![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Freescale Semiconductor Technical Data Document Number: MRF7S19170H Rev. 0, 10/2006 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs Designed for CDMA base station applications with frequencies from 1930 to 1990 MHz. Suitable for CDMA and multicarrier amplifier applications. To be used in Class AB and Class C for PCN - PCS/cellular radio and WLL applications. * Typical Single - Carrier W - CDMA Performance: VDD = 28 Volts, IDQ = 1400 mA, Pout = 50 Watts Avg., Full Frequency Band, 3GPP Test Model 1, 64 DPCH with 50% Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. Power Gain -- 17.2 dB Drain Efficiency -- 32% Device Output Signal PAR -- 6.2 dB @ 0.01% Probability on CCDF ACPR @ 5 MHz Offset -- - 37.5 dBc in 3.84 MHz Channel Bandwidth * Capable of Handling 5:1 VSWR, @ 32 Vdc, 1960 MHz, 170 Watts CW Peak Tuned Output Power * Pout @ 1 dB Compression Point w 170 Watts CW Features * 100% PAR Tested for Guaranteed Output Power Capability * Characterized with Series Equivalent Large - Signal Impedance Parameters * Internally Matched for Ease of Use * Integrated ESD Protection * Greater Negative Gate - Source Voltage Range for Improved Class C Operation * Designed for Digital Predistortion Error Correction Systems * RoHS Compliant * In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. MRF7S19170HR3 MRF7S19170HSR3 1930 - 1990 MHz, 50 W AVG., 28 V SINGLE W - CDMA LATERAL N - CHANNEL RF POWER MOSFETs CASE 465B - 03, STYLE 1 NI - 880 MRF7S19170HR3 CASE 465C - 02, STYLE 1 NI - 880S MRF7S19170HSR3 Table 1. Maximum Ratings Rating Drain - Source Voltage Gate - Source Voltage Operating Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Symbol VDSS VGS VDD Tstg TC TJ Value - 0.5, +65 - 6.0, +10 32, +0 - 65 to +150 150 225 Unit Vdc Vdc Vdc C C C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80C, 170 W CW Case Temperature 72C, 25 W CW Symbol RJC Value (2,3) 0.25 0.31 Unit C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. (c) Freescale Semiconductor, Inc., 2006. All rights reserved. MRF7S19170HR3 MRF7S19170HSR3 1 RF Device Data Freescale Semiconductor Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 1A (Minimum) B (Minimum) IV (Minimum) Table 4. Electrical Characteristics (TC = 25C unless otherwise noted) Characteristic Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 372 Adc) Gate Quiescent Voltage (VDS = 28 Vdc, ID = 1400 mAdc) Fixture Gate Quiescent Voltage (1) (VDS = 28 Vdc, ID = 1400 mAdc, Measured in Functional Test) Drain - Source On - Voltage (VGS = 10 Vdc, ID = 3.72 Adc) Dynamic Characteristics (2) Reverse Transfer Capacitance (VDS = 28 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Output Capacitance (VDS = 28 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss Coss -- -- 0.9 703 -- -- pF pF VGS(th) VGS(Q) VGG(Q) VDS(on) 1.2 -- 4 0.1 2 2.7 5.4 0.15 2.7 -- 7.6 0.3 Vdc Vdc Vdc Vdc IDSS IDSS IGSS -- -- -- -- -- -- 10 1 1 Adc Adc Adc Symbol Min Typ Max Unit Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 50 W Avg., f = 1932.5 MHz and f = 1987.5 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 50% Clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Drain Efficiency Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss Gps D PAR ACPR IRL 16 29 5.7 -- -- 17.2 32 6.2 - 37.5 - 16 19 -- -- - 35 -9 dB % dB dBc dB 1. VGG = 2 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic. 2. Part internally matched both on input and output. MRF7S19170HR3 MRF7S19170HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25C unless otherwise noted) -- continued Characteristic Video Bandwidth (Tone Spacing from 100 kHz to VBW) IMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands) Gain Flatness in 60 MHz Bandwidth @ Pout = 170 W CW Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 170 W CW Group Delay @ Pout = 170 W CW, f = 1960 MHz Part - to - Part Insertion Phase Variation @ Pout = 170 W CW, f = 1960 MHz Gain Variation over Temperature Output Power Variation over Temperature Symbol VBW -- 25 -- Min Typ Max Unit MHz Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, 1930 - 1990 MHz Bandwidth GF Delay G P1dB -- -- -- -- -- -- 0.5 2.06 4.7 16 0.015 0.01 -- -- -- -- -- -- dB ns dB/C dBm/C MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 3 R1 VBIAS Z20 VSUPPLY + C6 R2 C5 C4 C3 Z7 C8 C15 C16 C19 R3 RF INPUT Z1 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 RF Z19 OUTPUT Z2 Z3 Z4 C7 Z5 Z6 Z8 C10 DUT C14 Z21 C13 C12 C1 C2 C11 C9 C17 C18 Z1* Z2* Z3* Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 0.588 x 0.083 Microstrip 0.146 x 0.083 Microstrip 0.068 x 0.083 Microstrip 0.865 x 0.098 Microstrip 0.154 x 0.098 Microstrip 0.271 x 0.787 Microstrip 1.410 x 0.080 Microstrip 0.194 x 0.787 Microstrip 0.115 x 1.360 Microstrip 0.230 x 1.360 Microstrip 0.185 x 1.120 Microstrip Z12 Z13* Z14* Z15* Z16* Z17, Z18 Z19 Z20, Z21 PCB 0.060 x 0.420 Microstrip 0.197 x 0.083 Microstrip 0.332 x 0.083 Microstrip 0.158 x 0.083 Microstrip 0.572 x 0.083 Microstrip 0.063 x 0.220 Microstrip 0.160 x 0.083 Microstrip 1.120 x 0.080 Microstrip Taconic TLX - 0300, 0.030, r = 2.5 * Variable for tuning Figure 1. MRF7S19170HR3(HSR3) Test Circuit Schematic Table 5. MRF7S19170HR3(HSR3) Test Circuit Component Designations and Values Part C1, C2 C3, C8, C9, C10, C11 C4 C5 C6, C15, C16, C17, C18 C7 C12 C13 C14 C19 R1, R2 R3 Description 1.8 pF Chip Capacitors 8.2 pF Chip Capacitors 100 pF Chip Capacitor 100 nF Chip Capacitor 10 F Chip Capacitors 0.5 pF Chip Capacitor 1.5 pF Chip Capacitor 0.3 pF Chip Capacitor 0.8 pF Chip Capacitor 470 F, 63 V Electrolytic Capacitor, Axial 10 k, 1/4 W Chip Resistors 10 , 1/4 W Chip Resistor Part Number 100B1R8BW 100B8R2CW 100B101JW 200B104MW C5750X5R1H106MT 100B0R5BW 100B1R5BW 100B0R3BW 100B0R8BW 516D477M063PS7B CRCW12061001FKTA CRCW120610R0FKTA Manufacturer ATC ATC ATC ATC TDK ATC ATC ATC ATC Sprague Vishay Vishay MRF7S19170HR3 MRF7S19170HSR3 4 RF Device Data Freescale Semiconductor R2 R1 C5 C4 C3 C19 C6 C8 R3 C15 C16 C10 CUT OUT AREA C7 C11 C14 C13 C12 C1 C2 C9 C17 C18 MRF7S19170H Rev 0 Figure 2. MRF7S19170HR3(HSR3) Test Circuit Component Layout MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 17 Gps, POWER GAIN (dB) 16 15 14 Gps D 34 33 32 VDD = 28 Vdc, Pout = 50 W (Avg.), IDQ = 1400 mA 31 Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth, PAR = 7.5 dB @ 0.01% -1 Probability (CCDF) -1.5 D, DRAIN EFFICIENCY (%) -10 PARC (dB) -15 -20 -25 -30 D, DRAIN EFFICIENCY (%) -10 PARC (dB) -15 -20 -25 -30 2100 mA 1400 mA 10 IRL, INPUT RETURN LOSS (dB) IRL, INPUT RETURN LOSS (dB) 18 35 IRL 13 12 11 10 1880 PARC -2 -2.5 2040 1900 1920 1940 1960 1980 2000 2020 f, FREQUENCY (MHz) Figure 3. Output Peak - to - Average Ratio Compression (PARC) Broadband Performance @ Pout = 50 Watts Avg. 18 17 Gps, POWER GAIN (dB) 16 15 14 IRL 13 12 PARC 11 10 1880 Gps VDD = 28 Vdc, Pout = 84 W (Avg.), IDQ = 1400 mA Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth, PAR = 7.5 dB @ 0.01% Probability (CCDF) D 44 43 42 41 40 -3 -3.4 -3.8 -4.2 2040 1900 1920 1940 1960 1980 2000 2020 f, FREQUENCY (MHz) Figure 4. Output Peak - to - Average Ratio Compression (PARC) Broadband Performance @ Pout = 84 Watts Avg. 19 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) VDD = 28 Vdc, f1 = 1955 MHz, f2 = 1965 MHz Two-Tone Measurements, 10 MHz Tone Spacing Gps, POWER GAIN (dB) 18 IDQ = 2100 mA 1750 mA 17 1400 mA 1050 mA -10 VDD = 28 Vdc, f1 = 1955 MHz, f2 = 1965 MHz Two-Tone Measurements, 10 MHz Tone Spacing -20 -30 IDQ = 700 mA -40 1050 mA -50 1750 mA 16 15 1 700 mA 10 100 400 -60 1 100 400 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two - Tone Power Gain versus Output Power Figure 6. Third Order Intermodulation Distortion versus Output Power MRF7S19170HR3 MRF7S19170HSR3 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS IMD, INTERMODULATION DISTORTION (dBc) -20 VDD = 28 Vdc, IDQ = 1400 mA f1 = 1955 MHz, f2 = 1965 MHz Two-Tone Measurements, 10 MHz Tone Spacing IMD, INTERMODULATION DISTORTION (dBc) -10 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 1 VDD = 28 Vdc, Pout = 170 W (PEP), IDQ = 1400 mA Two-Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz -30 IM3-U IM3-L IM5-U IM5-L IM7-U IM7-L 10 TWO-TONE SPACING (MHz) 100 -40 3rd Order -50 -60 1 5th Order 7th Order 100 Pout, OUTPUT POWER (WATTS) PEP 400 Figure 7. Intermodulation Distortion Products versus Output Power 1 OUTPUT COMPRESSION AT THE 0.01% PROBABILITY ON THE CCDF (dB) VDD = 28 Vdc, IDQ = 1400 mA f = 1960 MHz, Input PAR = 7.5 dB 0 Figure 8. Intermodulation Distortion Products versus Tone Spacing 50 D, DRAIN EFFICIENCY (%) Ideal 45 -1 -1 dB = 45 W -2 -2 dB = 62 W -3 -3 dB = 84 W -4 30 Actual 40 35 30 35 40 45 50 55 60 65 70 75 80 85 25 90 Pout, OUTPUT POWER (WATTS) Figure 9. Output Peak - to - Average Ratio Compression (PARC) versus Output Power ACPR, UPPER AND LOWER RESULTS (dBc) -20 -30 19 VDD = 28 Vdc, IDQ = 1400 mA, f = 1960 MHz Single-Carrier W-CDMA, PAR = 7.5 dB, ACPR @ 5 MHz Offset in 3.84 MHz Integrated Bandwidth Uncorrected, Upper and Lower -40 DPD Corrected No Memory Correction -50 18 17 16 15 14 D 13 41 42 43 44 45 46 47 48 49 50 1 10 100 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) CW VDD = 28 Vdc IDQ = 1400 mA f = 1960 MHz Gps TC = -30_C 25_C 85_C 85_C 45 30 15 0 400 -30_C 75 25_C 60 D, DRAIN EFFICIENCY (%) 90 -60 DPD Corrected with Memory Correction -70 40 Gps, POWER GAIN (dB) Figure 10. Digital Predistortion Correction versus ACPR and Output Power Figure 11. Power Gain and Drain Efficiency versus CW Output Power MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS 18 MTTF FACTOR (HOURS x AMPS2) IDQ = 1400 mA f = 1960 MHz 17 Gps, POWER GAIN (dB) 109 108 16 15 VDD = 24 V 28 V 13 0 100 200 300 Pout, OUTPUT POWER (WATTS) CW 32 V 107 14 106 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than 10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 12. Power Gain versus Output Power Figure 13. MTTF Factor versus Junction Temperature W - CDMA TEST SIGNAL 100 10 -10 -20 -30 3.84 MHz Channel BW PROBABILITY (%) 1 Output Signal 0.1 (dB) 0.01 0.001 0.0001 0 W-CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ "5 MHz Offset. PAR = 7.5 dB @ 0.01% Probability on CCDF 2 4 6 8 10 Input Signal -40 -50 -60 -70 -80 -90 -100 -110 -9 -7.2 -5.4 -3.6 -1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) -ACPR in 3.84 MHz Integrated BW -ACPR in 3.84 MHz Integrated BW PEAK-TO-AVERAGE (dB) Figure 14. CCDF W - CDMA 3GPP, Test Model 1, 64 DPCH, 50% Clipping, Single - Carrier Test Signal Figure 15. Single - Carrier W - CDMA Spectrum MRF7S19170HR3 MRF7S19170HSR3 8 RF Device Data Freescale Semiconductor f = 2040 MHz Zload Zo = 10 f = 1880 MHz Zsource f = 2040 MHz f = 1880 MHz VDD = 28 Vdc, IDQ = 1400 mA, Pout = 50 W CW Avg. f MHz 1880 1900 1920 1940 1960 1980 2000 2020 2040 Zsource W 1.338 - j7.859 1.515 - j7.609 1.743 - j7.432 2.007 - j7.352 2.249 - j7.393 2.410 - j7.553 2.411 - j7.788 2.244 - j7.995 1.966 - j8.101 Zload W 0.967 - j2.868 0.942 - j2.725 0.920 - j2.585 0.893 - j2.449 0.865 - j2.313 0.841 - j2.192 0.820 - j2.073 0.802 - j1.957 0.779 - j1.834 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Input Matching Network Device Under Test Z source Z load Figure 16. Series Equivalent Source and Load Impedance MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 9 ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS 61 60 Pout, OUTPUT POWER (dBm) 59 58 57 56 55 54 53 52 51 32 33 34 35 P1dB = 53.25 dBm (211 W) P3dB = 53.97 dBm (249 W) P6dB = 54.33 dBm (271 W) Ideal Pout, OUTPUT POWER (dBm) 62 61 60 59 58 57 56 55 54 53 52 VDD = 32 Vdc, IDQ = 1400 mA, Pulsed CW 12 sec(on), 10% Duty Cycle, f = 1960 MHz 33 34 35 36 37 38 39 40 41 42 43 44 45 P1dB = 54.14 dBm (259 W) Actual P3dB = 54.9 dBm (310 W) P6dB = 55.27 dBm (336 W) Ideal Actual VDD = 28 Vdc, IDQ = 1400 m, Pulsed CW 12 sec(on), 10% Duty Cycle, f = 1960 MHz 36 37 38 39 40 41 42 43 44 Pin, INPUT POWER (dBm) NOTE: Measured in a Peak Tuned Load Pull Fixture Test Impedances per Compression Level Zsource P3dB 2.34 - j9.24 Zload 0.79 - j2.94 P3dB Pin, INPUT POWER (dBm) NOTE: Measured in a Peak Tuned Load Pull Fixture Test Impedances per Compression Level Zsource 2.34 - j9.24 Zload 0.79 - j2.94 Figure 17. Pulsed CW Output Power versus Input Power Figure 18. Pulsed CW Output Power versus Input Power MRF7S19170HR3 MRF7S19170HSR3 10 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS B G 4 1 2X Q bbb M TA M B M (FLANGE) 3 B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 4. RECOMMENDED BOLT CENTER DIMENSION OF 1.16 (29.57) BASED ON M3 SCREW. INCHES MIN MAX 1.335 1.345 0.535 0.545 0.147 0.200 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.175 0.205 0.872 0.888 0.871 0.889 .118 .138 0.515 0.525 0.515 0.525 0.007 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 13.6 13.8 3.73 5.08 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.44 5.21 22.15 22.55 19.30 22.60 3.00 3.51 13.10 13.30 13.10 13.30 0.178 REF 0.254 REF 0.381 REF K D TA 2 bbb M M B M M bbb ccc H M (INSULATOR) R ccc M (LID) M (INSULATOR) M TA TA M B B M TA M B S N M M M (LID) aaa C M TA M B DIM A B C D E F G H K M N Q R S aaa bbb ccc F E A (FLANGE) T A SEATING PLANE STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE CASE 465B - 03 ISSUE D NI - 880 MRF7S19170H B 1 (FLANGE) B K D TA 2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. M bbb M B M DIM A B C D E F H K M N R S aaa bbb ccc INCHES MIN MAX 0.905 0.915 0.535 0.545 0.147 0.200 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.872 0.888 0.871 0.889 0.515 0.525 0.515 0.525 0.007 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 22.99 23.24 13.60 13.80 3.73 5.08 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 22.15 22.55 19.30 22.60 13.10 13.30 13.10 13.30 0.178 REF 0.254 REF 0.381 REF M bbb ccc H C M (INSULATOR) R ccc M (LID) M (INSULATOR) M TA TA M B B M TA TA M B S B N M M M (LID) aaa M M F E A (FLANGE) T A SEATING PLANE CASE 465C - 02 ISSUE D NI - 880S MRF7S19170HS STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE MRF7S19170HR3 MRF7S19170HSR3 RF Device Data Freescale Semiconductor 11 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes * AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins * EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision 0 Date Oct. 2006 Description * Initial Release of Data Sheet MRF7S19170HR3 MRF7S19170HSR3 12 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com E - mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. (c) Freescale Semiconductor, Inc. 2006. All rights reserved. MRF7S19170HR3 MRF7S19170HSR3 Document Number: RF Device DataMRF7S19170H Rev. 0, 10/2006 Freescale Semiconductor 13 |
Price & Availability of MRF7S19170HR3
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |