![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 97313 Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G IRFR3806PBF IRFU3806PbF HEXFET(R) Power MOSFET D Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability S VDSS RDS(on) typ. max. ID D 60V 12.6m 15.8m 43A S G S D G D-Pak I-Pak IRFR3806PBF IRFU3806PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current c Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery e Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Max. 43 31 170 71 0.47 20 24 -55 to + 175 300 Units A W W/C V V/ns C Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy d Avalanche Current c Repetitive Avalanche Energy f 73 25 7.1 mJ A mJ Thermal Resistance Symbol RJC RCS RJA Parameter Junction-to-Case j Case-to-Sink, Flat Greased Surface Junction-to-Ambient ij Typ. --- 0.50 --- Max. 2.12 --- 62 Units C/W www.irf.com 1 03/04/08 IRFR/U3806PbF Static @ TJ = 25C (unless otherwise specified) Symbol V(BR)DSS V(BR)DSS/TJ RDS(on) VGS(th) IDSS IGSS Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 60 --- --- --- 0.075 --- --- 12.6 15.8 2.0 --- 4.0 --- --- 20 --- --- 250 --- --- 100 --- --- -100 Conditions V VGS = 0V, ID = 250A V/C Reference to 25C, ID = 5mAc m VGS = 10V, ID = 25A f V VDS = VGS, ID = 50A A VDS = 60V, VGS = 0V VDS = 48V, VGS = 0V, TJ = 125C nA VGS = 20V VGS = -20V Dynamic @ TJ = 25C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync RG(int) td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Internal Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 41 --- --- --- --- --- Conditions VDS = 10V, ID = 25A ID = 25A VDS = 30V VGS = 10V f ID = 25A, VDS =0V, VGS = 10V --- 22 5.0 6.3 28.3 0.79 6.3 40 49 47 1150 130 67 190 230 --- 30 --- --- --- --- --- --- --- --- --- --- --- --- --- S nC --- --- --- --- --- --- --- Effective Output Capacitance (Energy Related)h --- --- Effective Output Capacitance (Time Related)g ns pF VDD = 39V ID = 25A RG = 20 VGS = 10V f VGS = 0V VDS = 50V = 1.0MHz VGS = 0V, VDS = 0V to 60V h VGS = 0V, VDS = 0V to 60V g Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) c Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units --- --- --- --- 43 170 A Conditions MOSFET symbol showing the integral reverse G S D --- --- 1.3 V --- 22 33 ns --- 26 39 --- 17 26 nC TJ = 125C --- 24 36 --- 1.4 --- A TJ = 25C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) p-n junction diode. TJ = 25C, IS = 25A, VGS = 0V f VR = 51V, TJ = 25C IF = 25A TJ = 125C di/dt = 100A/s f TJ = 25C Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25C, L = 0.23mH RG = 25, IAS = 25A, VGS =10V. Part not recommended for use above this value. ISD 25A, di/dt 1580A/s, VDD V(BR)DSS, TJ 175C. Pulse width 400s; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90C. 2 www.irf.com IRFR/U3806PbF 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 4.5V 10 10 4.5V 60s PULSE WIDTH Tj = 25C 1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 1 0.1 1 60s PULSE WIDTH Tj = 175C 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 RDS(on) , Drain-to-Source On Resistance Fig 2. Typical Output Characteristics 2.5 ID = 25A VGS = 10V 2.0 (Normalized) ID, Drain-to-Source Current (A) 100 T J = 175C 10 T J = 25C 1 VDS = 25V 60s PULSE WIDTH 0.1 2 3 4 5 6 7 8 9 1.5 1.0 0.5 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (C) VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd Coss = Cds + Cgd Fig 4. Normalized On-Resistance vs. Temperature 12.0 ID= 25A VGS , Gate-to-Source Voltage (V) 10.0 VDS= 48V VDS= 30V VDS= 12V C, Capacitance (pF) 1000 Ciss Coss Crss 8.0 6.0 100 4.0 2.0 10 1 10 VDS, Drain-to-Source Voltage (V) 100 0.0 0 5 10 15 20 25 Q G , Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFR/U3806PbF 1000 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 T J = 175C 10 T J = 25C 100 1msec 100sec 10 10msec 1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) 1 Tc = 25C Tj = 175C Single Pulse 0.1 1 10 VDS, Drain-to-Source Voltage (V) 100 DC Fig 7. Typical Source-Drain Diode Forward Voltage V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 45 40 35 ID, Drain Current (A) Fig 8. Maximum Safe Operating Area 80 Id = 5mA 75 30 25 20 15 10 5 0 25 50 75 100 125 150 175 T C , Case Temperature (C) 70 65 60 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( C ) Fig 9. Maximum Drain Current vs. Case Temperature 0.4 0.3 0.3 Energy (J) Fig 10. Drain-to-Source Breakdown Voltage 300 EAS , Single Pulse Avalanche Energy (mJ) 250 ID 2.8A 5.1A BOTTOM 25A TOP 200 0.2 0.2 0.1 0.1 0.0 -10 0 10 20 30 40 50 60 70 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com IRFR/U3806PbF 10 Thermal Response ( Z thJC ) C/W 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 J J 1 1 0.1 R1 R1 2 R2 R2 R3 R3 3 C 3 Ri (C/W) i (sec) 0.6086 0.00026 0.9926 0.5203 0.001228 0.00812 2 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 Ci= i/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 0.001 1E-006 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse 0.01 Avalanche Current (A) 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25C and Tstart = 150C. 0.1 1.0E-06 1.0E-05 1.0E-04 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse) 1.0E-03 tav (sec) 1.0E-02 1.0E-01 Fig 14. Typical Avalanche Current vs.Pulsewidth 80 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 25A 60 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) EAR , Avalanche Energy (mJ) 40 20 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFR/U3806PbF 4.0 VGS(th) , Gate threshold Voltage (V) 14 12 10 IRR (A) 3.5 IF = 17A V R = 51V TJ = 25C TJ = 125C 3.0 8 6 4 2 0 2.5 ID = 50A ID = 250A ID = 1.0mA ID = 1.0A 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( C ) 0 200 400 600 800 1000 diF /dt (A/s) Fig 16. Threshold Voltage vs. Temperature 14 12 10 IRR (A) Fig. 17 - Typical Recovery Current vs. dif/dt 260 IF = 17A V R = 51V TJ = 25C TJ = 125C IF = 25A V R = 51V TJ = 25C TJ = 125C Q RR (A) 210 8 6 4 160 110 60 2 0 0 200 400 600 800 1000 diF /dt (A/s) 10 0 200 400 600 800 1000 diF /dt (A/s) Fig. 18 - Typical Recovery Current vs. dif/dt 260 IF = 25A V R = 51V TJ = 25C TJ = 125C Fig. 19 - Typical Stored Charge vs. dif/dt 210 Q RR (A) 160 110 60 10 0 200 400 600 800 1000 diF /dt (A/s) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFR/U3806PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt - + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01 I AS Fig 21a. Unclamped Inductive Test Circuit LD VDS Fig 21b. Unclamped Inductive Waveforms VDS 90% + VDD - D.U.T VGS Pulse Width < 1s Duty Factor < 0.1% 10% VGS td(on) tr td(off) tf Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms Id Vds Vgs L VCC 0 DUT 1K Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 23a. Gate Charge Test Circuit www.irf.com Fig 23b. Gate Charge Waveform 7 IRFR/U3806PbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information @Y6HQG@) UCDTADTA6IADSAS XDUCA6TT@H7G GPUA8P9@A !"# %A! ! Q6SUAIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G@9APIAXXA DIAUC@A6TT@H7GAGDI@AA6A ,5)5 $ 96U@A8P9@ @6SA X@@FA GDI@A6 A2A! % Ir)AAQAAvAhriyAyvrAvv vqvphrAAGrhqArrA 6TT@H7G GPUA8P9@ AQAAvAhriyAyvrAvvAvqvphr AGrhqArrAAhyvsvphvAAurApryrry Q6SUAIVH7@S 25 DIU@SI6UDPI6G S@8UDAD@S GPBP ,5)5 96U@A8P9@ QA2A9@TDBI6U@TAG@69AS@@ QSP9V8UAPQUDPI6G QA2A9@TDBI6U@TAG@69AS@@ QSP9V8UARV6GDAD@9AUPAUC@ 8PITVH@SAG@W@GAPQUDPI6G @6SA X@@FA A2A! % 6TT@H7G GPUA8P9@ 6A2A6TT@H7GATDU@A8P9@ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFR/U3806PbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information @Y6HQG@) UCDTADTA6IADSAV ! XDUCA6TT@H7G GPUA8P9@A$%&' 6TT@H7G@9APIAXXA (A! DIAUC@A6TT@H7GAGDI@AA6A Ir)AAQAAvAhriyAyvrAvv vqvphrAGrhqArrA DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S ,5)8 $ 96U@A8P9@ @6SA A2A! X@@FA ( GDI@A6 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S ,5)8 96U@A8P9@ QA2A9@TDBI6U@TAG@69AS@@ QSP9V8UAPQUDPI6G @6SA A2A! X@@FA ( 6A2A6TT@H7GATDU@A8P9@ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFR/U3806PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 03/08 10 www.irf.com |
Price & Availability of IRFR3806PBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |