Part Number Hot Search : 
F8471 GBP208G 20R005FE C1008S P040010 ADG428 UPD70 UC3843
Product Description
Full Text Search
 

To Download RFD16N05LSM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 RFD16N05L, RFD16N05LSM
Data Sheet December 2003
16A, 50V, 0.047 Ohm, Logic Level, N-Channel Power MOSFETs
These are N-Channel logic level power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use with logic level (5V) driving sources in applications such as programmable controllers, automotive switching, switching regulators, switching converters, motor relay drivers and emitter switches for bipolar transistors. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate biases in the 3V to 5V range, thereby facilitating true on-off power control directly from logic circuit supply voltages. Formerly developmental type TA09871.
Features
* 16A, 50V * rDS(ON) = 0.047 * UIS SOA Rating Curve (Single Pulse) * Design Optimized for 5V Gate Drives * Can be Driven Directly from CMOS, NMOS, TTL Circuits * Compatible with Automotive Drive Requirements * SOA is Power Dissipation Limited * Nanosecond Switching Speeds * Linear Transfer Characteristics * High Input Impedance * Majority Carrier Device * Related Literature - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"
Ordering Information
PART NUMBER RFD16N05L RFD16N05LSM PACKAGE TO-251AA TO-252AA BRAND RFD16N05L RFD16N05LSM
Symbol
D
NOTE: When ordering, include the entire part number. Add the suffix 9A to obtain the TO-252AA variant in tape and reel, i.e. RFD16N05LSM9A
G
S
Packaging
JEDEC TO-251AA
SOURCE DRAIN GATE DRAIN (FLANGE)
JEDEC TO-252AA
DRAIN (FLANGE) GATE SOURCE
(c)2003 Fairchild Semiconductor Corporation
RFD16N05L, RFD16N05LSM Rev. B1
RFD16N05L, RFD16N05LSM
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified RFD16N05L, RFD16N05LSM Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 50 50 16 45 10 60 0.48 -55 to 150 300 260 UNITS V V A A V W W/oC
oC oC oC
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 125oC.
Electrical Specifications
PARAMETER
TC = 25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS TEST CONDITIONS ID = 250mA, VGS = 0V, Figure 10 VGS = VDS, ID = 250mA, Figure 9 VDS = 40V, VGS = 0V TC = 150oC MIN 50 1 VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 40V, ID = 16A, RL = 2.5 Figures 17, 18 TYP 14 30 42 14 MAX 2 1 50 100 0.047 0.056 60 100 80 45 3 2.083 100 UNITS V V A A nA ns ns ns ns ns ns nC nC nC
oC/W oC/W
Drain to Source Breakdown Voltage Gate to Threshold Voltage Zero Gate Voltage Drain Current
Gate to Source Leakage Current Drain to Source On Resistance (Note 2)
IGSS rDS(ON)
VGS = 10V, VDS = 0V ID = 16A, VGS = 5V ID = 16A, VGS = 4V
Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 5V Threshold Gate Charge Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient
t(ON) td(ON) tr td(OFF) tf t(OFF) Qg(TOT) Qg(5) Qg(TH) RJC RJA
VDD = 25V, ID = 8A, VGS = 5V, RGS = 12.5 Figures 15, 16
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage Diode Reverse Recovery Time NOTES: 2. Pulse Test: Pulse Width 300ms, Duty Cycle 2%. 3. Repetitive Rating: Pulse Width limited by max junction temperature. SYMBOL VSD trr ISD = 16A ISD = 16A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.5 125 UNITS V ns
(c)2003 Fairchild Semiconductor Corporation
RFD16N05L, RFD16N05LSM Rev. B1
RFD16N05L, RFD16N05LSM Typical Performance Curves Unless Otherwise Specified
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 0 25 50 75 100 TC , CASE TEMPERATURE (oC) 125 150 15 0.8 20
0.6 0.4
10
5
0.2 0 0 25 50 75 100 125 TC , CASE TEMPERATURE (oC) 150
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
102
IAS, AVALANCHE CURRENT (A)
TC = 25oC TJ = MAX RATED ID MAX CONTINUOUS
102 Idm STARTING TJ = 25oC STARTING TJ = 150oC
ID, DRAIN CURRENT (A)
10 OPERATION IN THIS AREA LIMITED BY rDS(ON) 1 DC
10
If R = 0 tAV = (L)(IAS)/(1.3 RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3 RATED BVDSS - VDD) +1] 1 0.01 0.10 1 tAV, TIME IN AVALANCHE (ms)
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
102
10
FIGURE 3. FORWARD BIAS SAFE OPERATING AREA
FIGURE 4. UNCLAMPED INDUCTIVE SWITCHING SOA (SINGLE PULSE UIS SOA)
45 IDS, DRAIN TO SOURCE CURRENT (A) VGS = 10V VGS = 4V VGS = 5V 30
IDS(ON), DRAIN TO SOURCE ON CURRENT (A)
TC = 25oC PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX.
45 VDS = 15V PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 30
VGS = 3V 15
15
VGS = 2V 0 0 1.5 3.0 4.5 6.0 VDS, DRAIN TO SOURCE VOLTAGE (V) 7.5
0
0
1.5 3.0 4.5 VGS, GATE TO SOURCE VOLTAGE (V)
6.0
FIGURE 5. SATURATION CHARACTERISTICS
FIGURE 6. TRANSFER CHARACTERISTICS
(c)2003 Fairchild Semiconductor Corporation
RFD16N05L, RFD16N05LSM Rev. B1
RFD16N05L, RFD16N05LSM Typical Performance Curves Unless Otherwise Specified (Continued)
1.4 VDS = 15V NORMALIZED DRAIN TO SOURCE ON RESISTANCE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 4 5 6 7 VGS, GATE TO SOURCE VOLTAGE (V) ID = 16V PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX. 2.5 ID = 16A 2.0 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX.
1.5
1.0
0.5
0 -50
0
50
100
150
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 7. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
1.4 1.3 NORMALIZED GATE THRESHOLD VOLTAGE 1.2 1.1 1.0 0.9 0.8 0.7
NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE
ID = 250A VGS = VDS
1.4 ID = 250A 1.2
1.0
0.8
0.6
0.6 -50
0
50
100
150
200
0 -50
0
50
100
150
200
TJ, JUNCTION TEMPERATURE (oC)
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED GATE THRESHOLD vs JUNCTION TEMPERATURE
2000
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
VDS , DRAIN TO SOURCE VOLTAGE (V)
1600 C, CAPACITANCE (pF) CISS CISS = CGS + CGD CRSS = CGD COSS CDS + CGD COSS CRSS 0 0 5 10 15 20 25
37.5
8
1200
6
25
800
GATE SOURCE VOLTAGE
4
12.5 2 DRAIN SOURCE VOLTAGE 0 I G ( REF ) 20 -----------------------I G ( ACT ) t, TIME (s) I G ( REF ) 80 -----------------------I G ( ACT ) 0
400
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT
(c)2003 Fairchild Semiconductor Corporation
RFD16N05L, RFD16N05LSM Rev. B1
VGS , GATE TO SOURCE VOLTAGE (V)
VGS = 0V f = 1MHz
50
10 RL = 3.125, VGS = 5V IG(REF) = 0.60mA PLATEAU VOLTAGES IN DESCENDING ORDER: VDD = BVDSS V = 0.75 BV VDD = BVDSS VDD = 0.50 BVDSS VDD = BVDSS DD DSS VDD = 0.25 BVDSS
RFD16N05L, RFD16N05LSM Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 13. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 14. UNCLAMPED ENERGY WAVEFORMS
tON td(ON) tr RL VDS
+
tOFF td(OFF) tf 90%
90%
RG DUT
-
VDD 0
10% 90%
10%
VGS VGS 0 10%
50% PULSE WIDTH
50%
FIGURE 15. SWITCHING TIME TEST CIRCUIT
FIGURE 16. RESISTIVE SWITCHING WAVEFORMS
CURRENT REGULATOR
VDS (ISOLATED SUPPLY) VDD SAME TYPE AS DUT Qg(TOT) Qgd Qgs D VDS VGS
12V BATTERY
0.2F
50k 0.3F
G
DUT 0
IG(REF) 0 IG CURRENT SAMPLING RESISTOR
S VDS ID CURRENT SAMPLING RESISTOR IG(REF) 0
FIGURE 17. GATE CHARGE TEST CIRCUIT
FIGURE 18. GATE CHARGE WAVEFORMS
(c)2003 Fairchild Semiconductor Corporation
RFD16N05L, RFD16N05LSM Rev. B1
RFD16N05L, RFD16N05LSM PSPICE Electrical Model
.SUBCKT RFD16N05L 2 1 3 ; REV 4/8/92 Ca 12 8 3.33e-9 Cb 15 14 3.11e-9 Cin 6 8 1.21e-9
DPLCAP 5 LDRAIN RSCL1 RSCL2 + 51 5 ESCL 51 50 RDRAIN 16 VTO 6 + 21 MOS1 RIN CIN 8 RSOURCE 7 LSOURCE 3 SOURCE DBREAK
Dbody 7 5 DBDMOD Dbreak 5 11 DBKMOD Dplcap 10 5 DPLCAPMOD Ebreak 11 7 17 18 70.9 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evto 20 6 18 8 1 IT 8 17 1
GATE
10
DRAIN 2
ESG + EVTO + 18 8 6 8
11 17 EBREAK 18 MOS2
+
DBODY
-
Lgate 1 9 1.38e-9 Ldrain 2 5 1.0e-12 Lsource 3 7 1.0e-9 Mos1 16 6 8 8 MOSMOD M=0.99 Mos2 16 21 8 8 MOSMOD M=0.01 Rin 6 8 1e9 Rbreak 17 18 RBKMOD 1 Rdrain 5 16 RDSMOD 27.38e-3 Rgate 9 20 2.98 Rsource 8 7 RDSMOD 0.614e-3 Rvto 18 19 RVTOMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 8 19 DC 1 Vto 21 6 0.448
1 LGATE
9
20 RGATE
S1A 12 13 8 S1B CA EGS + 6 8
S2A 14 13 S2B 13 CB + EDS 5 8 14 IT 15 17 RBREAK 18 RVTO 19 VBAT +
.MODEL DBDMOD D (IS=1.34e-13 RS=1.21e-2 TRS1=1.64e-3 TRS2=2.59e-6 +CJO=1.13e-9 TT=4.14e-8) .MODEL DBKMOD D (RS=8.82e-2 TRS1=-2.01e-3 TRS2=7.32e-10) .MODEL DPLCAPMOD D (CJO=0.522e-9 IS=1e-30 N=10) .MODEL MOSMOD NMOS (VTO=2.054 KP=24.73 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL RBKMOD RES (TC1=1.01e-3 TC2=5.21e-8) .MODEL RDSMOD RES (TC1=3.66e-3 TC2=1.46e-5) .MODEL RVTOMOD RES (TC1=-1.81e-3 TC2=1.41e-6) .MODEL S1AMOD VSWITCH(RON=1e-5 ROFF=0.1 VON=-4.25 VOFF=-2.25) .MODEL S1BMOD VSWITCH(RON=1e-5 ROFF=0.1 VON=-2.25 VOFF=-4.25) .MODEL S2AMOD VSWITCH(RON=1e-5 ROFF=0.1 VON=-0.65 VOFF=4.35) .MODEL S2BMOD VSWITCH(RON=1e-5 ROFF=0.1 VON=4.35 VOFF=-0.65) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley.
(c)2003 Fairchild Semiconductor Corporation
RFD16N05L, RFD16N05LSM Rev. B1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FACT Quiet SeriesTM ActiveArrayTM FAST BottomlessTM FASTrTM CoolFETTM FRFETTM CROSSVOLTTM GlobalOptoisolatorTM DOMETM GTOTM EcoSPARKTM HiSeCTM E2CMOSTM I2CTM TM EnSigna ImpliedDisconnectTM FACTTM ISOPLANARTM Across the board. Around the world.TM The Power FranchiseTM Programmable Active DroopTM
DISCLAIMER
LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC OPTOPLANARTM PACMANTM POPTM
Power247TM PowerTrench QFET QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SILENT SWITCHER SMART STARTTM SPMTM StealthTM SuperFETTM
SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogic TINYOPTOTM TruTranslationTM UHCTM UltraFET VCXTM
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I6


▲Up To Search▲   

 
Price & Availability of RFD16N05LSM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X