rising edge Port 74: I/O port Timer Input 4: Timer 4 input Interrupt Request pin 3: Interrupt request on rising edge Port 75: I/O port Timer Output 5: Timer 4 or 5 output Port 76: I/O port Timer Output 7: Timer 6 or 7 output Interrupt Request pin 4: Interrupt request on rising edge Port 80: I/O port Timer Input 8: Timer 8 count or capture trigger signal input Interrupt Request pin 5: Interrupt request on programmable rising / falling edge Port 81: I/O port Timer Input 9: Timer 8 count or capture trigger signal input Interrupt Request pin 6: Interrupt request on rising edge Port 82: I/O port Timer Output 8: Timer 8 output pin Port 83: I/O port Timer Output 9: Timer 9 output pin Port 84: I/O port Timer Input A: Timer 9 count or capture trigger signal input Interrupt Request pin 7: Interrupt request on programmable rising / falling edge Port 85: I/O port Timer Input B: Timer 9 count or capture trigger signal input Interrupt Request pin 8: Interrupt request on rising edge Port 86: I/O port Timer Output A: Timer A output pin Timer Output B: Timer B output pin Port 90: I/O port Serial Send Data 0 Port 91: I/O port Serial Receive Data 0 Port 92: I/O port Serial Clock I/O 0 Serial Data Send Enable 0 (Clear to Send) Port 93: I/O port Serial Send Data 1 Port 94: I/O port Serial Receive Data 1 Port 95: I/O port Serial Clock I/O 1 Port 96: I/O port (open drain output) Low-frequency oscillator connecting pin Port 97: I/O port (open drain output) Low-frequency oscillator connecting pin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 P93 TXD1 P94 RXD1 P95 SCLK1 P96 XT1 P97 XT2 1 1 1 1 1 91PW10-5 2003-03-31 TMP91PW10 Table 2.2.1 Pin names and Functions (3/3) Pin name PA0 to PA7 ALE NMI Number of pins 3 1 1 1 1 1 I/O I/O Output Input Output Input Input Functions Port A0 to A7: I/O ports (Level Shift port) Address Latch Enable (can be disabled for reducing noise.) Non-Maskable Interrupt Request pin: Interrupt request pin with programmable falling edge or both edges. Clock Output: Outputs (external input clock / 4) clock. Pulled up during reset The Vcc pin should be connected. Address Mode: Selects external data bus width. The Vcc pin should be connected. The data bus width for external access is set by the Chip Select / WAIT Control register and the Port 1 Control register. CLK EA AM8/ 16 RESET 1 1 1 1 1 2 2 3 3 Input Input Input Reset: Initializes LSI. (With pull-up resistor) Reference power supply input pin for AD converter (H) Reference power supply input pin for AD converter (L) Power supply pin for AD converter GND power supply pin for AD converter (0 V) VREFH VREFL AVCC AVSS X1/X2 TEST1/TEST2 DVCC DVSS I/O Output /Input Oscillator connecting pin TEST1 should be connected with TEST2 pin. Power supply pin GND pin (0 V) Note: All pins that have built-in pull-up/pull-down resistors (other than the RESET pin) can be disconnected from their built-in pull-up/pull-down resistors by software. 91PW10-6 2003-03-31 TMP91PW10 (1) PROM mode Pin Function A7 to A0 A15 to A8 A16 D7 to D0 CE OE PGM Pin Number 8 8 1 8 1 1 1 1 4 4 Input/Output Input Input Input I/O Input Input Input Power supply Power supply Power supply Function Pin Name (MCU mode) P27 to P20 P17 to P10 P33 P07 to P00 P32 P30 P31 EA Memory address of program Memory data of program Chip enable Output control Program control 12.75 V/5 V (Power supply used for programming) 6.25 V/5 V 0V VPP VCC VSS VCC, AVCC VSS, AVSS Pin Function P34 RESET Pin Number 1 1 1 1 1 1 7 2 Input/Output Input Input Input Output Input Output Input Input/Output Open Crystal Pin setting Fix to Low level (security pin) Fix to Low level (PROM mode) CLK ALE X1 X2 P42 to P40 P37 to P35 AM8/16 TEST1/TEST2 P57 to P50 P67 to P60 P73 to P70 P87 to P80 P97 to P90 PA7 to PA0 VREFH VREFL NMI Fix to High level Short 48 I/O Open WDTOUT 91PW10-7 2003-03-31 TMP91PW10 3. Operation This section describes the functions and basic operations of the TMP91PW10. The TMP91PW10 has a PROM instead of the mask ROM which of the TMP91CU10. All other configuration details and functions are the same as for the TMP91CU10. For information of functions of the TMP91PW10 which are not described here, see the TMP91CU10. The TMP91PW10 has two operational modes: MCU mode and PROM mode. 3.1 MCU mode (1) Mode setting and functions Setting the CLK pin to open selects MCU Mode. In MCU mode, operation is same as for the TMP91CU10. 3.2 Memory Map Figure 3.2.1, Figure 3.2.1 are memory maps of theTMP91PW10. 2 000000H 000080H Internal I/O Internal RAM 001080H Internal ROM (128 KB) 00000H External FE0000H Internal ROM 1FFFFH FFFF00H FFFFFFH Reserved Figure 3.2.1 Memory map for MCU mode Figure 3.2.2 Memory map for PROM mode, 3.3 PROM Mode (1) Mode setting and functions PROM mode is set by setting the RESET and CLK pins to L. Programming and verification of the internal PROM is carried out using a general PROM programmer with an adapter socket. (1) OTP adaptor BM11129: TMP93PS40DF, TMP93PW40DF, TMP91PW10F adapters (2) Setting OTP adapter Set the switch (SW1) to N side. 91PW10-8 2003-03-31 TMP91PW10 4. 4.1 Electrical Characteristics Absolute Maximum Ratings X used in an expression shows a frequency for the clock (fFPH) as selected by SYSCR1 VCC VIN IOL IOH Parameter Power Supply Voltage Input Voltage Output Current (total) Output Current (total) Power Dissipation (Ta = 8 C) Soldering Temperature (10 s) Storage Temperature Operating Temperature Rating 0.5 to 6.5 0.5 to VCC + 0.5 120 80 600 260 65 to 150 40 to 85 Unit V V mA mA mW C C C PD TSOLDER TSTG TOPR Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded. 4.2 DC Characteristics Parameter Symbol VCC Condition fc = 4 to 13.5 MHz fs = 30 to 34 kHz (Ta = 40 to 85 C) VCC 2.7 V Min Typ. (Note 1) Max Unit Power Supply Voltage AVCC = VCC AVSS = VSS = 0 V AD0 to AD15 Port 2 to A (except P87, P5) Input High Voltage RESET , NMI , INT0 2.7 3.6 0.8 0.3 VCC V VIL VIL1 VIL2 VIL3 VIL4 VIH VIH1 VIH2 VIH3 VIH4 VOL IDAR (Note2) ILI ILO EA, AM8/ 16 X1, Port 5 AD0 to AD15 Port 2 to A (except P87) VCC = 2.7 to 3.6 V 0.3 0.25 VCC 0.3 0.2 VCC VCC 2.7 V 2.2 0.7 VCC 0.75 VCC VCC + 0.3 V Input High Voltage RESET , NMI , INT0 EA, AM8/ 16 X1 VCC = 2.7 to 3.6 V VCC 0.3 0.45 1.0 3.5 V mA 0.8 VCC IOL = 1.6 mA (VCC = 2.7 to 3.6 V) VEXT = 1.5 V REXT = 1.1 k (VCC = 3 V 10%) 0.0 0.2 VIN VIN VCC VCC 0.2 Output Low Voltage Darlington Drive Current (8 output pins max) Input Leakage Current Output Leakage Current 0.02 0.05 5 10 mA Note 1: Typical values are for Ta = 25 C and VCC = 5 V unless otherwise noted. Note 2: I-DAR is guranteed for total of up to 8 ports. 91PW10-13 2003-03-31 TMP91PW10 Parameter Power-down Voltage (@STOP, RAM backup) RESET Pull-up Resistor Pin Capacitance Schmitt Width RESET , NMI , INT0 Symbol VSTOP RRST CIO VTH PKL PKH Condition VIL2 = 0.2 VCC, VIH2 = 0.8 VCC VCC = 3 V 10% fc = 1 MHz Min 2.0 30 0.4 Typ. (Note 1) Max 6.0 250 10 Unit V k pF V 1.0 200 300 13 8.6 5.5 0.95 40 32 18 6 0.2 20 14 9.5 2.5 55 45 35 20 10 20 50 Programmable Pull-down Resistor Programmable Pull-up Resistor NORMAL (Note2) RUN IDLE2 IDLE1 SLOW (Note2) RUN IDLE2 IDLE1 VCC = 3 V 10% VCC = 3 V 10% Vcc = 3 V 10% fc = 12.5 MHz (Typ.: VCC = 3.0 V) 30 80 k mA ICC VCC =3 V 10% fs = 32.768 kHz (Typ.: v = 3.0 V) Ta 50 C 70 C 85 C VCC = 2.0 to 3.6 V mA mA STOP Ta Ta Note 1: Typical values are for Ta = 25 C and VCC = 3 V unless otherwise noted. Note 2: ICC measurement condition (NORMAL): All functions are operational: Output pins are open and input pins are fixed. 91PW10-14 2003-03-31 TMP91PW10 4.3 AC Characteristics (1) VCC = 3.0 V 10% V Symbol tOSC tCLK CLK Hold ALE Fall tAK tKA tAL tLA tLL tLC tCL tACL tACH tCA tADL tADH tRD tRR tHR tRAE tWW tDW tWD tAWH tAWL tCW tAPH tAPH2 tAP 2.5x + 50 3.5 +100 x 2.0x 2.0x 0.5x 2.0x 0 20 40 80 32 3.5x 3.0x 2.0x + 0 2.5x 120 235 359 60 60 148 65 40 ALE Rise RD / WR Fall RD / WR Fall No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Osc. Period (=x) CLK Width A0 to A23 Valid CLK Valid ALE Fall ALE Fall A0 to A15 Valid ALE High Width Parameter Value Min 72 2x 0.5x 1.5x 0.5x 0.5x x 0.5x 0.5x x 1.5x 0.5x 40 30 85 34 30 50 27 30 40 50 37 3.0x 3.5x 2.0x 55 65 45 13.5 MHz Max 31250 Min 74 108 7 26 30 7 24 10 7 34 61 0 Max Unit ns ns ns ns ns ns ns ns ns ns ns ns A0 to A23 Hold A0 to A15 Hold RD / WR Fall RD / WR Rise A0 to A15 Valid A0 to A23 Valid RD / WR Rise A0 to A23 Hold D0 to D15 Input D0 to D15 Input A0 to A15 Valid A0 to A23 Valid RD Fall 130 215 100 108 0 54 108 68 5 199 162 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns D0 to D15 Input D0 to D15 Hold A0 to A15 Output WR Rise RD -Low Pulse Width RD Rise RD Rise WR -Low Pulse Width D0 to D15 Valid WR Rise D0 to D15 Hold WAIT Input WAIT Input WAIT Hold A0 to A23 Valid A0 to A15 Valid RD / WR Fall (1 WAIT + n mode) (1 WAIT + n mode) (1 WAIT + n mode) A0 to A23 Valid A0 to A23 Valid A0 to A23 Valid Port Input Port Hold Port Valid AC Measuring Conditions Output Level: High 2.2 V/Low 0.8 V, CL = 50 pF (However, CL = 100 pF for AD0 to AD15, A0 to A23, ALE RD , WR , HWR , R/ W , CLK ) Input Level: High 2.4 V/Low 0.45 V (AD0 to AD15) High 0.8Vcc/Low 0.2Vcc (except for AD0 to AD15) 91PW10-15 2003-03-31 TMP91PW10 (2) Read Cycle tOSC X1 tCLK CLK tAK A0 to A23 tKA CS0 to CS2 R/ W tAWH tAWL tCW WAIT tAPH tAPH2 Port Input tADH RD tCA tRR tACH tACL tLC A0 to A15 tAL tLL tLA tRAE tHR tRD tADL D0 to D15 AD0 to AD15 tCL ALE 91PW10-16 2003-03-31 TMP91PW10 (3) Write Cycle X1 CLK A0 to A23 CS0 to CS2 R/ W WAIT Port Output WR , HWR tWW tDW AD0 to AD15 A0 to A15 D0 to D15 tWD ALE 91PW10-17 2003-03-31 TMP91PW10 4.4 AD Conversion Characteristics AVCC = VCC, AVSS = VSS Parameter Symbol VrefH VrefL Vain Iref (VrefL = 0 V) Min VCC 0.2 V VSS VrefL Typ. VCC VSS Max VCC VSS + 0.2 V VrefH Unit V Analog Reference Voltage (+) Analog Reference Voltage ( ) Analog Input Voltage Range Analog Current for Analog Reference Voltage VCC = 3 V 10% 0.5 0.02 1 1.5 5.0 3 mA A LSB Note 1: LSB = (VrefH VrefL)/2 10 V Note 2: The operation of the AD converter is guaranteed only when fc (the high frequency oscillator) is used (it is not guaranteed when fs is used). It is guaranteed when fFPH 4 MHz Note 3: The value Icc includes the current which flows through the AVCC pin. 91PW10-18 2003-03-31 TMP91PW10 4.5 Serial Channel Timing (1) I/O Interface Mode SCLK Input Mode Parameter Symbol tSCY Rising Edge or Falling Edge2 of SCLK tOSS Value Min 16x tSCY/2 5 x 50 5x 100 0 tSCY 5x 100 32.768 kHz Min 488 91.5 1 13.5 MHz Min 1.18 172 Max Max Max Unit ms ns SCLK Cycle Output Data SCLK Rising Edge or Falling Edge SCLK Rising Edge or Falling Edge2 SCLK Rising Edge or Falling Edge2 Output Data Hold Input Data Hold Effective Data input tOHS tHSR tSRD 152 0 336 270 0 714 ns ns ns Note 1: System clock is fs or input clock to prescaler is divisor clock of fs. Note 2: The rising edge is used in SCLK Rising mode. The falling edge is used SCLK Falling mode. SCLK Output Mode Parameter SCLK Cycle (Programmable) Output Data SCLK Rising Edge Output Data Hold Input Data Hold Effective Data Input Symbol tSCY tOSS tOHS tHSR tSRD Variable Frequency Min 16x tSCY 2x 150 2x 80 0 tSCY 2x 150 32.768 kHz Min 488 427 60 0 1 13.5 MHz Min 1.18 886 68 0 Unit s ns ns ns Max 8192x Max 250 Max 606.2 SCLK Rising Edge SCLK Rising Edge SCLK Rising Edge 428 886 ns Note 1: System clock is fs, or input clock to prescaler is divisor clock of fs. tSCY SCLK SCLK Output mode (only rising edge is used) SCLK (SCLK Falling Edge mode) OUTPUT DATA tOSS 0 tOHS 1 tSRD tHSR 1 VALID 2 VALID 3 VALID 2 3 INPUT DATA RxD 0 VALID 91PW10-19 2003-03-31 TMP91PW10 4.6 Event Counter (TI0, TI4, TI8, TI9, TIA, TIB) Variable Frequency Min Max 13.5 MHz Unit Min 692 336 336 Parameter Clock Cycle Low Level Clock Pulse Width High Level Clock Pulse Width Symbol tVCK tVCKL tVCKH Max ns ns ns 8X + 100 4X + 40 4X + 40 4.7 Interrupt and Capture (1) NMI, INT0 interrupts Variable Frequency Min Max 13.5 MHz Unit Min 296 296 Parameter NMI , INT0 to INT 4 Low Level Pulse Width NMI , INT0 High Level Pulse Width Symbol tINTAL tINTAH Max ns ns 4X 4X (2) INT5 to INT8 interrupts, capture The INT5 to INT8 input pulse width depends on the CPU operation clock and the timer (9-bit prescaler). The following shows the pulse width for each clock. tINTBL System clock selected (INT5 to INT8 low level pulse width) tINTBH (INT5 to INT8 high level pulse width) Unit Variable Frequency Min 13.5 MHz Min 692 244.3 9.572 Variable Frequency Min 8X + 100 8XT + 0.1 128X + 0.1 13.5 MHz Min 692 244.3 9.572 ns 00 (fFPH) 0 (fc) 01 (fs) 10 (fc/16) 00 (fFPH) 01 (fs) 8X + 100 8XT + 0.1 128X + 0.1 s 1 (fs) Note 8XT + 0.1 244.3 8XT + 0.1 244.3 Note1: XT shows cycle of low clock (fs). A calculation value is (fs) = 32.768 [kHz] Note2: When fs is used as the system clock, fc/16 cannot be selected as the prescaler clock. tSCH SCOUT tSCL 91PW10-20 2003-03-31 TMP91PW10 4.8 Timing Chart for Bus Request / Bus Acknowledge (Note 1) CLK tBRC BUSRQ tBRC tCBAH tCBAL BUSAK tBAA AD0 to AD15, A0 to A23, CS0 to CS2 , R/ W tABA (Note 2) RD , WR , HWR (Note 2) ALE Parameter BUSRQ Set-up Time to CLK Symbol tBRC tCBAL tCBAH tABA tBAA Value Min 120 1.5x + 120 0.5x + 40 0 0 80 80 0 0 13.5 MHz Max Min 120 231 80 77 80 Max Unit ns ns ns ns ns CLK CLK BUSAK Falling Edge BUSAK Rising Edge Output Buffer off to BUSAK BUSAK to Output Buffer on Note 1: Even if the BUSRQ signal goes Low, the bus will not be released while the WAIT signal is Low. The bus will only be released when BUSRQ goes Low while WAIT is High. Note 2: This line shows only that the output buffer is in the OFF state. Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external capacitance. Therefore, to fix the signal level using an external resistor during bus release, careful design is necessary, as fixing of the level is delayed. The internal programmable pull-up/pull-down resistor is switched between the active and non-active states by the internal signal. 91PW10-21 2003-03-31 TMP91PW10 4.9 Read operation in PROM mode DC/AC characteristics Ta = 25 Parameter Symbol Vpp VIH1 VIL1 TACC CL = 50 pF 5 C VCC = 5 V Max Unit V V V ns 10% Condition Min 4.5 2.2 0.3 - Vpp Read Voltage Input High Voltage (A0 to A16, CE , OE and PGM ) Input High Voltage (A0 to A16, CE , OE and PGM ) Address to Output Delay 5.5 VCC + 0.3 0.8 2.25TCYC + TCYC = 400 ns (10 MHz Clock) = 200 ns 4.10 Program operation in PROM mode DC/AC characteristics Ta = 25 Parameter Programming Supply Voltage Maximum Input Voltage (D0 to D7, A0 to A16, CE , OE and PGM ) Minimum Input Voltage (D0 to D7, A0 to A16, CE , OE and PGM ) VCC Supply Current VCC Supply Current PGM Program Pulse Width 5 C VCC = 6.25 V Typ 12.75 0.25 V Unit V V V mA mA ns Symbol Vpp VIH VIL ICC IPP tPW Condition Min 12.5 2.6 0.3 Max 13.00 VCC + 0.3 8 50 50 fc = 10 MHz VPP = 13.00 V CL = 50 pF 0.095 0.1 0.105 4.11 Timing chart of Read operation in PROM mode A0 to A16 CE OE PGM tACC D0 to D7 Data output 91PW10-22 2003-03-31 TMP91PW10 4.12 Timing chart of Program operation in PROM mode A0 to A16 CE OE D0 to D7 UNKNOWN Data-in stable Data output PGM tPW Vpp Note 1. The power supply Vpp (12.75 V) must be turned on at the same time as or later than the power supply VCC and must be turned off at the same time as or early than the power supply VCC. Note 2. If Vpp =12.75 V, do not remove or insert the device, as this may damage it. If Vpp = 5 V the device can be removed and replaced without risk. Note 3. The maximum rating for the Vpp pin is 14.0 V. Ensure that this rating is never exceeded. 91PW10-23 2003-03-31 |
Price & Availability of E03033191PW10SUMMARY
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |