Part Number Hot Search : 
15N65 587B201 587B201 CH341DS KDV174 F1G09 14004 XXXXXX
Product Description
Full Text Search
 

To Download DER-94 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Design Example Report
Title Specification Application Author Document Number Date Revision
Notable Features * * * * * * * * * Low Standby Power Consumption (< 1 W Input for 0.3 W Output @ 265 VAC) Meets 12 V Regulation Requirements for Low Cost LCD Panel without Linear Regulator Meets Output Ripple Requirements During 12 V Burst Load Test Meets 5 V LPS Standard without Fuse (Auto-restart) Built-In OVP (Auto-restart) Meets CISPR22B Conducted EMI with Margin High Efficiency (81% Minimum, 84% Typical) Low Parts Count No TVS for Primary Snubber
46 W Power Supply using TOP246Y Input: 90 - 265 VAC Output: 5 V / 2 A, 12 V / 3 A LCD Monitor Power Integrations Applications Department DER-94 September 12, 2005 1.0
The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.
Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
Table Of Contents
Introduction................................................................................................................. 4 Power Supply Specification ........................................................................................ 5 Schematic................................................................................................................... 6 Circuit Description ...................................................................................................... 8 4.1 Input EMI Filtering ............................................................................................... 8 4.2 TOPSwitch Primary ............................................................................................. 8 4.3 Output Rectification ............................................................................................. 8 4.4 Output Feedback................................................................................................. 8 4.5 Active Preload/Output Protection ........................................................................ 9 5 Printed Circuit Layout ............................................................................................... 10 6 Bill Of Materials ........................................................................................................ 11 7 Transformer Specification......................................................................................... 13 7.1 Electrical Diagram ............................................................................................. 13 7.2 Electrical Specifications..................................................................................... 13 7.3 Materials............................................................................................................ 14 7.4 Transformer Build Diagram ............................................................................... 14 7.5 Transformer Construction.................................................................................. 15 7.6 Transformer Spreadsheet ................................................................................. 17 8 Performance Data .................................................................................................... 20 8.1 Efficiency........................................................................................................... 20 8.2 Standby Input Power ......................................................................................... 20 8.3 Cross Regulation Matrix .................................................................................... 21 8.4 Load Regulation Matrix, 90VAC ........................................................................ 21 8.5 5V Power Limit .................................................................................................. 21 9 Thermal Performance............................................................................................... 22 10 Waveforms............................................................................................................ 23 10.1 Drain Voltage and Current, Normal Operation .................................................. 23 10.2 Output Voltage Start-up Profile ......................................................................... 23 10.3 Load Transient Response (75% to 100% Load Step) ....................................... 24 10.4 Overvoltage Protection...................................................................................... 24 11 Output Ripple........................................................................................................ 25 11.1 Ripple Measurement Technique ....................................................................... 25 11.2 Measurement Results ....................................................................................... 26 11.3 Ripple with 12 V Burst Load .............................................................................. 27 12 Gain-Phase Measurements .................................................................................. 28 12.1 115 VAC Maximum Load .................................................................................. 28 12.2 230 VAC Maximum Load .................................................................................. 29 13 Line Transient Testing .......................................................................................... 30 14 Conducted EMI......................................................................................................... 31 15 Revision History.................................................................................................... 33 1 2 3 4
Page 2 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
Important Notes: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolated source to provide power to the prototype board. Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.
Page 3 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
1 Introduction
This document is an engineering report describing a universal input, 2-output, 46 W power supply utilizing a TOP246. This power supply is intended as a reference design for LCD monitor internal power supplies The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.
Figure 1 - LCD Monitor Internal Power Supply Picture
Page 4 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
2 Power Supply Specification
Description Input Voltage Frequency Standby Input Power (265 VAC) Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Output Voltage 2 Output Ripple Voltage 2 Output Current 2 Total Output Power Continuous Output Power Peak Output Power Efficiency Environmental Conducted EMI Safety Surge
Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II
Symbol VIN fLINE
Min 90 47
Typ
Max 265 64 0.9W 5.25 100 2.0 12.6 250 3 46 46 46
Units VAC Hz W V mV A V mV A W W %
Comment
3 Wire 5V @ 60ma, 12V @ 0.0ma 5% 20 MHz Bandwidth, burst load
50/60
VOUT1 VRIPPLE1 IOUT1 VOUT1 VRIPPLE2 IOUT2 POUT POUT_PEAK
4.75 0 11.4 1
5.00 1 12 2.5 35 35
20MHz bandwidth, burst load
81
84
Measured at POUT (46 W), 25 oC
3 4 TBD TAMB 0 60
kV
1.2/50 s surge, IEC 1000-4-5, Series Impedance: Differential Mode 2 Common Mode: 12 100 kHz ring wave, 500 A short circuit current, differential and common mode Free convection, sea level
Surge Ambient Temperature
kV
o
C
Page 5 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
3 Schematic
Figure 2 - Schematic (page 1)
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 6 of 34
DER-94
LCD Monitor Internal Supply
September 12, 2005
Figure 3 - Schematic (page 2)
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 7 of 34
DER-94
LCD Monitor Internal Supply
September 12, 2005
4 Circuit Description
The schematic in Figure 1 shows an off-line flyback converter using the TOP246. The circuit is designed for 90 VAC to 265 VAC input, with two outputs: 5 V / 2 A and 12 V / 3 A. 4.1 Input EMI Filtering Capacitor CX1 and the L1 leakage inductance filter differential mode conducted EMI. Inductor L1 and CY1-CY3 filter common mode conducted EMI. L4 is a ferrite bead connected between secondary return and safety ground that reduces high frequency (> 20MHz) conducted EMI. 4.2 TOPSwitch Primary The AC line voltage is rectified and filtered to generate a high voltage DC bus via D1-4 and C1. Diode D5, C3, and R2-4 clamp leakage spikes generated when the MOSFET in U1 switches off. D5 is a glass-passivated normal recovery rectifier. The slow, controlled recovery time of D5 allows energy stored in C3 to be recycled back to the high voltage bus, significantly increasing efficiency. A normal (non-passivated) 1N4007 should not be substituted for the glass-passivated device. The U1 "F" pin is connected to the control pin to program 65kHz operating frequency. Resistor R5 sets the turn-on voltage of the supply to approximately 76 VAC. C4 bypasses the U1 control pin. C5 has three functions. It provides the energy required by U1 during startup, sets the auto-restart frequency during fault conditions, and also acts to roll off the gain of U1 as a function of frequency. R8 adds a zero to the control loop to stabilize the power supply control loop. Resistor R7 programs the U1 current limit to 75% of the nominal value. Resistor R6 acts to depress the U1 current limit as a function of line voltage, making the maximum overload power more independent of line voltage. 4.3 Output Rectification The T1 output is rectified and filtered by D7 and C8-9 for the 12V output, and by D8 and C11-12 for the 5V output. Components C8 and R12 provide snubbing for D12. Components L2, L3, C10, and C13 provide additional high frequency output filtering. 4.4 Output Feedback Resistors R15 and R16 are used to set the +5V main output voltage. Resistor R25 provides a small amount of feedback from the +12V output to improve cross regulation. Shunt regulator U3 drives optocoupler U2 through resistor R11 to provide feedback information to the U1 control pin. The optocoupler output also provides power to U1 during normal operating conditions. Capacitor C16 applies drive to the optocoupler during supply startup to reduce output voltage overshoot. Capacitor C15 and R14 provide frequency compensation for error amplifier U3. Components C14 and R12 improve the control loop phase margin by providing gain and phase boost near the control loop 0dB crossover frequency. Components C5, C14, C15, R8, R11, R12, and R14 all play a role in compensating the power supply control loop. Capacitor C5 rolls off the gain of U1 at relatively low
Page 8 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
frequency. Resistor R8 provides a zero to cancel the phase shift of C5. Resistor R11 sets the gain of the direct signal path from the supply output through U2 and U3. Components C15 and R14 reduce the high frequency gain of U3, while C14 and R12 provide gain and phase boost near the control loop 0dB crossover frequency. 4.5 Active Preload/Output Protection The components shown in Figure 3 provide 12 V active loading, 5 V overload protection, and overvoltage protection for the power supply. The active preload function improves cross regulation, especially when there is light or no load on the +12 V output and maximum load on the +5 V output. The improvement in cross regulation makes the 12 V output suitable for use with low cost LCD panels and removes the need for a 12 V linear post regulator. The circuit provides overload protection for the 5 V output during LPS testing of the +5 V output, eliminating the need for a 5 V fuse. Finally, the circuit provides output overvoltage protection with auto-restart.
Page 9 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
5 Printed Circuit Layout
Figure 4 - Printed Circuit Layout
Page 10 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
6 Bill Of Materials
Generic LCD Monitor Supply, 12/010/03
Item
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
Qty
1 1 1 2 1 1 1 1 1 4 1 5 1 1 1 2 1 1 1 3 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 2 2 1 1 2 1 1 1 1 1 1
Reference
U1 U2 U3 Q1,4 Q2 Q3 Q5 VR1 RT1 D1-4 D5 D6 D7 D8 CX1 CY1,CY2 CY3 C1 C3 C4,17,18 C5 C6 C7 C8,9 C10 C11,12 C13 C14 C15 C16 T1 L1 L2,3 L4 F1 R1,5 R2,3 R4 R6 R7,16 R8 R9 R10 R11 R12 R13
Description
P/N
Manufacturer
TOP246Y Power Integrations Optocoupler, 80-160% CTR PC817A Sharp Shunt regulator, SOT-23 LM431AIM3 National Transistor, PNP General MMBT3906 Diodes, Inc. Purpose, SOT-23 Transistor, NPN, General MMBT3904 Diodes, Inc. Purpose, SOT-23 Transistor, PNP, 35V, 2SA885 Panasonic 1A, TO-126 SCR, sensitive gate, 2N5064 or equivalent 200V, 0.8A, TO-92 Zener Diode, 5.6V, BZX79-C5V6 500mW Thermistor, 5, 3A SCK053 Thinking Electronics Diode, 2A, 600V RL205 Rectron 1000V, 1A, GP 1N4007G Diodes, Inc Diode, Signal DL4148 Diodes, Inc. Schottky,100V, 10A,MBR10100 General Semiconductor Schottky, 5A, 40V, SB540 General Semiconductor X2 capacitor, 220nF Any Y1 Capacitor,680pF Any Y1 Capacitor, 2.2nF Any 120 uF, 400V, 105C, 18 X 35 mm Any Ceramic Disc, 10nF, 1kV Any 100 nF, 25V, ceramic 0805 Any 47 uF, 10V, 105C, 5 X11mm Any 47 uF, 50V, 105C, 8 X 11 mm Any Capacitor, ceramic, 470pF, 100V Any 680 uF, 16V, 10 X16 mm, ESR 68 m Any 330 uF, 16V, 8 X 11.5 mm ESR 117 m Any 470 uF, 10V, 10 X 12.5 mm 80-160% CTR Any 220 uF, 25V, 105C, 8 X 11.2 mm Any Capacitor, ceramic, 330nF, 16V, 0805 Any 220 nF, 16V Ceramic, 0805 Any 22 uF, 25V, 105C, 5X11 Any Transformer, EER28 Custom Balun, 5.3 mH, 1A Any Inductor, 3.3uH, 3A Any Ferrite Bead, 5.1mm dia X 2643022401 Fair-Rite 6.35 mm long, 1.45 mm hole Fuse, 3.15A, 250 VAC Any 2M, 5%, 1/2W Any 100k, 5%, 1/2W Any 10R, 5%, 1/2W Any 8.2M, 5%, 1/2W Any 10k0, 1%, 0805 Any 6R8, 5%, 1206 Any 330, 5%, 1/8W Any 68R, 5%, 1/2W Any 75R, 5%, 1206 Any 22R, 5%, 1206 Any 10k, 5%, 0805 Any
Page 11 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
47 48 49 50 51 52 53 54 55 56 57 1 1 1 2 1 1 1 1 1 1 1
LCD Monitor Internal Supply
R14 R15 R17 R18,19, R20 R21 R22 R23 R24 R25 JP3 2k2, 5%, 0805 13k3, 1%, 0805 3k, 5%, 0805 2k. 5%, 0805 2.4k, 5%, 0805 0.51 ohm. 5%, 1W 10k, 5%, 1206 1k, 5%, 0805 560, 5%, 0805 150k, 1%, 0805 0 ohm, 1206
September 12, 2005
Any Any Any Any Any Any Any Any Any Any Any
Page 12 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
7 Transformer Specification
7.1 Electrical Diagram 4
WDG#5 24T 27AWG
10
WDG #3 4T 2 X 23 AWG WDG #4 3T 3 X 23 AWG
1
WDG#1 25T 27 AWG
6,7
5 2
WDG#2 7T 2X 27AWG
8,9
3
Figure 5 -Transformer Electrical Diagram
7.2
Electrical Specifications
60Hz 1 second, from Pins 1-5 to Pins 6-10 Between Pins 1-5 and Pins 6-10 Pins 1-2, all other windings open, measured at 10KHz, 0.4VRMS Pins 1-2, all other windings open, measured at 10KHz, 0.4VRMS Pins 1-2, with Pins 6-10 shorted, measured at 10KHz, 0.4V RMS 3000 VAC 6 mm (Min.) 594 H, 10% 2 MHz (Min.) 15 H (Max.)
Electrical Strength Creepage Primary Inductance Resonant Frequency Primary Leakage Inductance
Page 13 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94 7.3 Materials Item [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 7.4
LCD Monitor Internal Supply
September 12, 2005
Description Core: 1 Pair EER28 Nippon Ceramic NC-2H or equivalent. Gapped for AL of 247 nH/T2 Bobbin: 10 pin EER28, Horizontal Low Profile Pin Shine P-2834 Magnet Wire: #27AWG Solderable Double Coated Magnet Wire: #23AWG Solderable Double Coated Tape, 3M # 1298 or equiv. 17 mm wide Tape, 3M #1298 or equiv. 11 mm wide Tape, Polyester Web, 3M #44 or equivalent, 3mm wide (minimum) Teflon Sleeving, 0.4mm wall thickness, 24 ga Teflon Sleeving, 0.4mm wall thickness, 22 ga Varnish
Transformer Build Diagram
4 1 8,9 Secondaries 6,7 6,7 10 3 2 1 5
1/2 Primary
Tape
Bias 1/2 Primary
Figure 6 - Transformer Build Diagram
Page 14 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94 7.5
LCD Monitor Internal Supply
September 12, 2005
Transformer Construction Winder Direction
Core Preparati on Primary Margins 1/2 Primary Basic Insulation Bifilar Bias winding Reinforce d Insulation Secondar y Margins
Using two 35 mm long pieces of item [5] for each core, wrap both core halves (item [1]) as shown in Figure 1. Using item [7], apply a 3 mm wide margin on each side of the bobbin winding area. Match margin height to primary and bias windings. Start at Pin 5. Wind 25 turns of item [3] in 1 layer. Finish Forward on Pin 1. Sleeve start and finish leads (item [8]). Use one layer of item [6] for basic insulation. Starting at pin 2, wind 7 bifilar turns of item [3]. Spread Forward turns evenly across bobbin. Finish at pin 3. Sleeve start and finish leads (item [8]). Use three layers of item [6] for reinforced insulation.
Using item [7], apply a 3 mm wide margin on each side of the bobbin winding area. Match margin height to secondary windings. 12V Start at Pin 10. Wind 4 bifilar turns of item [4]. Spread Bifilar turns evenly across bobbin. Finish on Pin 7. Sleeve start Forward Secondar and finish leads (item [9]). y Winding 5V Trifilar Start at Pins 6 and 7. Forward wind 3 trifilar turns of item Secondar [4] directly on top of 12 V winding. Spread turns evenly Forward y across bobbin. Finish on Pins 8 and 9. Sleeve start and Winding finish leads (item [9]). Primary Using item [7], apply a 3 mm wide margin on each side of Margins the bobbin winding area. Match margin height to primary winding. Reinforce Use three layers of item [6] for reinforced insulation. d Insulation 1/2 Start at Pin 1. Wind 24 turns of item [3] in 1 layer. Finish Forward Primary - on Pin 4. Sleeve start and finish leads (item [8]). Outer Wrap windings with 3 layers of tape [item [5]. Wrap Assembly Assemble bobbin and core halves. Varnish impregnate assembled transformer (item [10]).
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 15 of 34
DER-94
LCD Monitor Internal Supply
September 12, 2005
Item [1] Item [5] (2 places)
Figure 7 - Core Tape Wrap Drawing
Page 16 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94 7.6
LCD Monitor Internal Supply
September 12, 2005
Transformer Spreadsheet
INPUT INFO INFO OUTPUT OUTPUT UNIT TOP_GX_052901.xls: TOPSwitch-GX Continuous/Discontinuous Flyback Transformer Design Spreadsheet Customer Volts Minimum AC Input Voltage Volts Maximum AC Input Voltage Hertz AC Mains Frequency Volts Output Voltage Watts Output Power Efficiency Estimate Loss Allocation Factor Volts Bias Voltage mSeconds Bridge Rectifier Conduction Time Estimate uFarads Input Filter Capacitor
ACDC_TOPGX_Rev1.2_052901 Copyright Power Integrations Inc. 2001
ENTER APPLICATION VARIABLES VACMIN VACMAX fL VO PO n Z VB tC CIN
90 265 50 5 45 0.8 0.5 12 3 120
ENTER TOPSWITCH-GX VARIABLES TOP-GX TOP246 Chosen Device TOP246 KI 0.8
TOP246 Power Out
Power Out
Universal 90W
115 Doubled/230V 150W External Ilimit reduction factor (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT) Use 1% resistor in setting external ILIMIT Use 1% resistor in setting external ILIMIT Half (H) frequency option 66kHz TOPSwitch-GX Switching Frequency: Choose between 132 kHz and 66 kHz TOPSwitch-GX Minimum Switching Frequency TOPSwitch-GX Maximum Switching Frequency Reflected Output Voltage TOPSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio (0.4 < KRP < 1.0 : 1.0< KDP<6.0)
ILIMITMIN ILIMITMAX Frequency - (F)=132kHz, (H)=66kHz fS H 65000
1.944 2.376
1.944 Amps 2.376 Amps
6.50E+04 6.50E+04 Hertz
fSmin fSmax VOR VDS VD VDB KP 90 10 0.5 0.7 0.70
6.15E+04 6.15E+04 Hertz 7.05E+04 7.05E+04 Hertz Volts Volts Volts Volts
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EER28 Core EER28 EER28 EER28_BOBBIN EER28_BOBBIN Bobbin 0.821 AE LE AL BW M 17.2 3 6.4 2870 17.2
P/N: P/N: 0.821 cm^2 6.4 cm 2870 nH/T^2 17.2 mm mm
L
2
PC40EER28-Z BEER-28-1112CPH Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers
Page 17 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
NS DC INPUT VOLTAGE PARAMETERS VMIN VMAX
LCD Monitor Internal Supply
3
September 12, 2005
Number of Secondary Turns
98 375
98 Volts 375 Volts
Minimum DC Input Voltage Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE PARAMETERS DMAX IAVG IP IR IRMS TRANSFORMER PRIMARY DESIGN PARAMETERS LP NP NB ALG BM BP BAC ur LG BWE OD INS
0.51 0.57 1.75 1.22 0.84
0.51 0.57 1.75 1.22 0.84
Amps Amps Amps Amps
Maximum Duty Cycle Average Primary Current Peak Primary Current Primary Ripple Current Primary RMS Current
594 49 7 247 2572 3502 900 1780 0.38 22.4 0.46 0.06
594 uHenries 49 7 247 2572 3502 900 1780 0.38 22.4 0.46 0.06
DIA AWG
0.39 27
0.39 27
CM CMA
203 241
203 241
Primary Inductance Primary Winding Number of Turns Bias Winding Number of Turns nH/T^2 Gapped Core Effective Inductance Gauss Maximum Flux Density at PO, VMIN (BM<3000) Gauss Peak Flux Density (BP<4200) Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core mm Gap Length (Lg > 0.1 mm) mm Effective Bobbin Width mm Maximum Primary Wire Diameter including insulation mm Estimated Total Insulation Thickness (= 2 * film thickness) mm Bare conductor diameter AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) Cmils Bare conductor effective area in circular mils Cmils/Amp Primary Winding Current Capacity (200 < CMA < 500)
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT) Lumped parameters ISP 28.56 28.56 Amps Peak Secondary Current 13.67 13.67 Amps Secondary RMS Current ISRMS 9.00 9.00 Amps Power Supply Output IO Current 10.29 10.29 Amps Output Capacitor RMS IRIPPLE Ripple Current CMS AWGS 2735 15 2735 Cmils 15 AWG Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for Triple Insulated Wire Maximum Secondary Insulation Wall Thickness
DIAS ODS
1.45 3.73
1.45 mm 3.73 mm
INSS
1.14
1.14 mm
Page 18 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
VOLTAGE STRESS PARAMETERS VDRAIN
LCD Monitor Internal Supply
September 12, 2005
584
584 Volts
PIVS PIVB
28 65
28 Volts 65 Volts
Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse Voltage Bias Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 1st output 5.0 VO1 2.000 IO1 PO1 10.00 0.5 VD1 NS1 ISRMS1 IRIPPLE1 PIVS1 3.00 3.039 2.29 28
Volts Amps 10.00 Watts Volts 3.00 3.039 Amps 2.29 Amps 28 Volts
Output Voltage Output DC Current Output Power Output Diode Forward Voltage Drop Output Winding Number of Turns Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire
CMS1
608
608 Cmils
AWGS1
22
22 AWG
DIAS1 ODS1
0.65 3.73
0.65 mm 3.73 mm
2nd output VO2 IO2 PO2 VD2 NS2 ISRMS2 IRIPPLE2 PIVS2
12.0 3.000 36.00 1.0 7.09 4.558 3.43 66
Volts Amps 36.00 Watts Volts 7.09 4.558 Amps 3.43 Amps 66 Volts
Output Voltage Output DC Current Output Power Output Diode Forward Voltage Drop Output Winding Number of Turns Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire
CMS2
912
912 Cmils
AWGS2
20
20 AWG
DIAS2 ODS2
0.81 1.58
0.81 mm 1.58 mm
Page 19 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
8 Performance Data
All measurements performed at room temperature, 60 Hz input frequency, on a typical unit. 8.1 Efficiency
Efficiency vs. Input Voltage
87.0% 86.5% 86.0% 85.5% 85.0% 84.5% 84.0% 83.5% 83.0% 82.5% 82.0% 81.5% 80 100 120 140 160 180 200 220 240 260 280 AC Input Voltage
Figure 8 - Efficiency vs. Input Voltage, Full Load, Room Temperature, 60 Hz.
8.2
Standby Input Power
Standby Input Power vs. Input voltage
0.88 0.86 Input Power (W) 0.84 0.82 0.8 0.78 0.76 0.74 0.72 160 180 200 220 240 260 280
Efficiency (%)
AC Input Voltage
Figure 9 - Standby Input Power Input Power vs. Input Voltage, Room Temperature, 60 Hz. 5V Output = 60mA, No Load on 12V Output
Page 20 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94 8.3
LCD Monitor Internal Supply
September 12, 2005
Cross Regulation Matrix
Vin 90 90 90 90 265 265 265 265 Vo1 Io1 Vo2 Io2 4.99 2 12.18 4.96 2 12.51 5 0 12.05 5.06 0.1 11.4 4.99 4.96 5.01 5.06 2 2 0 0.1 12.12 12.5 12.06 11.49 3 0 0 3 3 0 0 3
8.4
Load Regulation Matrix, 90VAC
Vin 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 Vo1 5.05 5.04 5.03 5.01 5.01 5 4.99 4.96 4.96 4.96 4.97 4.97 4.98 4.98 4.98 4.99 4.99 Io1 0.1 0.2 0.4 0.8 1 1.5 2 2 2 2 2 2 2 2 2 2 2 Vo2 11.49 11.63 11.73 11.87 11.91 12.03 12.14 12.48 12.46 12.44 12.43 12.4 12.37 12.29 12.21 12.16 12.12 Io2 3 3 3 3 3 3 3 0 0.1 0.2 0.4 0.8 1 1.5 2 2.5 3
8.5 5V Power Limit The 5 V power limit was tested at 230 VAC with the 12 V output set to zero load. The 5 V output load was increased from a 2 A load until the protection circuit forced the power supply into auto-restart. This occurred at a 5 V load of 3-4.2 A for the 4 units tested.
Page 21 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
9 Thermal Performance
Device case temperatures were measured with an output load of 5 V / 2 A and 12 V / 2 A.
Item Ambient Common Mode Choke (L1) Input Rectifier (D4) TOPSwitch (U1) Transformer (T1) 5V Rectifier (D8) 12V Rectifier (D7)
90 90 VAC VAC 60 75 78 85 77 88 78 25 45 47 53 48 60 50
Page 22 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
10 Waveforms
10.1 Drain Voltage and Current, Normal Operation
Figure 10 - 90 VAC, Full Load Upper: VDRAIN, 200 V / div Lower: IDRAIN, 1 A, 5 s / div
Figure 11 - 265 VAC, Full Load Upper: VDRAIN, 200 V / div Lower: IDRAIN, 1 A, 5 us/div
10.2 Output Voltage Start-up Profile
Figure 12 - Start-up Profile, 90 VAC, 10 ms / div. Top Trace - 12 V Output, 2 V / div Bottom Trace - 5 V Output, 2 V / div
Figure 13 - Start-up Profile, 265 VAC, 10 ms / div. Top Trace - 12 V Output, 2 V / div Bottom Trace - 5 V Output, 2 V / div
Page 23 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
10.3 Load Transient Response (75% to 100% Load Step) In the figures shown below, the oscilloscope was triggered using the load current step as a trigger source.
Figure 14 - Transient Response, 115 VAC, 75-10075% Load Step on 5 V Output, 500 s / div. Top: 5 V Output, 50 mV / div. Bottom: 5 V Load current, 1 A / div
Figure 15 - Transient Response, 230 VAC, 75-10075% Load Step on 5 V Output, 500 s / div. Top: 5 V Output, 50 mV / div. Bottom: Load Current, 1A / div.
10.4 Overvoltage Protection
Figure 16 - Overvoltage Protection Waveforms with R15 shorted, 115 VAC Input,10 msec/div Top Trace: 12 V output, 2 V / div Bottom Trace: 5 V Output, 2 V / div
Page 24 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
11 Output Ripple
11.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 17 and Figure 18. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 F/50 V ceramic type and one (1) 1.0 F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 17 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)
Figure 18 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)
Page 25 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
11.2 Measurement Results
Figure 19 - 5 V Ripple, 90 VAC, Full Load. 5 ms, 50 mV / div
Figure 20 - 12 V Ripple, 90 VAC, Full Load. 5 ms, 50 mV / div.
Figure 21 - 5 V Ripple, 115 VAC, Full Load. 5 ms, 50 mV /div.
Figure 22 - 12 V Ripple, Full Load. 5ms, 50 mV /div
Figure 23 - 5V Ripple, 230 VAC, Full Load. 5 ms, 50 mV /div.
Figure 24 - 12V Ripple, 230 VAC, Full Load. 5 ms, 50 mV /div.
Page 26 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
11.3 Ripple with 12 V Burst Load
Figure 25 - Burst Load Ripple, 90 VAC, 2 ms / div Top Trace: 5 V Ripple, 50 mV / div Second Trace: 12 V Ripple, 50 mV / div Third Trace: 12 V Load Current, 2 A / div Fourth Trace: 5 V Ripple, Expanded View, 50 mV / div Fifth Trace: 12 V Ripple, Expanded View, 50 mV / div Bottom Trace: 12 V Load Current, Expanded View, 2 A / div
Figure 26 - Burst Mode Ripple, 90 VAC, 2ms/div Top Trace: 5 V Ripple, 50 mV / div, Middle Trace: 12 V Ripple, 50 mV / div, Bottom Trace: 12 V Load Current, 2 A / div
Figure 27 - Burst Mode Ripple, 265 VAC, 2 ms / div Top Trace: 5 V Ripple, 50 mV / div, Middle Trace: 12 V Ripple, 50 mV / div, Bottom Trace: 12 V Load Current, 2A/div
The three figures above (Figures 25-27) show the effects of a 12 V burst load on the 5 V and 12 V output ripple. The 12 V load was switched from 0 A to 2 A using a MOSFET switch and resistive load. The load switching frequency was ~770 kHz, with a burst of 5 switching cycles repeated at a rate of one burst every 4 milliseconds.
Page 27 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
12 Gain-Phase Measurements
12.1 115 VAC Maximum Load
Figure 28 - Gain-Phase Plot, 115 VAC, Maximum Steady State Load Vertical Scale: Gain = 50 dB/div, Phase = 100 /div. Crossover Frequency = 4.57 kHz Phase Margin = 62.8
Page 28 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
12.2 230 VAC Maximum Load
Figure 29 - Gain-Phase Plot, 230 VAC, Maximum Steady State Load Vertical Scale: Gain = 50 dB/div, Phase = 100 /div. Crossover Frequency = 948 Hz, Phase Margin = 99.4
Page 29 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
13 Line Transient Testing
The power supply was tested for 1.2/50 sec common mode and differential mode line surge at 230 VAC, full load. The supply was mounted on a metal plate, and the output was monitored with an LED to detect any output interruption. The power supply was deemed to pass a test if it withstood the surge with no output interruption. Differential Mode Surge, 2 ohm generator impedance, 10 strikes each setting at 30 sec intervals Surge Voltage 0 Phase Angle 90 Phase Angle 270 Phase Angle +3kV Pass Pass Pass -3kV Pass Pass Pass Common Mode Surge, 12 ohm generator impedance, 10 strikes each setting at 30 sec intervals Surge Voltage 0 Phase Angle 90 Phase Angle 270 Phase Angle +4kV Pass Pass Pass -4kV Pass Pass Pass
Page 30 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
14 Conducted EMI
Figure 30 - Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, EN55022 B Limits.
Page 31 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
Figure 31 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, EN55022 B Limits.
Page 32 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
15 Revision History
Date September 12, 2005 Author Revision RH/ME 1.0 Description of Changes Initial Release Reviewed AM / VC
Page 33 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-94
LCD Monitor Internal Supply
September 12, 2005
For the latest updates, visit our Web site: www.powerint.com Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations. (c) Copyright 2004, Power Integrations.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS 5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@powerint.com CHINA (SHANGHAI) Rm 807, Pacheer, Commercial Centre, 555 Nanjing West Road, Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: chinasales@powerint.com CHINA (SHENZHEN) Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu, Shenzhen, Guangdong, 518031, China Phone: +86-755-8367-5143 Fax: +86-755-8377-9610 e-mail: chinasales@powerint.com GERMANY Rueckertstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920 e-mail: eurosales@powerint.com JAPAN Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@powerint.com KOREA 8th Floor, DongSung Bldg. 17-8 Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea Phone: +82-2-782-2840 Fax: +82-2-782-4427 e-mail: koreasales@powerint.com SINGAPORE 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@powerint.co m TAIWAN 17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 e-mail: taiwansales@powerint.com
INDIA (TECHNICAL SUPPORT) Innovatech 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India, 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 e-mail: indiasales@powerint.com ITALY Via Vittorio Veneto 12, Bresso, Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 e-mail: eurosales@powerint.com
UK (EUROPE & AFRICA HEADQUARTERS) 1st Floor, St. James's House East Street Farnham, Surrey GU9 7TJ United Kingdom Phone: +44-1252-730-140 Fax: +44-1252-727-689 e-mail: eurosales@powerint.com
APPLICATIONS HOTLINE APPLICATIONS FAX World Wide +1-408-414-9660 World Wide +1-408-414-9760 ER or EPR template - Rev 3.6 - Single sided
Page 34 of 34
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com


▲Up To Search▲   

 
Price & Availability of DER-94

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X