![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 91741A RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-3) Product Summary Part Number IRHNB7460SE RDS(on) Radiation Level RDS(on) 100K Rads (Si) 0.32 ID 20A IRHNB7460SE 500V, N-CHANNEL RAD Hard HEXFET TECHNOLOGY (R) SMD-3 International Rectifiers RADHardTM HEXFET(R) MOSFET technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. Features: ! ! ! ! ! ! ! ! ! Single Event Effect (SEE) Hardened Ultra Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Surface Mount Light Weight Absolute Maximum Ratings Parameter ID @ VGS = 12V, TC = 25C ID @ VGS = 12V, TC = 100C IDM PD @ TC = 25C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current Continuous Drain Current Pulsed Drain Current Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction Storage Temperature Range Package Mounting Surface Temperature Weight For footnotes refer to the last page Pre-Irradiation Units 20 12 80 300 2.4 20 500 20 30 3.8 -55 to 150 300 (for 5 sec.) 3.5(Typical) A W W/C V mJ A mJ V/ns o C g www.irf.com 1 6/4/01 IRHNB7460SE Pre-Irradiation @ Tj = 25C (Unless Otherwise Specified) Min 500 2.5 60 Electrical Characteristics Parameter Typ Max Units 0.66 4.0 0.32 0.36 4.5 50 250 100 -100 220 50 110 35 100 100 100 V V/C V S( ) A Test Conditions VGS = 0V, ID = 1.0mA Reference to 25C, ID = 1.0mA VGS = 12V, ID = 12A VGS = 12V, ID = 20A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 12A VDS= 400V ,VGS=0V VDS = 400V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VGS =12V, ID = 20A VDS = 250V VDD =250V, ID =20A, VGS =12V, RG = 2.35 BVDSS Drain-to-Source Breakdown Voltage BV DSS /TJ Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance IDSS Zero Gate Voltage Drain Current IGSS IGSS Qg Q gs Qgd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (Miller) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance nA nC ns nH Measured from the center of drain pad to center of source pad VGS = 0V, VDS = 25V f = 1.0MHz Ciss C oss C rss Input Capacitance Output Capacitance Reverse Transfer Capacitance 3500 730 260 pF Source-Drain Diode Ratings and Characteristics Parameter IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min Typ Max Units 20 80 1.8 800 16 Test Conditions A V nS C Tj = 25C, IS = 20A, VGS = 0V Tj = 25C, IF = 20A, di/dt 100A/s VDD 50V Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance Parameter RthJC RthJ-PCB Junction-to-Case Junction-to-PC board M i n Typ Max Units 1.6 0.42 C/W Test Conditions Soldered to a 2 inch square clad PC board Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page 2 www.irf.com Pre-Irradiation IRHNB7460SE International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25C, Post Total Dose Irradiation Parameter BVDSS V/5JD IGSS IGSS IDSS RDS(on) RDS(on) VSD Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source# $ On-State Resistance (TO-3) Static Drain-to-Source# $ On-State Resistance (SMD-3) Diode Forward Voltage# $ Min 500 2.0 100K Rads (Si) Max 4.5 100 -100 50 0.32 0.32 1.8 Units V nA A V Test Conditions " VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20V VDS= 400V, VGS=0V VGS = 12V, ID = 12A VGS = 12V, ID = 12A VGS = 0V, ID = 20A International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. Table 2. Single Event Effect Safe Operating Area Ion Cu Br Ni LET MeV/(mg/cm )) 28 36.8 26.6 Energy (MeV) 285 305 265 Range (m) @V/5=0V @V/5=-5V 43 375 375 39 350 350 42 375 V,5 (V) @V/5=-10V @V/5=-15V @V/5=-20V 375 375 375 350 325 300 400 300 VDS 200 100 0 0 -5 -10 VGS -15 -20 Cu Br Ni Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 3 IRHNB7460SE Pre-Irradiation 100 I D , Drain-to-Source Current (A) 10 I D , Drain-to-Source Current (A) VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP 100 10 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP 1 5.0V 1 0.1 5.0V 20us PULSE WIDTH TJ = 25 oC 1 10 100 0.01 0.1 0.1 0.1 20us PULSE WIDTH TJ = 150 o C 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 2.5 R DS(on) , Drain-to-Source On Resistance (Normalized) 18A ID = 20A I D , Drain-to-Source Current (A) TJ = 150 o C 10 2.0 1.5 TJ = 25 o C 1 1.0 0.5 0.1 5.0 V DS = 50V 20s PULSE WIDTH 6.0 7.0 8.0 9.0 10.0 11.0 12.0 0.0 -60 -40 -20 VGS = 12V 0 20 40 60 80 100 120 140 160 VGS , Gate-to-Source Voltage (V) TJ , Junction Temperature( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature 4 www.irf.com Pre-Irradiation IRHNB7460SE 8000 VGS , Gate-to-Source Voltage (V) VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd 20 ID = 20A 18A VDS = 400V VDS = 250V VDS = 100V 16 C, Capacitance (pF) 6000 Ciss 4000 12 Coss Crss 8 2000 4 0 1 10 100 0 FOR TEST CIRCUIT SEE FIGURE 13 0 40 80 120 160 200 VDS , Drain-to-Source Voltage (V) QG , Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 1000 ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) TJ = 150 C 10 ID , Drain Current (A) 100 10us 1 TJ = 25 C 100us 10 1ms 0.1 0.2 V GS = 0 V 0.6 1.0 1.4 1.8 2.2 1 TC = 25 C TJ = 150 C Single Pulse 10 100 10ms 1000 10000 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area www.irf.com 5 IRHNB7460SE Pre-Irradiation 20 VDS VGS RD 16 ID, Drain Current (Amps) RG D.U.T. + -VDD 12 VGS Pulse Width 1 s Duty Factor 0.1 % 8 Fig 10a. Switching Time Test Circuit 4 VDS 90% 0 25 50 75 100 125 A 150 TC , Case Temperature (C) 10% VGS td(on) tr t d(off) tf Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10b. Switching Time Waveforms 1 Thermal Response (Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 0.01 0.001 0.00001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com Pre-Irradiation IRHNB7460SE 1000 EAS , Single Pulse Avalanche Energy (mJ) TOP 800 15V BOTTOM ID 8A 11A 18A 20A VDS L DRIVER 600 RG D.U.T. IAS tp + - VDD V/5 20V A 400 0.01 Fig 12a. Unclamped Inductive Test Circuit 200 0 25 50 75 100 125 150 V(BR)DSS tp Starting TJ , Junction Temperature ( C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K QG 12V .2F .3F 12 V QGS VG QGD VGS 3mA D.U.T. + V - DS Charge IG ID Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit www.irf.com 7 IRHNB7460SE Pre-Irradiation Footnotes: Repetitive Rating; Pulse width limited by maximum junction temperature. VDD = 50V, starting TJ = 25C, L= 2.5 mH Peak IL = 20A, VGS = 12V ISD 20A, di/dt 120A/s, VDD 500V, TJ 150C Pulse width 300 s; Duty Cycle 2% Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A. Total Dose Irradiation with V DS Bias. 400 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. Case Outline and Dimensions SMD-3 PAD ASSIGNMENTS IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. . Data and specifications subject to change without notice. 06/01 8 www.irf.com |
Price & Availability of IRHNB7460SE
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |