![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 97096 IP2002PBF Synchronous Buck Multiphase Optimized BGA Power Block Features: Integrated Power Semiconductors, Drivers & Passives Output current 30A continuous with no derating up to TPCB = 90C and TCASE = 90C Operating frequency up to 1MHz Dual sided heatsink capable Very small 11mm x 11mm x 2.6mm profile iP2001PbF footprint compatible Internal features minimize layout sensitivity * Optimized for very low power losses IP2002PBF Power Block Description The IP2002PBF is a fully optimized solution for high current synchronous buck multiphase applications. Board space and design time are greatly reduced because most of the components required for each phase of a typical discrete-based multiphase circuit are integrated into a single 11mm x 11mm x 2.6mm BGA power block. The only additional components required for a complete multiphase converter are a PWM IC, the external inductors, and the input and output capacitors. iPOWIR technology offers designers an innovative board space saving solution for applications requiring high power densities. iPOWIR technology eases design for applications where component integration offers benefits in performance and functionality. iPOWIR technology solutions are also optimized internally for layout, heat transfer and component selection. IP2002PBF Internal Block Diagram VIN PRDY ENABLE PWM VDD SGND MOSFET Driver with dead time control VSW PGND * All of the difficult PCB layout and bypassing issues have been addressed with the internal design of the iPOWIR Block. There are no concerns about double pulsing, unwanted shutdown, or other malfunctions which often occur in switching power supplies. The iPOWIR Block will function normally without any additional input power supply bypass capacitors. However, for reliable long term operation it is recommended that at least four 10uF ceramic input decoupling capacitors are provided to the VIN pin of each power block. No additional www.irf.com 5/16/06 1 IP2002PBF All specifications @ 25C (unless otherwise specified) Absolute Maximum Ratings : Parameter VIN to PGND VDD to SGND PWM to SGND Enable to SGND Output RMS Current Block Temperature Recommended Operating Conditions : Parameter Supply Voltage Input Voltage Range Output Voltage Range Output Current Range Operating Frequency Operating Duty Cycle Symbol VDD VIN VOUT IOUT fsw D Min 4.6 3.0 0.8 150 Typ 5.0 Max 5.5 13.2 3.3 30 1000 85 Units V V V A kHz % see Figs. 2 & 3 see Figs. 2, 4 & 8 see Fig. 2 see Figs. 2 & 5 Min -0.3 -0.3 -40 Typ - Max 16 6.0 VDD+0.3 VDD+0.3 30 125 Units V V V V A C Conditions not to exceed 6.0V not to exceed 6.0V Conditions Electrical Specifications @ VDD = 5V (unless otherwise specified) : Parameter Block Power Loss Turn On Delay Turn Off Delay VIN Quiescent Current VDD Quiescent Current Under-Voltage Lockout Start Threshold Hysteresis Enable Input Voltage High Input Voltage Low Power Ready Logic Level High Logic Level Low PWM Input Logic Level High Logic Level Low Fig. 8). Symbol P BLK td(on) td(off) IQ-VIN IQ-VDD UVLO VSTART VHys-UVLO Enable VIH VIL PRDY VOH VOL PWM VOH VOL Min 4.2 2.0 4.5 2.0 - Typ 7.2 63 26 4.4 .05 4.6 0.1 - Max 8.9 1.0 10 4.5 0.8 0.2 0.8 Units W ns mA A V Conditions VIN = 12V, VOUT = 1.3V, IOUT = 30A, fSW = 1MHz Enable = 0V, VIN = 12V Enable = 0V, VDD = 5V V V VDD = 4.6V, ILoad = 10mA VDD < UVLO Threshold, ILoad = 1mA V Measurement were made using four 10uF (TDK C3225X7R1C106M or equiv.) capacitors across the input (see Not associated with the rise and fall times. Does not affect Power Loss (see Fig. 9). 2 www.irf.com IP2002PBF Pin Description Table Pin Name VDD VIN PGND VSW SGND Ball Designator A1 - A3, B1 - B3 A5 - A12, B5 - B12, C5 - C10 C11, C12, D11, D12, E11, E12, F6, F7, F12, G6, G7, G12, H6, H7, H12, J6, J7, J12, K5 - K7, K12, L5, L6, L12, M5 - M7, M12 D5 - D10, E5 - E10, F8 - F11, G8 - G11, H8 - H11, J8 - J11, K8 - K11, L8 - L11, M8 - M11 C1 - C3, D1 -D3, E1 -E3 Pin Function Supply voltage for the internal circuitry. Input voltage for the DC-DC converter. Power Ground - connection to the ground of bulk and filter capacitors. Switching Node - connection to the output inductor. ENABLE F1 Signal Ground. When set to logic level high, internal circuitry of the device is enabled. When set to logic level low, the PRDY pin is forced low, the Control and Sychronous switches are turned off, and the supply current is less than 10A. Power Ready - This pin indicates the status of ENABLE or VDD. This output will be driven low when ENABLE is logic low or when VDD is less than 4.4V (typ.). When ENABLE is logic high and VDD is greater than 4.4V (typ.), this output is driven high. This output has a 10mA source and 1mA sink capability. PRDY K1 PWM NC www.irf.com TTL-level input signal to MOSFET drivers. H1 B4, C4, D4, E4, F2 - F4, G2 - This pin is not for electrical connection. It G4, H2 - H4, J1, J2 - J4, K3, should be attached only to dead copper. L1, L2, M1 - M4 3 IP2002PBF 11 10 9 8 7 VIN = 12V VOUT = 1.3V fSW = 1MHz TBLK = 125C L = 0.30uH Maximum Power Loss (W) Typical 6 5 4 3 2 1 0 0 5 10 15 20 25 30 Output Current (A) Fig. 1: Power Loss vs. Current Case Temperature (8A 0 10 20 30 40 50 60 70 80 90 100 110 120 32 30 28 26 24 22 Output Current (A) 20 18 16 14 12 10 8 6 4 2 0 0 10 20 30 Safe Operating Area TX VIN = 12V VOUT = 1.3V fSW = 1MHz L = 0.30uH 40 50 60 70 80 90 100 110 120 PCB Temperature (C) Fig. 2: Safe Operating Area (SOA) vs. TPCB & TCASE 4 www.irf.com IP2002PBF Typical Performance Curves 1.30 1.27 1.24 1.21 1.18 1.15 1.12 1.09 1.06 1.03 1.00 0.97 3 4 5 6 7 8 9 10 11 12 13 10.0 1.33 1.30 1.27 10.0 Power Loss (Normalized) Power Loss (Normalized) VOUT = 1.3V IOUT = 30A fSW = 1MHz L = 0.30uH TBLK = 125C 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 1.23 1.20 1.17 1.13 1.10 1.07 1.03 1.00 0.97 0.93 0.90 0.8 VIN = 12V IOUT = 30A fSW = 1MHz L = 0.30uH T BLK = 125C 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 SOA Temp Adjustment (C) SOA Temp Adjustment (C) 1.2 1.6 2.0 2.4 2.8 3.2 3.6 Input Voltage (V) Output Voltage (V) Fig. 3: Normalized Power Loss vs. VIN 1.00 0.0 Fig. 4: Normalized Power Loss vs. VOUT 1.09 3.5 0.97 Power Loss (Normalized) Power Loss (Normalized) 0.95 0.92 0.89 VIN = 12V VOUT = 1.3V IOUT = 30A L = 0.30uH TBLK = 125C -1.0 1.08 -2.0 1.07 -3.0 1.05 -4.0 VIN = 12V VOUT = 1.3V IOUT = 30A fSW = 1MHz TBLK = 125C 3.0 SOA Temp Adjustment (C) SOA Temp Adjustment (C) 2.5 2.0 1.04 1.5 0.86 -5.0 1.03 1.0 0.84 -6.0 1.01 0.5 0.81 -7.0 0.78 -8.0 1.00 0.0 0.75 -9.0 0.99 -0.5 0.73 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 -10.0 1000 0.97 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -1.0 Switching Frequency (kHz) Output Inductance (uH) Fig. 5: Normalized Power Loss vs. Frequency Fig. 6: Normalized Power Loss vs. Inductance 70 60 Average IDD (mA) 50 40 30 20 Does not include PRDY current TBLK = 25C 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 10 250 Switching Frequency (kHz) www.irf.com Fig. 7: IDD vs. Frequency 5 IP2002PBF Applying the Safe Operating Area (SOA) Curve The SOA graph incorporates power loss and thermal resistance information in a way that allows one to solve for maximum current capability in a simplified graphical manner. It incorporates the ability to solve thermal problems where heat is drawn Case Temperature (8A out through the printed circuit board and the top of the case. 0 10 20 30 40 50 60 70 80 90 100 110 120 Procedure Output Current (A) 32 30 28 26 3 1) Draw a line from Case Temp axis at TCASE to the PCB Temp axis at TPCB. 2) Draw a vertical line from the TX axis intercept to the SOA curve. 3) Draw a horizontal line from the intersection of the vertical line with the SOA curve to the Y axis. The point at which the horizontal line meets the y-axis is the SOA current. 24 22 20 18 16 14 12 10 8 6 4 2 0 0 10 20 30 Safe Operating Area VIN = 12V VOUT = 1.3V fSW = 1MHz L = 0.30uH 40 50 60 70 80 90 1 2 TX 100 110 120 PCB Temperature (C) Adjusting the Power Loss and SOA curves for different operating conditions To make adjustments to the power loss curves in Fig. 1, multiply the normalized value obtained from the curves in Figs. 3, 4, 5 or 6 by the value indicated on the power loss curve in Fig. 1. If multiple adjustments are required, multiply all of the normalized values together, then multiply that product by the value indicated on the power loss curve in Fig. 1. The resulting product is the final power loss based on all factors. See example no. 1. To make adjustments to the SOA curve in Fig. 2, determine your maximum PCB Temp & Case Temp at the maximum operating current of each IP2002PBF. Then, add the correction temperature from the normalized curves in Figs. 3, 4, 5 or 6 to the TX axis intercept (see procedure no. 2 above) in Fig. 2. When multiple adjustments are required, add all of the temperatures together, then add the sum to the TX axis intercept in Fig. 2. See example no. 2. Operating Conditions for the following examples: Output Current = 30A Sw Freq= 900kHz Input Voltage = 10V Inductor = 0.2uH Output Voltage = 3.3V Example 1) Adjusting for Maximum Power Loss: (Fig. 1) (Fig. 3) (Fig. 4) (Fig. 5) (Fig. 6) Maximum power loss = 11W Normalized power loss for input voltage 0.98 Normalized power loss for output voltage 1.28 Normalized power loss for frequency 0.955 Normalized power loss for inductor value 1.02 Adjusted Power Loss = 11W x 0.98 x 1.28 x 0.955 x 1.02 13.44W 6 www.irf.com IP2002PBF Example 2) Adjusting for SOA Temperature: (Fig. (Fig. (Fig. (Fig. 3) 4) 5) 6) Normalized Normalized Normalized Normalized SOA Temperature for input voltage -0.8C SOA Temperature for output voltage 8.4C SOA Temperature for frequency -1.8C SOA Temperature for inductor value 0.75C TX axis intercept temp adjustment = - 0.8C + 8.4C - 1.8C + 0.75C 6.6C Assuming TCASE = 100C & TPCB = 90C: The following example shows how the SOA current is adjusted for a TX increase of 6.6C. Case Temperature (8A 0 10 20 30 40 50 60 70 80 90 100 110 120 32 30 28 26 24 22 Unadjusted SOA Current Adjusted SOA Current Output Current (A) 20 18 16 14 12 10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 90 100 110 120 VIN = 12V VOUT = 1.3V fSW = 1MHz L = 0.30uH Safe Operating Area PCB Temperature (C) TX 90% PIN = VIN Average x IIN Average PDD = VDD Average x IDD Average POUT = VOUT Average x IOUT Average PLOSS = (PIN + PDD) - POUT PRDY Average VDD Current A V DC Average Input Current A DC V Average Input Voltage PWM 10% VIN ENABLE PWM VDD SGND VSW Average Output Current A 90% Average VDD Voltage PGND iP2001 IP2002PBF Averaging Circuit V Average Output Voltage Average Output Voltage (V OUT) VSW 10% td(on) td(off) Fig. 8: Power Loss Test Circuit www.irf.com Fig. 9: Timing Diagram 7 5 4 3 FB COMP DROOP 8 +5V VINS R6 R1 VOUTS R35 TP13 Vin VIN1 SGND1 VIN 200 3.92K IP2002-1 IP2002PBF-1 VDD1 0 R2 6800pF C26 C1 C3 PWM1 10uF 10uF 10uF 10uF 330uF 330uF 330uF C25 C4 C5 TP19 PGND TP18 C33 C39 C40 C41 3.92k 1800pF 8.2pF 4.42k 10k R3 R19 TP17 R21 10k R36 +5V PGNDS open +5V ENABLE1 2.49k VSW1 R5 ENABLE1 VSW1 TP6 IP2002PBF VCC 1 C2 VSW1 0.3uH 10uF open R22 C15 100uF 100uF open L1 VOUT TP10 VOUT ISEN1 PGND1 PRDY1 PWM1 0 14 C16 C42 TP11 VOUT TP12 VOUT PRDY1 R31 13 R10 3.92k 6 VSEN R32 ISEN2 VDD2 VIN2 SGND2 PWM2 10uF 10uF 10uF 10uF 0 C47 11 Vin +5V IP2002-2 IP2002PBF-2 TP14 PGND 4.42k open TP15 PGND D1 12 PWM2 +5V R11 R16 TP7 R23 R7 VSW2 10k 10k C6 C7 C8 C30 TP16 PGND PRDY1 CMPD3003A 3 2.49k TP5 ISEN3 ENABLE2 10 ENABLE2 VSW2 VSW2 C35 R30 +5V open open 1 PGOOD PRDY2 2 0.22uF 2 PGOOD TP21 L2 0.3uH C36 R24 9 0 VOUTS VOUTS 0.22uF 7 PWM3 FS/EN R12 R29 +5V PGND2 PRDY2 PRDY2 open C17 100uF C18 100uF C43 open C34 0.1uF C46 10uF PRDY3 PWM4 16 R4 PGNDS 3 20K C37 R13 0 1 TP22 PGNDS PRDY4 0.22uF 2 C38 D2 0.22uF CMPD3003A IP2002-3 IP2002PBF-3 ISEN4 VDD3 VIN3 SGND3 15 +5V Vin 8 GND U1 C9 10uF ISL6558CB C10 10uF C11 10uF C31 10uF PWM3 +5V R17 10k 10k R25 ENABLE3 ENABLE3 VSW3 VSW3 R8 2.49k TP8 VSW3 R26 open L3 0.3uH C19 100uF C20 100uF C44 open 12V / 5V CONVERTER PGND3 PRDY3 +5V PRDY3 U6 Vin Vin Vdd C27 10uF C29 1uF IP2002-4 IP2002PBF-4 +5V VDD4 VIN4 SGND4 Vin 4-Phase Reference Design Schematic C12 PWM4 +5V 10uF C13 10uF C14 10uF C32 10uF R18 10K 10K R27 ENABLE4 ENABLE4 VSW4 R9 2.49k TP9 VSW4 R28 open VSW4 L4 0.3uH C21 100uF C22 100uF C45 open PGND4 PRDY4 PRDY4 Title Size IP2002_4 phase demo board Number Revision www.irf.com IP2002PBF Quantity 1 17 8 2 1 1 1 1 1 4 3 5 3 5 9 2 1 1 4 1 7 2 1 1 4 1 1 4 1 Designator C1 C10 C11 C12 C13 C14 C3 C30 C31 C32 C33 C4 C46 C5 C6 C7 C8 C9 C15 C16 C17 C18 C19 C20 C21 C22 C2 C29 C25 C26 C27 C28 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C47 R1 R2 R31 R10 R11 R12 R13 R35 R16 R17 R18 R19 R21 R23 R25 R27 R34 R3 R32 R33 R4 R5 R7 R8 R9 R6 R22 R24 R26 R28 R29 R30 R36 D1 D2 D5 D6 L1 L2 L3 L4 L5 U1 U2 U3 U4 U5 U6 Value 1 6800pF 10.0uF 100uF 10.0uF 8.20pF 1800pF 1.00uF 0.010uF 0.100uF 0.22uF 330uF Open 3.92K 0 10.0K 4.42K 30.1K 20.0K 2.49K 200 Open 30V 40V 30V 0.3uH 15uH 4.5 - 5.5V 30A 4.7 - 25V Value 2 50V 16V 6.3V 6.3V 50V 50V 16V 50V 50V 6.3V 16V 1/8W 1/8W 1/8W 1/8W 1/8W 1/8W 1/8W 1/8W Type 2 X7R X5R X5R X5R NPO X7R X7R X7R X7R X5R WA series thin film thick film thick film thin film thick film thick film thick film thick film Tolerance 10% 10% 20% 10% 3% 10% 10% 10% 10% 10% 20% 0.10% <50m 1% 0.10% 1% 1% 1% 1% Package 0805 1206 1210 1206 0805 0805 0805 0805 0805 0603 SMD 0805 0805 0805 0805 0805 0805 0805 0805 Mfr. PHICOMP Murata TDK TDK PHICOMP PHICOMP MuRata TDK ROHM TDK Panasonic BC Component ROHM KOA BC Component KOA KOA KOA KOA Mfr. Part No. 08052R682K9BB0 GRM31CR61C106KC31B C3225X5R0J107M C3216X5R0J106K 0805CG829C9BB0 08052R182K9BB0 GRM40X7R105K016 C2012X7R1H103KT MCH215C104KP C1608X5R0J224K EEF-WA1C331P 2312-241-73922 MCR10EZHJ000 RK73H2A1002F 2312-241-74422 RK73H2A3012F RK73H2A2002F RK73H2A2491F RK73H2A2000F CMPD3003A 10MQ040N CMPSH-3 ETQP2H0R3BFA 1008PS-153M ISL6558CB iP2002 IP2002PBF LT1616 200mA schottky sot23 Central 2.1A schottky D-64 IRF 100mA schottky sot23 Central 36A ferrite 20% SMT Panasonic 0.70A ferrite 20% SMT Coilcraft 0.8 - 5V PWM controller 0 - 70C 16 Ld SOIC Intersil Power Block 11mm x 11mm International Rect 1.8 - 5V PWM controller -40 to +85C S6 Linear Technology 4-Phase Reference Design Bill of Materials Refer to the following application notes for detailed guidelines and suggestions when implementing iPOWIR Technology products: AN-1028: Recommended Design, Integration and Rework Guidelines for International Rectifiers iPOWIR Technology BGA Packages This paper discusses the assembly considerations that need to be taken when mounting iPOWIR BGAs on printed circuit boards. This includes soldering, pick and place, reflow, inspection, cleaning and reworking recommendations. AN-1029: Optimizing a PCB Layout for an iPOWIR Technology Design This paper describes how to optimize the PCB layout design for both thermal and electrical performance. This includes placement, routing, and via interconnect suggestions. AN-1030: Applying iPOWIR Products in Your Thermal Environment This paper explains how to use the Power Loss and SOA curves in the data sheet to validate if the operating conditions and thermal environment are within the Safe Operating Area of the iPOWIR product. AN-1047: Graphical solution for two branch heatsinking Safe Operating Area Detailed explanation of the dual axis SOA graph and how it is derived. www.irf.com 9 IP2002PBF VDD NC NC SGND NC NC ENABLE VIN PGND NC NC PWM NC NC NC NC NC PGND VSW NC PRDY NC NC Dimensions shown in inches (millimeters) Recommended PCB Footprint (Top View) 10 www.irf.com IP2002PBF 0.15 [.006] C 2X 6 11.00 [.433] B A 5 C 0.45 [.0177] 0.35 [.0138] BALL A1 CORNER ID 11.00 [.433] 0.12 [.005] C NOTES: 1. 2. 3. 4. 5 6 7 DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. CONTROLLING DIMENSION: MILLIMETER SOLDER BALL POSITION DESIGNATION PER JESD 95-1, SPP-010. PRIMARY DATUM C (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE PACKAGE BODY. SOLDER BALL DIAMETER IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, IN A PLANE PARALLEL TO DATUM C. TOP VIEW 0.15 [.006] C 2X 6 133X O 0.55 [.0216] 0.45 [.0178] 7 0.15 [.006] 0.08 [.003] CAB C 0.40 [.016] 4X BOTTOM VIEW 0.80 [.032] 22X (4X 1.1 [.043]) 2.31 [.0909] 2.11 [.0831] 2.76 [.1087] 2.46 [.0969] SIDE VIEW Mechanical Drawing www.irf.com 11 IP2002PBF 0123 XXXX IP2002PBF iP2002 Part Marking 0123 601000 iP2002 IP2002PBF 0123 601000 iP2002 IP2002PBF 24mm 16mm FEED DIRECT ION NOT ES : 1. OUT LINE CONFORMS T O EIA-481 & EIA-541. Tape & Reel Information Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IRs Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.5/06 12 www.irf.com |
Price & Availability of IP2002PBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |