![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR FEATURES * 1 differential 2.5V/3.3V LVPECL / ECL output * 1 CLK, nCLK input pair * CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL * Maximum output frequency: 250MHz * Input frequency: >1GHz * Translates any single ended input signal to 3.3V LVPECL levels with resistor bias on nCLK input * Output skew: 38ps (maximum) * Part-to-part skew: 375ps (maximum) * Propagation delay: 2.1ns (maximum) * LVPECL mode operating voltage supply range: VCC = 2.375V to 3.8V, VEE = 0V * ECL mode operating voltage supply range: VCC = 0V, VEE = -2.375V to -3.8V * -40C to 85C ambient operating temperature GENERAL DESCRIPTION The ICS87354I is a high performance /4//5 Differential-to-2.5V/3.3V ECL/LVPECL Clock GeneraHiPerClockSTM tor and a member of the HiPerClockSTM family of High Performance Clock Solutions from ICS. The CLK, nCLK pair can accept most standard differential input levels. The ICS87354I is characterized to operate from either a 2.5V or a 3.3V power supply. Guaranteed output and part-to-part skew characteristics make the ICS87354I ideal for those clock distribution applications demanding well defined performance and repeatability. ,&6 BLOCK DIAGRAM CLK nCLK R /4 /5 0 1 Q nQ PIN ASSIGNMENT CLK nCLK MR F_SEL 1 2 3 4 8 7 6 5 Vcc Q nQ VEE MR ICS87354I 8-Lead SOIC 3.90mm x 4.90mm x 1.37mm package body M Package Top View F_SEL The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice. 87354AMI www.icst.com/products/hiperclocks.html 1 REV. A JUNE 27, 2003 PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR Type Input Input Input Input Power Output Power Pullup Description TABLE 1. PIN DESCRIPTIONS Number 1 2 3 4 5 6, 7 8 Name CLK nCLK MR F_SEL VEE Q, nQ VCC Pulldown Non-inver ting differential clock input. Inver ting differential clock input. Master reset. When LOW, outputs are enabled. When HIGH, Pulldown divider is reset forcing Q output LOW and nQ output HIGH. LVCMOS / LVTTL interface levels. Selects divider value for Q, nQ outputs as described in table 3. Pulldown LVCMOS / LVTTL interface levels. Negative supply pin. Differential output pair. LVPECL interface levels. Positive supply pin. NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS Symbol CIN RPULLUP RPULLDOWN Parameter Input Capacitance Input Pullup Resistor Input Pulldown Resistor Test Conditions Minimum Typical 4 51 51 Maximum Units pF K K TABLE 3. FUNCTION TABLE MR 1 0 0 F_SEL X 0 1 Divide Value Reset: Q output low, nQ output high /4 /5 CLK MR Q FIGURE 1. TIMING DIAGRAM 87354AMI www.icst.com/products/hiperclocks.html 2 REV. A JUNE 27, 2003 PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR 4.6V -0.5V to VCC + 0.5 V 50mA 100mA 112.7C/W (0 lfpm) -65C to 150C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. ABSOLUTE MAXIMUM RATINGS Supply Voltage, VCC Inputs, VI Outputs, IO Continuous Current Surge Current Package Thermal Impedance, JA Storage Temperature, TSTG TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40C TO 85C Symbol VCC IEE Parameter Positive Supply Voltage Power Supply Current Test Conditions Minimum 2.375 Typical 3.3 TBD Maximum 3.8 Units V mA TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40C TO 85C Symbol Parameter VIH VIL IIH IIL Input High Voltage Input Low Voltage Input High Current Input Low Current MR, F_SEL MR, F_SEL VCC = VIN = 3.8V VCC = 3.8V, VIN = 0V -5 Test Conditions Minimum 2 -0.3 Typical Maximum VCC + 0.3 0.8 150 Units V V A A TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40C TO 85C Symbol IIH IIL VPP Parameter Input High Current Input Low Current CLK nCLK CLK nCLK Test Conditions VCC = VIN = 3.8V VCC = VIN = 3.8V VCC = 3.8V, VIN = 0V VCC = 3.8V, VIN = 0V -5 -150 1.3 VCC - 0.85 Minimum Typical Maximum 150 5 Units A A A A V V Peak-to-Peak Input Voltage 0.15 Common Mode Input Voltage; VCMR VEE + 0.5 NOTE 1, 2 NOTE 1: Common mode voltage is defined as VIH. NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V. 87354AMI www.icst.com/products/hiperclocks.html 3 REV. A JUNE 27, 2003 PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR Test Conditions Minimum VCC - 1.4 VCC - 2.0 0.65 Typical Maximum VCC - 1.0 VCC - 1.7 0.9 Units V V V TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40C TO 85C Symbol Parameter VOH VOL VSWING Output High Voltage; NOTE 1 Output Low Voltage; NOTE 1 Peak-to-Peak Output Voltage Swing NOTE 1: Outputs terminated with 50 to VCC - 2V. TABLE 5. AC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40C TO 85C Symbol fMAX Parameter Input Frequency Propagation Delay; CLK to Q (Dif) NOTE 1 Output Skew; NOTE 2, 4 Par t-to-Par t Skew; NOTE 3 , 4 Test Conditions Minimum Typical >1 1.65 2.1 38 375 600 Maximum Units GHz ns ps ps ps tPD tsk(o) tsk(pp) Output Rise/Fall Time 20% to 80% 200 t R / tF NOTE 1: Measured from the differential input crossing point to the differential output crossing point. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. 87354AMI www.icst.com/products/hiperclocks.html 4 REV. A JUNE 27, 2003 PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR PARAMETER MEASUREMENT INFORMATION VCC = 2V Qx SCOPE V CC LVPECL nQx nCLK V CLK PP Cross Points V CMR VEE = -1.8V -0.375V VEE 3.3V OUTPUT LOAD AC TEST CIRCUIT DIFFERENTIAL INPUT LEVEL PART 1 nQx Qx PART 2 nQy Qy tsk(pp) nQx Qx nQy Qy tsk(o) PART-TO-PART SKEW OUTPUT SKEW nCLK 80% Clock Outputs 80% VSW I N G 20% tR tF 20% CLK nQ Q tPD OUTPUT RISE/FALL TIME 87354AMI PROPAGATION DELAY www.icst.com/products/hiperclocks.html 5 REV. A JUNE 27, 2003 PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR APPLICATION INFORMATION WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = VCC/2 is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609. VCC R1 1K Single Ended Clock Input CLK V_REF nCLK C1 0.1u R2 1K FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT TERMINATION FOR LVPECL OUTPUTS The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50 transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 2A and 2B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. Zo = 50 FOUT FIN Zo = 50 Zo = 50 FOUT 50 50 VCC - 2V Zo = 50 3 2 Zo 5 2 Zo 3.3V 5 2 Zo FIN RTT = 1 (VOH + VOL / VCC -2) -2 Zo FIGURE 2A. LVPECL OUTPUT TERMINATION 87354AMI RTT 3 2 Zo FIGURE 2B. LVPECL OUTPUT TERMINATION REV. A JUNE 27, 2003 www.icst.com/products/hiperclocks.html 6 PRELIMINARY Integrated Circuit Systems, Inc. DIFFERENTIAL CLOCK INPUT INTERFACE The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both VSWING and VOH must meet the VPP and VCMR input requirements. Figures 3A to 3E show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 3A, the input termination applies for ICS HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. 3.3V 3.3V 3.3V 1.8V Zo = 50 Ohm Zo = 50 Ohm CLK Zo = 50 Ohm nCLK LVHSTL ICS HiPerClockS LVHSTL Driver R1 50 R2 50 R3 50 LVPECL HiPerClockS Input R1 50 R2 50 Zo = 50 Ohm nCLK HiPerClockS Input CLK FIGURE 3A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN ICS HIPERCLOCKS LVHSTL DRIVER BY FIGURE 3B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN 3.3V LVPECL DRIVER BY 3.3V 3.3V 3.3V R3 125 Zo = 50 Ohm CLK Zo = 50 Ohm nCLK LVPECL R1 84 R2 84 HiPerClockS Input R4 125 3.3V 3.3V LVDS_Driv er R1 100 Zo = 50 Ohm Zo = 50 Ohm CLK nCLK Receiv er FIGURE 3C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN 3.3V LVPECL DRIVER BY FIGURE 3D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN 3.3V LVDS DRIVER BY 3.3V 3.3V 3.3V LVPECL Zo = 50 Ohm C1 R3 125 R4 125 CLK Zo = 50 Ohm C2 nCLK HiPerClockS Input R5 100 - 200 R6 100 - 200 R1 84 R2 84 R5,R6 locate near the driver pin. FIGURE 3E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN 3.3V LVPECL DRIVER WITH AC COUPLE 87354AMI BY www.icst.com/products/hiperclocks.html 7 REV. A JUNE 27, 2003 PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR RELIABILITY INFORMATION TABLE 6. JAVS. AIR FLOW TABLE qJA by Velocity (Linear Feet per Minute) 0 Single-Layer PCB, JEDEC Standard Test Boards Multi-Layer PCB, JEDEC Standard Test Boards 153.3C/W 112.7C/W 200 128.5C/W 103.3C/W 500 115.5C/W 97.1C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. TRANSISTOR COUNT The transistor count for ICS87354I is: TBD 87354AMI www.icst.com/products/hiperclocks.html 8 REV. A JUNE 27, 2003 PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR PACKAGE OUTLINE - M SUFFIX TABLE 7. PACKAGE DIMENSIONS SYMBOL N A A1 B C D E e H h L 5.80 0.25 0.40 0 1.35 0.10 0.33 0.19 4.80 3.80 1.27 BASIC 6.20 0.50 1.27 8 Millimeters MINIMUN 8 1.75 0.25 0.51 0.25 5.00 4.00 MAXIMUM Reference Document: JEDEC Publication 95, MS-012 87354AMI www.icst.com/products/hiperclocks.html 9 REV. A JUNE 27, 2003 PRELIMINARY Integrated Circuit Systems, Inc. ICS87354I /4//5 DIFFERENTIAL-TO-2.5V/3.3V LVPECL CLOCK GENERATOR Marking 87354AI 87354AI Package 8 lead SOIC 8 lead SOIC on Tape and Reel Count 96 per tube 2500 Temperature -40C to 85C -40C to 85C TABLE 8. ORDERING INFORMATION Part/Order Number ICS87354AMI ICS87354AMIT While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments. 87354AMI www.icst.com/products/hiperclocks.html 10 REV. A JUNE 27, 2003 |
Price & Availability of ICS87354I
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |