![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 95367 IRF7350PBF HEXFET(R) Power MOSFET l l l l l Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape and Reel Lead-Free S1 G1 S2 G2 N-CHANNEL MOSFET 1 8 2 3 4 7 D1 D1 D2 D2 N-Ch VDSS 100V RDS(on) 0.21 P-Ch -100V 0.48 6 5 P-CHANNEL MOSFET Top View Description These dual N and P channel HEXFET(R) power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET(R) power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in DC motor drives and load management applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. SO-8 Absolute Maximum Ratings Parameter VDS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C EAS VGS dv/dt TJ, TSTG Drain-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Single Pulse Avalanche Energy Gate-to-Source Voltage Peak Diode Recovery dv/dt Junction and Storage Temperature Range Max. N-Channel 100 2.1 1.7 8.4 2.0 0.016 35 20 4.0 -55 to + 150 51 20 4.3 P-Channel -100 -1.5 -1.2 -6.0 Units A W W/C mJ V V/ns C Thermal Resistance Symbol RJL RJA Parameter Junction-to-Drain Lead Junction-to-Ambient Typ. --- --- Max. 20 62.5 Units C/W www.irf.com 1 6/10/04 IRF7350PBF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage N-Ch P-Ch N-Ch P-Ch Min. Typ. Max. Units 100 -- -- V -100 -- -- -- 0.12 -- V/C -- -0.11 -- -- -- -- -- -- -- -- -- -- -- -- 19 21 3.0 3.4 8.8 10 6.7 25 11 13 35 30 20 40 380 360 100 110 54 65 0.21 0.48 Conditions VGS = 0V, I D = 250A VGS = 0V, ID = -250A Reference to 25C, I D = 1mA Reference to 25C, ID = -1mA VGS = 10V, ID = 2.1A VGS = -10V, ID = -1.5A V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient R DS(ON) VGS(th) gfs IDSS IGSS Qg Qgs Qgd t d(on) tr t d(off) tf C iss C oss C rss Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance N-Ch -- P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch -- 2.0 -2.0 2.4 1.1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 4.0 V -4.0 -- S -- 25 -25 A 250 -250 100 28 31 4.5 nC 5.1 13 16 -- -- -- -- ns -- -- -- -- -- -- -- pF -- -- -- VDS = VGS, ID = 250A VDS = VGS, ID = -250A VDS = 50V, ID = 2.1A VDS = -50V, ID = -1.5A VDS = 100V, VGS = 0V VDS = -100V, VGS = 0V VDS = 80 V, VGS = 0V, TJ = 70C VDS = -80V, VGS = 0V, TJ = 70C VGS = 20V N-Channel ID = 2.1A, VDS = 80V, VGS = 10V P-Channel ID = -1.5A, VDS = -80V, VGS = -10V N-Channel VDD = 50V, I D = 1.0A, RG = 22, RD = 50, VGS = 10V P-Channel VDD = -50V, ID = -1.0A, RG = 22, RD = 50, VGS = -10V N-Channel VGS = 0V, V DS = 25V, = 1.0MHz P-Channel VGS = 0V, VDS = -25V, = 1.0MHz Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Min. Typ. Max. Units Conditions -- -- 1.8 -- -- -1.4 A -- -- 8.4 -- -- -6.0 -- -- 1.3 TJ = 25C, IS = 1.8A, VGS = 0V V -- -- -1.6 TJ = 25C, IS = -1.4A, VGS = 0V -- 72 110 ns N-Channel -- 77 120 TJ = 25C, IF = 1.8A, di/dt = 100A/s -- 205 310 nC P-Channel TJ = 25C, IF = -1.4A, di/dt = -100A/s -- 240 360 Notes: Repetitive rating; pulse width limited by max. junction temperature. N channel: Starting TJ = 25C, L = 4.0mH, RG = 25, IAS = 4.2A P channel: Starting TJ = 25C, L = 11mH, RG = 25, IAS = -3.0A Pulse width 400s; duty cycle 2%. Surface mounted on 1 in square Cu board 2 www.irf.com N-CHANNEL IRF7350PBF 100 VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 4.0V TOP 100 10 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 4.0V TOP 10 1 1 4.0V 0.1 0.1 4.0V 20s PULSE WIDTH Tj = 25C 20s PULSE WIDTH Tj = 150C 0.01 0.1 1 10 100 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 10.00 2.5 I D = 2.1A ID, Drain-to-Source Current () 1.00 R DS(on) , Drain-to-Source On Resistance TJ = 150C 2.0 (Normalized) 1.5 T J = 25C 0.10 1.0 0.5 0.01 3.0 4.5 VDS = 15V 20s PULSE WIDTH 6.0 7.5 9.0 0.0 -60 -40 -20 0 20 40 60 80 100 V GS = 10V 120 140 160 VGS, Gate-to-Source Voltage (V) TJ, Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF7350PBF 10000 N-CHANNEL VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + Cgd ds VGS, Gate-to-Source Voltage (V) 12 ID = 2.1A 10 VDS = 80V VDS = 50V VDS = 20V C, Capacitance(pF) 1000 7 Ciss Coss Crss 5 100 2 10 1 10 100 0 0 4 8 12 16 20 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 10.00 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 100sec 1 Tc = 25C Tj = 150C Single Pulse 1 10 1msec 1.00 T J = 150C T J = 25C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10msec VGS = 0V 0.10 0.0 0.5 1.0 1.5 VSD, Source-toDrain Voltage (V) 0.1 100 1000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com N-CHANNEL IRF7350PBF VDS RD 2.5 2.0 VGS RG D.U.T. + ID , Drain Current (A) 1.5 -V DD VGS 1.0 Pulse Width 1 s Duty Factor 0.1 % Fig 10a. Switching Time Test Circuit 0.5 VDS 90% 0.0 25 50 75 100 125 150 TC , Case Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 D = 0.50 (Z thJA ) 0.20 10 0.10 Thermal Response 0.05 0.02 1 0.01 P DM t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T t1/ t 2 +TA 10 100 J = P DM x Z thJA 0.1 0.00001 0.0001 0.001 0.01 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7350PBF RDS(on) , Drain-to -Source On Resistance () 0.40 N-CHANNEL 0.30 RDS (on) , Drain-to-Source On Resistance () 0.18 0.17 0.20 ID = 2.1A VGS = 10V 0.16 0.10 0.00 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 0.15 0 2 4 6 8 10 ID , Drain Current (A) VGS, Gate -to -Source Voltage (V) Fig 12. Typical On-Resistance Vs. Gate Voltage Fig 13. Typical On-Resistance Vs. Drain Current 4.0 70 60 VGS(th) Gate threshold Voltage (V) 3.5 50 Power (W) 50 75 100 125 150 3.0 ID = 250A 40 30 20 10 2.5 2.0 -75 -50 -25 0 25 0 1.00 10.00 100.00 1000.00 T J , Temperature ( C ) Time (sec) 6 Fig 14. Typical Threshold Voltage Vs. Junction Temperature Fig 15. Typical Power Vs. Time www.irf.com N-CHANNEL IRF7350PBF 100 ID TOP 1.9A 3.4A 4.2A 80 BOTTOM 15V EAS , Single Pulse Avalanche Energy (mJ) 60 VDS L DRIVER 40 RG 20V D.U.T IAS + V - DD A 20 tp 0.01 Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 Starting T , J Junction Temperature ( C) Fig 16a. Maximum Avalanche Energy Vs. Drain Current V(BR)DSS tp I AS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K 12V .2F .3F QG VGS D.U.T. + V - DS QGS VG QGD VGS 3mA IG ID Current Sampling Resistors Charge Fig 17. Gate Charge Test Circuit Fig 18. Basic Gate Charge Waveform www.irf.com 7 IRF7350PBF 10 N-CHANNEL Duty Cycle = Single Pulse Avalanche Current (A) 1 0.01 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses 0.1 0.01 0.001 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth 40 EAR , Avalanche Energy (mJ) 30 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 4.2A 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave) *tav Fig 20. Maximum Avalanche Energy Vs. Temperature 8 www.irf.com P-CHANNEL IRF7350PBF 100 VGS -15V -10V -7.0V -6.0V -5.5V -5.0V -4.5V BOTTOM -4.0V TOP 100 -I D, Drain-to-Source Current (A) 10 -ID, Drain-to-Source Current (A) 1 VGS -15V -10V -7.0V -6.0V -5.5V -5.0V -4.5V BOTTOM -4.0V TOP 10 1 0.1 -4.0V 0.01 0.1 -4.0V 20s PULSE WIDTH Tj = 150C 20s PULSE WIDTH Tj = 25C 0.001 0.1 1 10 100 0.01 0.1 1 10 100 -VDS, Drain-to-Source Voltage (V) -VDS, Drain-to-Source Voltage (V) Fig 21. Typical Output Characteristics Fig 22. Typical Output Characteristics 10.00 2.5 I D = -1.5A -I D, Drain-to-Source Current () T J = 150C 1.00 RDS(on) , Drain-to-Source On Resistance 2.0 (Normalized) 1.5 0.10 T J = 25C 1.0 0.5 0.01 4.0 6.0 VDS = -25V 20s PULSE WIDTH 8.0 10.0 0.0 -60 -40 -20 0 20 40 60 80 100 V GS = -10V 120 140 160 -VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature ( C) Fig 23. Typical Transfer Characteristics Fig 24. Normalized On-Resistance Vs. Temperature www.irf.com 9 IRF7350PBF 10000 P-CHANNEL 12 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + Cgd ds -V GS , Gate-to-Source Voltage (V) I D = -1.5A VDS = 80V VDS = 50V VDS = 20V 10 C, Capacitance(pF) 1000 7 Ciss Coss 100 5 Crss 2 10 1 10 100 0 0 5 10 15 20 25 -V DS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 25. Typical Capacitance Vs. Drain-to-Source Voltage Fig 26. Typical Gate Charge Vs. Gate-to-Source Voltage 10.00 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 100sec 1 Tc = 25C Tj = 150C Single Pulse 1 10 1msec 10msec 1.00 T J = 150C T J = 25C VGS = 0V 0.10 0.2 0.4 0.6 0.8 1.0 1.2 -V SD, Source-toDrain Voltage (V) 0.1 -I D, Drain-to-Source Current (A) -I SD, Reverse Drain Current (A) 100 1000 -VDS , Drain-toSource Voltage (V) Fig 27. Typical Source-Drain Diode Forward Voltage Fig 28. Maximum Safe Operating Area 10 www.irf.com P-CHANNEL 2.0 IRF7350PBF VDS RD 1.6 V GS RG D.U.T. + -I D , Drain Current (A) 1.2 - VDD VGS 0.8 Pulse Width 1 s Duty Factor 0.1 % Fig 10a. Switching Time Test Circuit 0.4 VDS 90% 0.0 25 50 75 100 125 150 TC , Case Temperature ( C) Fig 29. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 D = 0.50 (Z thJA ) 0.20 10 0.10 Thermal Response 0.05 0.02 1 0.01 P DM t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T t1/ t 2 +T A 10 100 J = P DM x Z thJA 0.1 0.00001 0.0001 0.001 0.01 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 30. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 11 IRF7350PBF RDS(on) , Drain-to -Source On Resistance () 0.80 P-CHANNEL 0.500 0.70 0.60 ID = -1.5A 0.50 RDS (on) , Drain-to-Source On Resistance () 0.475 0.450 VGS = -10V 0.40 0.425 0.30 5.0 7.0 9.0 11.0 13.0 15.0 0.400 0 1 2 3 4 5 6 -V GS, Gate -to -Source Voltage (V) -I D , Drain Current (A) Fig 31. Typical On-Resistance Vs. Gate Voltage Fig 32. Typical On-Resistance Vs. Drain Current 4.0 70 60 -VGS(th) Gate threshold Voltage (V) 3.5 ID = -250A Power (W) 50 40 30 20 10 3.0 2.5 2.0 -75 -50 -25 0 25 50 75 100 125 150 0 1.00 10.00 100.00 1000.00 T J , Temperature ( C ) Time (sec) Fig 33. Typical Threshold Voltage Vs. Junction Temperature Fig 34. Typical Power Vs. Time 12 www.irf.com P-CHANNEL 120 IRF7350PBF ID TOP -1.3A -2.4A -3.0A 15V 96 BOTTOM EAS , Single Pulse Avalanche Energy (mJ) 72 VDS 48 L DRIVER RG 20V D.U.T IAS + V - DD A 24 tp 0.01 Fig 35c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 Starting T , Junction Temperature J ( C) Fig 35a. Maximum Avalanche Energy Vs. Drain Current V(BR)DSS tp I AS Fig 35d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K 12V .2F .3F QG VGS D.U.T. + V - DS QGS VG QGD VGS 3mA IG ID Current Sampling Resistors Charge Fig 36. Gate Charge Test Circuit Fig 37. Basic Gate Charge Waveform www.irf.com 13 IRF7350PBF 10 P-CHANNEL Duty Cycle = Single Pulse 1 - Avalanche Current (A) 0.01 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses 0.1 0.01 0.001 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 tav (sec) Fig 38. Typical Avalanche Current Vs.Pulsewidth 60 EAR , Avalanche Energy (mJ) 50 TOP Single Pulse BOTTOM 10% Duty Cycle ID = -3.0A 40 30 20 10 0 25 50 75 100 125 Starting T J , Junction Temperature (C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 150 D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Fig 39. Maximum Avalanche Energy Vs. Temperature 14 www.irf.com IRF7350PBF SO-8 Package Outline Dimensions are shown in milimeters (inches) D A 5 B DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A c D E e e1 H 1 2 3 4 .050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8 1.27 BASIC 0.635 BAS IC 5.80 0.25 0.40 0 6.20 0.50 1.27 8 6X e K L y e1 A K x 45 C 0.10 [.004] y 8X c 8X b 0.25 [.010] A1 CAB 8X L 7 NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMETER 3. DIMENS IONS ARE SHOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS-012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROT RUSIONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROT RUSIONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR SOLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 6.46 [.255] FOOT PRINT 8X 0.72 [.028] 8X 1.78 [.070] SO-8 Part Marking Information (Lead-Free) EXAMPLE: T HIS IS AN IRF7101 (MOSFET ) DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) Y = LAST DIGIT OF T HE YEAR WW = WEEK A = AS SEMBLY S IT E CODE LOT CODE PART NUMBER INT ERNAT IONAL RECT IFIER LOGO XXXX F 7101 www.irf.com 15 IRF7350PBF SO-8 Tape and Reel Dimensions are shown in milimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site. 16 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/04 www.irf.com |
Price & Availability of IRF7350PBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |