![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
U4062B HF Front End for Car Radios and HiFi Receivers Description Technology: Bipolar Features D Completely integrated FM front end increases quality level and reliability D Oscillator with low phase noise and excellent frequency stability D High performance due to three AGC loops allow extreme large signal handling D Fulfils FTZ rules D Double-balanced high linear mixer with low-noise figure D IF preamplifier with dB-linear gain control D Low noise and high stability of the reference voltage circuit for internal and auxiliary functions Block Diagram 16 14 4 2 13 12 15 3 10 1 18 9 8 7 11 5 6 17 Figure 1. Block diagram Ordering Information Extended Type Number U4062B-B Package DIP18 Remarks Rev. A1, 07-Dec-98 1 (21) U4062B Pin Description Oscout VS IFout GND Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symbol Oscout VS IFout GND MIXin VRef C BRF E AGCout GND MIXout MIXout AGCin IFin AGC BOsc EOsc Function Oscillator output Supply voltage IF output Ground Mixer input Reference voltage output Collector Base, RF preamplifier Emitter AGC output Ground Mixer output Mixer output AGC input (IF strip) IF input / IF gain control AGC time constant Base oscillator Emitter oscillator 1 2 3 4 18 EOsc 17 BOsc 16 AGC 15 IFin 14 13 12 11 10 14928 MIXin 5 VRef C 6 7 AGCin MIXout MIXout GND AGCout BRF 8 E 9 Figure 2. Pinning DIP18 Absolute Maximum Ratings Reference point ground, Pins 4 and 11 Parameters Supply voltage Pins 2, 12 and 13 Power dissipation Tamb = 85C Junction temperature Storage temperature range Ambient temperature range Symbol VS Ptot Tj Tstg Tamb Value 18 450 125 -50 to +125 -25 to +85 Unit V mW C C C Thermal Resistance Parameters Junction ambient Symbol RthJA Value 90 Unit K/W 2 (21) Rev. A1, 07-Dec-98 U4062B Electrical Characteristics VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc - fiRF 49.7 MHz, reference point Pins 4 and 11, Tamb = +25C, unless otherwise specified, see test circuit figure 4. Parameters Test Conditions / Pins Supply voltage range Supply currents Supply current Pin 2 Mixer Pins 12 and 13 RF stage R4 = 470 W Pin 7 RF preamplifier (Rg9 = 50 W, RL7 = 200 W) DC voltage Pin 7 Pin 8 Symbol VS IS I12 + I13 I7 V7 V8 Min. 7 Typ. Max. 16 Unit V mA mA mA V V dB dBm 5 1 3 3.8 2 3.2 2.5 100 130 1.3 2 5 10.5 4.2 160 [ [ 11.5 9 9 5.7 0.77 10.5 12 Power gain GRF Third order intercept IP3 Dynamic characteristics, f = 100 MHz Input impedance Z9 Forward current gain | i7/i9 | hfb Parallel output resistance R7 Parallel output capacitance C1 Noise figure NFRF Oscillator (fOsc = 100 MHz, unloaded Q = 80, resonance resistance Rg17 = 250 W) DC voltage Pin 17 V17 Pin 18 Oscillator voltage Frequency drift Pin 17 By supply voltage change dfo/dVS By temperature change dfo/dK Frequency band 300 Hz to 20 kHz, unweighted Peak CCIR V18 VOsc17 W A/A kW pF dB V V mV kHz/V kHz/K Hz Hz Hz Hz DfOsc(VS) DfOsc(Tj) Dfnoise Dfnoise Dfnoise (ViRF) I1 V1 Gbuffer Z1 FM noise equivalent deviation, (Ripple voltage < 0.5 mV) Peak CCIR, weighted with 75 ms, deemphasis FM by AM signal at mixer fiRF = 90 MHz, m = 0.8, input fM = 1 kHz, ViRF = 106 dBmV Oscillator output buffer (RL1 = 520 W) DC current load limitation Pin 1 DC voltage Pin 1 Voltage gain VOsc17 200 mV Pin 1 VOsc1/VOsc17 Harmonics Output impedance Pin 1 DfOsc 0.2 1.7 0.86 <-30 80 x mA V dBC W Rev. A1, 07-Dec-98 3 (21) U4062B Electrical Characteristics (continued) VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc - fiRF 49.7 MHz, reference point Pins 4 and 11, Tamb = 25C, unless otherwise specified, see test circuit figure 4. Mixer (Rg5 = 200 W, RL12-13 = 200 W) Conversion power gain Third order intercept Parallel input resistance Parallel input capacitance Parallel output resistance Effective output capacitance between Pin 12 and 13 f = 100 MHz f = 100 MHz Pin 5 Pin 5 Parameters Test Conditions / Pins Symbol GC IP3 R5 C5 R12 + 13 C12-13 C12-13 C12-13 gc MACG NFCSSB 2.9 3.25 2.5 Min. Typ. 7.5 3.5 5 3 55 3.1 3.5 2.7 5.8 43 5.6 3.3 3.75 2.9 Max. Unit dB dBm kW pF kW pF pF pF m-mho dB dB [ [ f = 10.7 MHz, Pins 12, 13 parallel connected f = 10.7 MHz V12, 13 = 10 V V12, 13 = 7 V V12, 13 = 16 V | i12/u5 |, | i13/u5 | fiRF = 100 MHz, fIF = 10.7 MHz Conversion transconductance Maximum available conversion power gain Noise figure (fIF = 10.7 MHz) Single side band DC voltage Power gain IF preamplifier (f = 10.7 MHz, RL3 = Rg15 = 200 W) Pin 3 Maximum control voltage of V15 = 1.6 V is recommended V15 = 1.6 V V15 < 0.8 V at GmaxIF at GminIF dGIF/dI15 dGIF/dV15 dGIF/dTj at V15 1.6 V V15 < 0.8 V I15 = constant Pin 15 Pin 15 Pin 3 Pin 3 V15 = 1.6 V V3 7.6 V Rg5(fiRF) = 450 W, fiRF = fOsc - fIF GmaxIF GminIF Gain control deviation by V15 External control current Gain control slope Temperature coefficient of voltage gain Pin 15 Pin 15 DGIF SI15 SV15 TCG R15 C15 R3 C3 NFIF 24 -4 28 20 0 1.3 35 0 0.04 -0.02 2.4 5.9 350 4.1 11 dB dB dB I15max I15min mA mA dB/mA dB/V dB/K dB/K dB/K kW pF Parallel input resistance Parallel input capacitance Parallel output resistance Parallel output capacitance Noise figure W pF dB 4 (21) Rev. A1, 07-Dec-98 U4062B Electrical Characteristics (continued) VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc - fiRF 49.7 MHz, reference point Pins 4 and 11, Tamb = 25C, unless otherwise specified, see test circuit figure 4. Parameters DC voltage Saturation voltage Input current Maximum allowable current Maximum control current for external PIN-diode RF stage output Mixer-stage output External AGC voltage Internal AGC voltage Reference voltage source Output voltage, without load Temperature dependence of V6 Internal differential resistance Ripple rejection Noise voltage / Hz I6 = 0 Pin 6 |V6| Tamb = -25 to +85C dV6/dI6 when I6 = 0 mA 20 log (dVs/dV6) when I6 = 0 mA when I6 = 0 and f = 25 Hz f = 125 Hz f = 1 kHz f = 10 kHz V14 = V6 VIF13 = 1 V I10 = 0 V14 Test Conditions / Pins Pin 16 Symbol V16 V10min -I14 I14max Idiode Min. Typ. 1.0 0.08 0.01 0.2 0.1 50 I7 Max. Unit V V AGC circuit (no signal at Pins 5 and 9) Pin 10 6 [ [ xV Pin 14 Pin 14 mA mA AGC threshold voltages (respecting V10 = 0.25 V) Pin 7 Pin 13 Pin 14 Pin 16 VRF7 VIF13 V14min V16min V6 1.6 450 300 0.9 1.4 1.7 20 50 65 0.6 0.37 0.1 0.1 1.8 mV mV V V V mV DV6 (T) rd6 W dB a6 mV mV mV mV Rev. A1, 07-Dec-98 5 (21) U4062B Test Circuit Figure 3. Test circuit RF Preamplifier Figure 4. Test circuit 6 (21) Rev. A1, 07-Dec-98 U4062B 7 6.5 V7 ( Pin 7 ) ( V ) 6 5.5 5 4.5 4 6 95 10410 12 11.5 11 10.5 10 9.5 9 -40 -20 95 10413 8 10 12 VS ( V ) 14 16 G RF ( dB ) 0 20 40 60 80 100 Tj ( C ) Figure 5. V7 vs. VS 20 17.5 15 I 7 ( Pin 7 ) ( mA ) 12.5 10 7.5 5 1.5 2.5 0 6 95 10411 Figure 8. GRF vs. Tj 4 3.5 3 100W 2.5 2 Rg9=50W FRF ( dB ) 1 8 10 12 VS ( V ) 14 16 95 10414 0 2.5 5 7.5 10 12.5 15 17.5 20 I9 ( mA ) Figure 6. I7 vs. VS 11 Figure 9. FRF vs. Ig 10.5 GRF ( dB ) 10 9.5 9 6 95 10412 8 10 12 VS ( V ) 14 16 Figure 7. GRF vs. VS Rev. A1, 07-Dec-98 7 (21) U4062B Oscillator/ Oscillator Output Buffer Figure 10. Test circuit - free running oscillator frequency fOsc 100 MHz 20 fosc=100MHz 15 10 5 0 -5 -10 6 95 10415 104 V OSC Pin 1 ( dBm ) 16 103 Df OSC ( kHz ) 102 101 100 8 10 12 VS ( V ) 14 6 95 10418 8 10 12 VS ( V ) 14 16 Figure 11. 30 DfOsc vs. VS 103 fosc=100MHz Figure 13. VOsc vs. VS 20 V OSC Pin 1 ( dBm ) 100 Df OSC ( kHz ) 10 102 0 -10 -20 -40 -20 0 20 40 60 80 101 -40 95 10417 -20 0 20 40 60 80 100 95 10416 Tj ( C ) Tj ( C ) Figure 12. DfOsc vs. Tj Figure 14. VOsc vs. Tj 8 (21) Rev. A1, 07-Dec-98 U4062B 120 100 90 110 VO OSC ( dBmV ) a FM ( dB ) 80 95 10419 80 70 60 50 40 100 90 80 30 70 90 100 110 120 95 10420 20 80 85 90 95 100 105 110 115 Vi OSC Pin 17 ( dBmV ) ViRF ( dBmV ) Figure 15. VOsc vs. Vi Osc Figure 16. aFM vs. ViRF Mixer Figure 17. Test circuit IL1, IL2 = Insertion loss of the RF transformers Conversion power gain GC = 20 log (2 VoIF/ViRF) + IL1 (dB) + IL2 (dB) VRF5-6 (dBmV) = ViRF (dBmV) - IL1 (dB) + 6 VIF12-13 (dBmV) = VoIF (dBmV) - IL2 (dB) + 6 DGC = GC (VOSC17) - GC (nominal) Input to output IF isolation aIF = 20 log (2 VoIF/ViIF) + IL1 (dB) + IL2 (dB) - GC (nominal) Characteristics aFM versus viRF, see previous page Oscillator frequency immunity against amplitude modulated signal at mixer input (Pin 5-6) related to FM standard modulation: aFM = 20 log [75 kHz/DfOSC(viRF)] whereas viRF = mixer input signal (fiRF = 89.3 MHz, m = 0.8, fM = 1 kHz) Rev. A1, 07-Dec-98 9 (21) U4062B 10 10 0 9 ( mA ) ( dB ) -10 -20 aIF -30 -40 6 6 95 10421 DGC 8 7 DG C, a IF 16 I 12 + I 13 -50 8 10 12 VS ( V ) 14 80 95 10424 90 100 110 120 VOSC Pin 17 ( dBmV ) Figure 18. I12 + I13 vs. VS 8 15 Figure 21. DGc, aIF vs. VOsc Pin 17 NFC 7.5 G C, NF ( dB ) C GC ( dB ) 13 11 7 9 7 GC 5 6.5 6 6 95 10422 8 10 13 VS ( V ) 14 15 95 10425 80 90 100 110 120 VOSC pin 17 ( dBmV ) Figure 19. GC vs. VS 8 130 120 110 100 90 80 6 -40 95 10423 Figure 22. GC NFC vs. VOsc Pin 17 7.5 GC ( dB ) 7 6.5 VIF pin 12-13 ( dBmV ) 100 70 -20 0 20 40 60 80 60 95 10426 70 80 90 100 110 120 Ti ( C ) VRF pin 5-6 ( dBmV ) Figure 20. GC vs. Tj Figure 23. VIF Pin 5-6 vs. VRF Pin 5-6 10 (21) Rev. A1, 07-Dec-98 U4062B 3.75 3.5 C 12-13 ( pF ) 3.25 3.0 2.75 2.5 2.25 2.0 6 95 10427 10 9 F CSSB ( dB ) 16 95 10428 8 7 6 5 4 8 10 12 VS ( V ) 14 0.1 0.2 Rg5 ( kW ) 0.5 1.0 Figure 24. C12-13 vs. VS Figure 25. FCSSB = Noise figure reading /dB-IL/dB IL = Insertion loss of the tuned transformer network Figure 26. Test circuit for single sideband noise (FCSSB) Rev. A1, 07-Dec-98 11 (21) U4062B AGC Circuit IL1, IL2 = Insertion loss of the RF transformers, VRF7 (dBmV) = VIRF (dBmV) - IL1 (dB)+ 6 VIF13 (dBmV) = ViIF (dBmV) - IL2 (dB) Figure 27. Test circuit 1.0 V14=1.7V 0.8 V10 ( V ) V10 ( V ) 7V 10V VIF13 0.4 0.2 0 100 95 10429 1.0 VS=15V 0.8 V14=1.3V 0.6 1.1V 0.4 1.0V 0.2 0.9V 1.2V 0.6 VRF7 104 108 112 116 120 95 10430 0.8V 0 105 107.5 110 112.5 115 117.5 120 122.5 125 VIF13 ( dBmV ) VRF7, VIF13 ( dBmV ) Figure 28. V10 vs. VRF7, VIF13 Figure 29. V10 vs. VIF13 12 (21) Rev. A1, 07-Dec-98 U4062B 1.0 VS=15V 0.8 10V V10 ( V ) 0.6 7V 0.4 0.2 0 0.5 9510431 1.0 0.8 V10 ( V ) 0.6 VS=7V 0.4 0.2 0 -0.2 15V 10V 0.7 0.9 1.1 1.3 1.5 95 10432 0 0.2 0.4 0.6 0.8 1.0 1.2 V16 ( V ) -I16 ( mA ) Figure 30. V10 vs. V16 Figure 31. V10 vs. -I16 IF Preamplifier IL1, IL2 = Insertion loss of the RF transformers Power gain GF = 20 log (2 VoIF/ViRF) + IL1 (dB) + IL2 (dB) ViIF15 (dBmV) = ViIF (dBmV) - IL1 (dB) + 6 VoIF3 (dBmV) = VoIF (dBmV) - IL2 (dB) + 6 Figure 32. Test circuit Rev. A1, 07-Dec-98 13 (21) U4062B 35 120 110 VoIF 3 ( dBmV ) V15=1.6V G IF ( dB ) 25 V15=1.8V 100 90 0.6V 80 70 1.2V 10 6 95 10433 30 20 15 60 8 10 12 VS ( V ) 14 16 95 10436 60 70 80 90 100 110 120 VI IF Pin 15 ( dBmV ) Figure 33. GIF vs. VS 35 30 25 1.5V 20 1.4V V15=1.7V 1.6V G IF ( dB ) F IF ( dB ) 20 17.5 15 12.5 10 -20 0 20 40 60 80 100 95 10437 Figure 36. VoIF3 vs. VI IF Pin 15 25 22.5 15 1.3V 1.2V 10 1.1V 5 -40 95 10434 0 5 10 15 GIF ( dB ) 20 25 30 Tj ( C ) Figure 34. GIF vs. Tj 30 Figure 37. FIF vs. GIF 20 G IF ( dB ) 10 0 -10 0 95 10435 0.5 1.0 V15 ( V ) 1.5 2.0 Figure 35. GIF vs. V15 14 (21) Rev. A1, 07-Dec-98 U4062B Reference Voltage Figure 38. Test circuit 13 12.5 10 7.5 10V 5 VS=18V 2.5 0 -2.5 7V -5 10.5 10 6 95 10438 11.5 11 DV6 ( mV ) 16 12 I2 ( mA ) -7.5 8 10 12 VS ( V ) 14 -10 -20 95 10440 0 20 40 Tj ( C ) 60 80 100 Figure 39. I2 vs. VS 20 10 2.0 1.9 1.8 Figure 41. DV6 vs. Tj DV 6 ( mV ) 0 V6 ( V ) 16 -10 -20 -30 -40 6 8 10 12 VS ( V ) 14 1.7 1.6 1.5 1.4 1.3 1.2 -1 0 1 2 I6 ( mA ) 3 4 5 95 10439 95 10441 Figure 40. DV6 vs. VS Figure 42. V6 vs. I6 Rev. A1, 07-Dec-98 15 (21) U4062B Application Circuit Figure 43. Typical Application circuit for high performance FM front end using non-repetitive alignment concept 16 (21) Rev. A1, 07-Dec-98 U4062B Coils Specifications L8/L9 Toko 7 PL9/ (18 + 18) turns Nr. 218 ANS - 788 N Toko 7 Kl 3 turns Nr. 291 ENS - 2054 IB or Toko MC 122 Nr. E528 SNAS - 100075 Toko 7 Kl without case 4/8 turns Nr. 291 ENF - 2342 x Toko 7 Kl 4 turns Nr. 291 ENS - 2341 IB or Toko MC 122 Nr. E528 SNAS - 100076 Choke 1.5 mH Toko 348 LS - 1R5 or similar Toko CFSK - 107M3 or similar Electrical Connections LO output VS IF output Ground Mixer input Reference output voltage RF preamplifier (collector) RF preamplifier (base) RF preamplifier (emitter) AGC output Ground Mixer output Mixer output AGC input IF input, IF gain control AGC time constant LO (base) LO (emitter) Pin DIP18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Voltage (DC) in V 1.73 8.5 6.1 0 1.7 1.7 8.5 1.3 0.53 0.07 0 8.5 8.5 1.7 1.54 1.06 3.2 2.51 L10 L11/L12 L13 L14/L17 CF1; CF2 VS = 8.5 V, Tamb = 25C FM Front End Data Using Application Circuit Antenna impedance 75 W, Zload IF = 330 W, VS = 8.5 V, Tamb = 25C Characteristics Supply current Tuning range Tuning voltage - at 88 MHz (equal IC's reference voltage) - at 108 MHz Center IF IF output bandwidth at -3 dB Power gain Gain variation versus the band Noise figure Image rejection RF intermodulation 1/2 IF rejection Spurious response, second osc. harmonic IF rejection Osc. output voltage at 520 W load VOSC * Depending on ceramic IF filters to be used Rev. A1, 07-Dec-98 85 200 Symbol IS f Vtune Vtune f BIF G 88 1.7 6.5 10.7* 130* 46* 1 6 57 70 70 90 90 Min. Typ. 32 108 Max. Unit mA MHz V V MHz kHz dB dB dB dB dB dB dB dB mV DG NF 17 (21) U4062B Test conditions D De-emphasis - 75ms D AF bandwidth 30 to 20 kHz D RMS, unweighted Setup for one signal measurement D fD = 98 MHz Note: VoAF related to 75 kHz dev., 1 kHz, ViD = 66 dB mV Setup for three signals intermodulation measurement Figure 44. Block diagram of the test set up 80 70 60 ViD ( dBmV ) 50 40 30 20 10 0 60 95 10443 D D D D SD : fD = 98 MHz, FM: 1 kHz, 22.5 kHz dev. FM: 0.15 kHz, 22.5 kHz dev. Unmodulated for 35 dB SINAD SUD1 : SUD2 : ViD : fUD1=98.8MHz, fUD2=99.6MHz fUD1=94.8MHz, fUD2=91.6MHz fUD1=97.2MHz, fUD2=96.4MHz fUD1=101.2MHz, fUD2=104.4MHz 70 80 90 100 110 120 ViUD1, 2 ( dBmV ) Figure 45. VID vs. ViUD1,2 VID = input desired, ViUD = input undesired 20 FM: 1 kHz, 75 kHz dev. 0 VoAF ( dB ) FM: 1 kHz, 22.5 kHz dev. -20 -40 -60 -80 0 10 20 Noise 30 40 THD: 1 kHz, 75 kHz dev. AM: 1 kHz, 30% 50 60 70 80 90 100 110 95 10442 ViD ( dBmV ) Figure 46. VoAF vs. ViD 18 (21) Rev. A1, 07-Dec-98 U4062B VHF/UHF-Application Figure 47. Test circuit for conversion gain and noise measurement Mixer, VHF Characteristics Test conditions: Rg5 = 50 W, RL12-13 = 200 W, VS = 10 V fIF = 10.7 MHz, fiRF = 200 MHz, fOSC = fiRF + fIF, VOSC17 = 140 mV Parameter Symbol GC GC NFDSB IP3 Rp5 Cp5 Rp17 Cp17 GC 12 11 70mV NF DSB ( dB ) 10 140mV 9 280mV 8 7 140mV 6 Typ. 2.5 2.3 8.2 5.5 1500 3.3 4000 2.7 6.4 Unit dB dB dB dBm pF pF m-mho fIF = 10.7 MHz fIF = 70 MHz Double side band noise figure fOSC = 200 MHz 3rd order intercept input signal level Parallel input resistance, Pin 5, f = 200 MHz Parallel input capacitance, Pin 5, f= 200 MHz Parallel input resistance, Pin 17, f = 200 MHz Parallel input capacitance, Pin 17, f = 200 MHz Conversion transconductance 1 0.5 0 280mV -0.5 -1 -1.5 -2 0 95 10444 Conversion power gain, W W G C( f )/G ( 100 MHz ) C 70mV 100 200 300 400 500 95 10445 0 100 200 300 400 500 fOSC ( MHz ) fOSC ( MHz ) Figure 48. GC vs. fOSC Figure 49. NFDSB vs. fOSC Rev. A1, 07-Dec-98 19 (21) U4062B Package Information Package DIP18 Dimensions in mm 23.3 max 7.77 7.47 4.8 max 6.4 max 0.5 min 3.3 1.64 1.44 20.32 18 10 0.58 0.48 0.36 max 9.8 8.2 2.54 technical drawings according to DIN specifications 1 9 13019 20 (21) Rev. A1, 07-Dec-98 U4062B Ozone Depleting Substances Policy Statement It is the policy of TEMIC Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs). The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2594, Fax number: 49 ( 0 ) 7131 67 2423 Rev. A1, 07-Dec-98 21 (21) |
Price & Availability of U4062B-B
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |