![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
APT50M85JVR 500V 50A 0.085 S G D S POWER MOS V (R) Power MOS V(R) is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS V(R) also achieves faster switching speeds through optimized gate layout. SO ISOTOP fi 2 T- 27 "UL Recongnized" file # 145592 * Faster Switching * Lower Leakage * 100% Avalanche Tested * Popular SOT-227 Package D G S Unless stated otherwise, Microsemi discrete MOSFETs contain a single MOSFET die. This device is made with two parallel MOSFET die. It is intended for switch-mode operation. It is not suitable for linear mode operation. MAXIMUM RATINGS Symbol VDSS ID IDM VGS VGSM PD TJ,TSTG TL IAR EAR EAS Parameter Drain-Source Voltage Continuous Drain Current @ TC = 25C Pulsed Drain Current 1 All Ratings: TC = 25C unless otherwise specified. APT50M85JVR UNIT Volts Amps 500 50 200 30 40 500 4 -55 to 150 300 30 30 4 Gate-Source Voltage Continuous Gate-Source Voltage Transient Total Power Dissipation @ TC = 25C Linear Derating Factor Operating and Storage Junction Temperature Range Lead Temperature: 0.063" from Case for 10 Sec. Avalanche Current 1 Volts Watts W/C C Amps mJ (Repetitive and Non-Repetitive) 1 Repetitive Avalanche Energy Single Pulse Avalanche Energy 1300 STATIC ELECTRICAL CHARACTERISTICS Symbol BVDSS ID(on) RDS(on) IDSS IGSS VGS(th) Characteristic / Test Conditions Drain-Source Breakdown Voltage (VGS = 0V, ID = 250A) On State Drain Current 2 MIN TYP MAX UNIT Volts Amps 500 50 0.085 50 500 2 4 100 (VDS > I D(on) x R DS(on) Max, VGS = 10V) 2 Drain-Source On-State Resistance (VGS = 10V, 0.5 ID[Cont.]) Ohms A nA Volts 050-5535 Rev B 6-2006 Zero Gate Voltage Drain Current (VDS = VDSS, VGS = 0V) Zero Gate Voltage Drain Current (VDS = 0.8 VDSS, VGS = 0V, TC = 125C) Gate-Source Leakage Current (VGS = 30V, VDS = 0V) Gate Threshold Voltage (VDS = VGS, ID = 1mA) CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com DYNAMIC CHARACTERISTICS Symbol Ciss Coss Crss Qg Qgs Qgd td(on) tr td(off) tf Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge 3 APT50M85JVR Test Conditions VGS = 0V VDS = 25V f = 1 MHz VGS = 10V VDD = 0.5 VDSS ID = 0.5 ID[Cont.] @ 25C VGS = 15V VDD = 0.5 VDSS ID = ID[Cont.] @ 25C RG = 0.6 MIN TYP MAX UNIT 9000 1240 500 390 42 170 15 17 52 7 10800 1740 750 535 65 255 30 34 80 14 ns nC pF Gate-Source Charge Gate-Drain ("Miller ") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS Symbol IS ISM VSD t rr Q rr Characteristic / Test Conditions Continuous Source Current (Body Diode) Pulsed Source Current Diode Forward Voltage 1 2 MIN TYP MAX UNIT Amps Volts ns C 50 200 1.3 690 18 (Body Diode) (VGS = 0V, IS = -ID[Cont.]) Reverse Recovery Time (IS = -ID[Cont.], dl S /dt = 100A/s) Reverse Recovery Charge (IS = -ID[Cont.], dl S/dt = 100A/s) THERMAL / PACKAGE CHARACTERISTICS Symbol RJC RJA VIsolation Torque Characteristic Junction to Case Junction to Ambient RMS Voltage (50-60 Hz Sinusoidal Waveform From Terminals to Mounting Base for 1 Min.) Maximum Torque for Device Mounting Screws and Electrical Terminations. MIN TYP MAX UNIT C/W Volts 0.25 40 2500 13 lb*in 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 Pulse Test: Pulse width < 380 S, Duty Cycle < 2% 3 See MIL-STD-750 Method 3471 4 Starting T = +25C, L = 2.89mH, R = 25, Peak I = 30A j G L Microsemi reserves the right to change, without notice, the specifications and information contained herein. 0.3 , THERMAL IMPEDANCE (C/W) D=0.5 0.1 0.2 0.05 0.1 0.05 0.02 0.01 SINGLE PULSE PDM 0.01 0.005 Note: t1 t2 Duty Factor D = t1/t2 Peak TJ = PDM x ZJC + TC 050-5535 Rev B 6-2006 Z JC 0.001 10-5 10-3 10-2 10-1 1.0 10 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION 10-4 APT50M85JVR 150 ID, DRAIN CURRENT (AMPERES) VGS=7V, 10V & 15V ID, DRAIN CURRENT (AMPERES) 150 VGS=15V VGS=10V VGS=7V 6V 120 6V 90 5.5V 60 5V 30 4.5V 4V 0 0 50 100 150 200 250 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 2, TYPICAL OUTPUT CHARACTERISTICS 120 90 5.5V 60 5V 30 4.5V 4V 0 4 8 12 16 20 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 3, TYPICAL OUTPUT CHARACTERISTICS 0 RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE 150 ID, DRAIN CURRENT (AMPERES) TJ = -55C TJ = +25C TJ = +125C 1.5 V GS NORMALIZED TO = 10V @ 0.5 I [Cont.] D 120 1.4 1.3 1.2 1.1 1.0 0.9 90 VDS> ID (ON) x RDS (ON)MAX. 250SEC. PULSE TEST @ <0.5 % DUTY CYCLE VGS=10V VGS=20V 60 TJ = +125C TJ = +25C 0 TJ = -55C 30 0 2 4 6 8 VGS, GATE-TO-SOURCE VOLTAGE (VOLTS) FIGURE 4, TYPICAL TRANSFER CHARACTERISTICS 50 ID, DRAIN CURRENT (AMPERES) 0 30 60 90 120 150 ID, DRAIN CURRENT (AMPERES) FIGURE 5, RDS(ON) vs DRAIN CURRENT 40 BVDSS, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) 1.15 1.10 30 1.05 20 1.00 10 0.95 50 75 100 125 150 TC, CASE TEMPERATURE (C) FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 0 25 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE 1.2 0.90 -50 2.5 I = 0.5 I [Cont.] D D V VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) GS = 10V 2.0 1.1 1.0 0.9 0.8 0.7 050-5535 Rev B 6-2006 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) FIGURE 8, ON-RESISTANCE vs. TEMPERATURE -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (C) FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE 0.6 -50 APT50M85JVR 30,000 ID, DRAIN CURRENT (AMPERES) 10,000 C, CAPACITANCE (pF) Ciss 5,000 Coss Crss 1,000 500 Graph removed VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 10, MAXIMUM SAFE OPERATING AREA VGS, GATE-TO-SOURCE VOLTAGE (VOLTS) .01 .1 1 10 50 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 11, TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE IDR, REVERSE DRAIN CURRENT (AMPERES) 100 20 I = I [Cont.] D D 200 100 TJ =+150C 50 TJ =+25C 16 VDS=100V VDS=250V 12 VDS=400V 8 10 5 4 0 0 150 300 450 600 750 Qg, TOTAL GATE CHARGE (nC) FIGURE 12, GATE CHARGES vs GATE-TO-SOURCE VOLTAGE 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, SOURCE-TO-DRAIN VOLTAGE (VOLTS) FIGURE 13, TYPICAL SOURCE-DRAIN DIODE FORWARD VOLTAGE 1 SOT-227 (ISOTOP(R)) Package Outline 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 11.8 (.463) 12.2 (.480) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) r = 4.0 (.157) (2 places) 4.0 (.157) 4.2 (.165) (2 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 30.1 (1.185) 30.3 (1.193) 050-5535 Rev B 6-2006 1.95 (.077) 2.14 (.084) * Source Drain * Source terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Source Dimensions in Millimeters and (Inches) Gate ISOTOP(R) is a registered trademark of ST Microelectronics NV. Microsemi's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. |
Price & Availability of APT50M85JVR
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |