Part Number Hot Search : 
STPS115 MMBZ5235 035CT AD713KN VDXXXX LT3495B 220M06 0000X
Product Description
Full Text Search
 

To Download MAX4172EXA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MAX4172EXA Rev. B
RELIABILITY REPORT FOR MAX4172EXA PLASTIC ENCAPSULATED DEVICES
January 23, 2003
MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR. SUNNYVALE, CA 94086
Written by
Reviewed by
Jim Pedicord Quality Assurance Reliability Lab Manager
Bryan J. Preeshl Quality Assurance Executive Director
Conclusion The MAX4172 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. Table of Contents I. ........Device Description II. ........Manufacturing Information III. .......Packaging Information IV. .......Die Information V. ........Quality Assurance Information VI. .......Reliability Evaluation ......Attachments
I. Device Description A. General The MAX4172 is a low-cost, precision, high-side current-sense amplifier for portable PCs, telephones, and other systems where battery/DC power-line monitoring is critical. High-side power-line monitoring is especially useful in battery-powered systems, since it does not interfere with the battery charger's ground path. Wide bandwidth and ground-sensing capability make the MAX4172 suitable for closed-loop batterycharger and general-purpose current-source applications. The 0V and 32V input common-mode range is independent of the supply voltage, which ensures that current-sense feedback remains viable, even when connected to a battery in deep discharge. To provide a high level of flexibility, the MAX4172 functions with an external sense resistor to set the range of load current to be monitored. It has a current output that can be converted to a ground-referred voltage with a single resistor, accommodating a wide range of battery voltages and currents. An open-collector power-good output (/PG) indicates when the supply voltage reaches an adequate level to guarantee proper operation of the current-sense amplifier. The MAX4172 operates with a 3.0V to 32V supply voltage.
B. Absolute Maximum Ratings Item V+, RS+, RS-, /PG OUT Differential Input Voltage, VRS+ -VRS Current into Any Pin Storage Temp. Lead Temp. (10 sec.) Continuous Power Dissipation (TA = +70C) 8-Lead MAX 8-Lead NSO Derate above +70C 8-Lead MAX 8-Lead NSO Rating -0.3V to +36V -0.3V to (V+ + 0.3V) 700mV 50mA -65C to +150C +300C 330mW 471mW 4.10mW/C 5.88mW/C
II. Manufacturing Information A. Description/Function: B. Process: C. Number of Device Transistors: D. Fabrication Location: E. Assembly Location: F. Date of Initial Production: Low-Cost, Precision, High-Side Current-Sense Amplifier SG3 - Standard 3 micron silicon gate CMOS 177 Oregon, USA Malaysia, Philippines or Thailand December, 1996
III. Packaging Information A. Package Type: B. Lead Frame: C. Lead Finish: D. Die Attach: E. Bondwire: F. Mold Material: G. Assembly Diagram: H. Flammability Rating: 8 Lead MAX Copper Solder Plate Silver-filled Epoxy Gold (1.3 mil dia.) Epoxy with silica filler Buildsheet # 05-3001-0063 Class UL94-V0 8-Lead NSO Copper Solder Plate Silver-filled Epoxy Gold (1.3 mil dia.) Epoxy with silica filler Buildsheet # 05-3001-0062 Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1
Level 1
IV. Die Information A. Dimensions: B. Passivation: C. Interconnect: D. Backside Metallization: E. Minimum Metal Width: F. Minimum Metal Spacing: G. Bondpad Dimensions: H. Isolation Dielectric: I. Die Separation Method: 84 x 58 mils Si3N4/SiO2 (Silicon nitride/ Silicon dioxide) Aluminum/Si (Si = 1%) None 3 microns (as drawn) 3 microns (as drawn) 5 mil. Sq. SiO2 Wafer Saw
V. Quality Assurance Information A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager) Bryan Preeshl (Executive Director of QA) Kenneth Huening (Vice President) B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate: < 50 ppm D. Sampling Plan: Mil-Std-105D VI. Reliability Evaluation A. Accelerated Life Test The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate () is calculated as follows: = 1 = MTTF 1.83 (Chi square value for MTTF upper limit) 192 x 4389 x 160 x 2 Temperature Acceleration factor assuming an activation energy of 0.8eV = 6.79 x 10-9 = 6.79 F.I.T. (60% confidence level @ 25C)
This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The Burn-In Schematic 06-5243 shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1M) located on the Maxim website at http://www.maxim-ic.com . B. Moisture Resistance Tests Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85C/85%RH or HAST tests are performed quarterly per device/package family. C. E.S.D. and Latch-Up Testing The OP11 die type has been found to have all pins able to withstand a transient pulse of 400V, per MilStd-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of 250mA and/or 20V.
Table 1 Reliability Evaluation Test Results MAX4172EXA
TEST ITEM TEST CONDITION FAILURE IDENTIFICATION PACKAGE SAMPLE SIZE NUMBER OF FAILURES
Static Life Test (Note 1) Ta = 135C Biased Time = 192 hrs. Moisture Testing (Note 2) Pressure Pot Ta = 121C P = 15 psi. RH= 100% Time = 168hrs. Ta = 85C RH = 85% Biased Time = 1000hrs.
DC Parameters & functionality
160
0
DC Parameters & functionality
uMax NSO
77 77
0 0
85/85
DC Parameters & functionality
77
0
Mechanical Stress (Note 2) Temperature Cycle -65C/150C 1000 Cycles Method 1010 DC Parameters & functionality 77 0
Note 1: Life Test Data may represent plastic D.I.P. qualification lots. Note 2: Generic Process/Package Data
Attachment #1
TABLE II. Pin combination to be tested. 1/ 2/
Terminal A (Each pin individually connected to terminal A with the other floating) 1. 2. All pins except VPS1 3/ All input and output pins
Terminal B (The common combination of all like-named pins connected to terminal B) All VPS1 pins All other input-output pins
1/ Table II is restated in narrative form in 3.4 below. 2/ No connects are not to be tested. 3/ Repeat pin combination I for each named Power supply and for ground (e.g., where VPS1 is VDD, VCC, VSS, VBB, GND, +VS, -VS, VREF, etc).
3.4 a.
Pin combinations to be tested. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., VSS1, or VSS2 or VSS3 or VCC1, or VCC2) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.
b.
c.
TERMINAL C
R1 S1 R2
TERMINAL A REGULATED HIGH VOLTAGE SUPPLY
S2 C1
DUT SOCKET
SHORT CURRENT PROBE (NOTE 6)
TERMINAL B
R = 1.5k C = 100pf
TERMINAL D Mil Std 883D Method 3015.7 Notice 8


▲Up To Search▲   

 
Price & Availability of MAX4172EXA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X