Part Number Hot Search : 
7101J2AQ SC461 74AC32 023R3 EVICE 2SC3874 TD3162 2N055
Product Description
Full Text Search
 

To Download ADATE305 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH ADATE305
FEATURES
Driver 3-level driver with high-Z mode and built-in clamps Precision trimmed output resistance Low leakage mode (typically <10 nA) Voltage range: up to -2.0 V to +6.0 V 1.6 ns minimum pulse width, 2 V terminated 2.1 ns minimum pulse width, 3 V terminated Comparator Window and differential comparator 500 MHz input equivalent bandwidth Load 12 mA maximum current capability Per pin PMU Force voltage range: up to -2.0 V to +6.0 V 5 current ranges: 32 mA, 2 mA, 200 A, 20 A, 2 A Levels 14-bit DAC for DCL levels Typically < 5 mV INL (calibrated) 16-bit DAC for PMU levels Typically < 1.5 mV INL (calibrated) linearity in FV mode HVOUT output buffer 0 V to 13.5 V output range 100-lead, 14 mm x 14 mm, TQFP_EP package 900 mW per channel with no load
GENERAL DESCRIPTION
The ADATE305 is a complete, single-chip solution that performs the pin electronic functions of the driver, the comparator, and the active load (DCL), per pin PMU, and dc levels for ATE applications. The device also contains an HVOUT driver with a VHH buffer capable of generating up to 13.5 V. The driver features three active states: data high mode, data low mode, and term mode, as well as an inhibit state. The inhibit state, in conjunction with the integrated dynamic clamp, facilitates the implementation of a high speed active termination. The ADATE305 supports two output voltage ranges: -2.0 V to +6.0 V and -1.5 V to +6.0 V by adjusting the positive and negative supply voltages. The ADATE305 can be used as either a dual single-ended drive/ receive channel or a single differential drive/receive channel. Each channel of the ADATE305 features a high speed window comparator per pin for functional testing, as well as a per pin PMU with FV, or FI and MV, or MI functions. All necessary dc levels for DCL functions are generated by on-chip 14-bit DACs. The per pin PMU features an on-chip 16-bit DAC for high accuracy and contains integrated range resistors to minimize external component counts. The ADATE305 uses a serial bus to program all functional blocks and has an on-board temperature sensor for monitoring the device temperature.
APPLICATIONS
Automatic test equipment Semiconductor test systems Board test systems Instrumentation and characterization equipment
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2008 Analog Devices, Inc. All rights reserved.
ADATE305 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Functional Block Diagram .............................................................. 3 Specifications..................................................................................... 4 Total Function ............................................................................... 4 Driver ............................................................................................. 5 Reflection Clamp .......................................................................... 7 Normal Window Comparator .................................................... 7 Differential Comparator .............................................................. 9 Active Load.................................................................................. 11 PMU ............................................................................................. 12 External Sense (PMUS_CHx)................................................... 16 DUTGND Input ......................................................................... 16 Serial Peripheral Interface ......................................................... 17 HVOUT Driver ........................................................................... 17 Overvoltage Detector (OVD) ................................................... 18 16-Bit DAC Monitor MUX ....................................................... 18 Absolute Maximum Ratings ......................................................... 19 Thermal Resistance .................................................................... 19 Explanation of Test Levels ......................................................... 19 ESD Caution................................................................................ 19 Pin Configuration and Function Descriptions........................... 20 Typical Performance Characteristics ........................................... 23 SPI Details ....................................................................................... 34 Definition of SPI Word .............................................................. 35 Write Operation.......................................................................... 36 Read Operation........................................................................... 37 Reset Operation .......................................................................... 38 Register Map ................................................................................... 39 Details of Registers ......................................................................... 40 User Information ............................................................................ 42 Details of DACs vs. Levels ......................................................... 43 Recommended PMU Mode Switching Sequences................. 46 Block Diagrams............................................................................... 49 Outline Dimensions ....................................................................... 53 Ordering Guide .......................................................................... 53
REVISION HISTORY
8/08--Revision 0: Initial Version
Rev. 0 | Page 2 of 56
ADATE305 FUNCTIONAL BLOCK DIAGRAM
CH1 PMU_FLAG 16-BIT DAC PMU MUX
*
DAC16_MON MUX
VCLAMPH
VCLAMPL
*
MEASOUT01 MUX CH1
OVD
OVD_CH0
PMUS_CH0
VH VT VL DATA0P 100 DATA0N RCV0P 100 RCV0N COMP_VTT0 COMP_QH0P COMP_QH0N 50 C DRV ROUT (TRIMMED)
FORCE
SENSE
VCLAMPH
VCLAMPL
DUT0
*
WINDOW DIFF. C OTHER CHANNEL DUT1 HVOUT
*
VHH
VOH
COMP_QL0P COMP_QL0N
C
VOL
*
G IOL
ADATE305
SDIN RST SCLK CS SDOUT
*
SPI 14-BIT DAC
VCOM TEMPERATURE SENSOR
*
TEMPSENSE
IOH
*ONE PER DEVICE.
Figure 1. One of Two Channels Is Shown
Rev. 0 | Page 3 of 56
07280-001
ADATE305 SPECIFICATIONS
Characterization and production tests performed using Power Supply Range 1 (see Table 36). VDD = +10.0 V, VCC = +3.3 V, VSS = -5.25 V, VPLUS = +16.75 V, VCOMP_VTT = +3.3 V, VREF = +5.0 V, VREF_GND = 0.0 V. All default test conditions are as defined in Table 38. All specified values are at TJ = 70C, where TJ corresponds to the internal temperature sensor, unless otherwise noted. Temperature coefficients are measured at TJ = 70C 20C, unless otherwise noted. Typical values are based on design, simulation analyses, and/or limited bench evaluations. Typical values are not tested or guaranteed. Test levels are specified in the Explanation of Test Levels section.
TOTAL FUNCTION
Table 1.
Parameter TOTAL FUNCTION Output Leakage Current PE Disable Range E PE Disable Range A, B, C, D Min Typ Max Unit Test Level Conditions/Comments
-20.0
5.3 5.3
+20.0
nA nA
P CT
High-Z Mode Output Capacitance DUT Pin Range POWER SUPPLIES Total Supply Range, VPLUS to VSS VPLUS Supply, VPLUS Positive Supply, VDD Negative Supply, VSS Logic Supply, VCC Comparator Termination, VCOMP_VTT VPLUS Supply Current, IPLUS VPLUS Supply Current, IPLUS Logic Supply Current, ICC Comparator Termination Current, ICOMP_VTT Positive Supply Current, IDD Negative Supply Current, ISS Total Power Dissipation Positive Supply Current, IDD Negative Supply Current, ISS Total Power Dissipation TEMPERATURE MONITORS Temperature Sensor Gain Temperature Sensor Accuracy Without Calibration over 25C to 100C VREF INPUT Reference Input Voltage Range for DACs (VREF Pin) Input Bias Current
-400
5.4 4
+400
nA pF V V V V V V V mA mA mA mA mA mA W mA mA W mV/K C
P S D D D D D D D P P P P P P P P P P CT CT
-1.5 V < VDUTx < +6.0 V; PMU and PE disabled via SPI; PMU Range E, VCH = 7.0 V, VCL = -2.5 V -1.5 V < VDUTx < +6.0 V; PMU and PE disabled via SPI; PMU Range A, PMU Range B, PMU Range C, and PMU Range D, VCH = +7.0 V, VCL = -2.5 V -1.5 V < VDUTx < +6.0 V; PMU disabled and PE enabled via SPI; RCV active, VCH = +7.0 V, VCL = -2.5 V VTERM mode operation
-1.5 22.5 16.75 10.0 -5.25 3.3 +1.3 12.7 2.7 17 92 119 1.7 133 158 2.2 10 6
+6.0 23.25 17.25 10.5 -5.00 3.5 5.0 +3.0 17.0 10.0 26.0 105 135 1.9 154 183 2.5
16.25 9.5 -5.50 3.1 3.3 -1.0 4.0 1.0 10.0 72 100 1.0 102 130 1.8
Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions HVOUT disabled HVOUT enabled, RCV active, no load, VHH = 12 V Quiescent (SPI is static)
Load power down (IOH = IOL = 0 mA) Load power down (IOH = IOL = 0 mA) Load power down (IOH = IOL = 0 mA) Load active off (IOH = IOL = 12 mA) Load active off (IOH = IOL = 12 mA) Load active off (IOH = IOL = 12 mA)
Temperature voltage available on Pin 3 at all times and Pin 28 when selected (see Table 24 and Table 36)
4.95
5 0.1
5.05 100
V A
D P
Referenced to VREF_GND; not referenced to VDUTGND Tested with 5 V applied
Rev. 0 | Page 4 of 56
ADATE305
DRIVER
VH - VL 200 mV (to meet dc/ac specifications). Table 2.
Parameter DC SPECIFICATIONS High-Speed Differential Logic Input Characteristics (DATA, RCV) Input Termination Resistance Input Voltage Differential Common-Mode Voltage Input Bias Current Pin Output Characteristics Output High Range, VH Output Low Range, VL Output Term Range, VT Functional Amplitude (VH - VL) DC Output Current Limit Source DC Output Current Limit Sink Output Resistance, 50 mA ABSOLUTE ACCURACY Min Typ Max Unit Test Level Conditions/Comments
92 0.2 0.85 -20.0
100
108 1.0 2.35 +20.0
V V A
P PF PF P
Push 6 mA into xP pins, force 1.3 V on xN pins; measure voltage from xP to xN, calculate resistance (V/I) 1
+2.2
Each pin tested at 2.85 V and 0.35 V, while the other high speed pin remains open
-1.4 -1.5 -1.5 0.0 75 -120 45.0
+6.0 +5.9 +6.0 7.5 100 -100 47.0 120 -75 49.0
V V V V mA mA
D D D D P P P
Amplitude can be programmed to VH = VL, accuracy specs apply when VH - VL 200 mV Driver high, VH = 6.0 V, short DUTx pin to -2.0 V, measure current Driver low, VL = -1.5 V, short DUTx pin to 6.0 V, measure current Source: driver high, VH = 3.0 V, IDUTx = 1 mA and 50 mA; sink: driver low, VL = 0.0 V, IDUTx = -1 mA and -50 mA; VDUT/IDUT VH tests done with VL = -2.5 V and VT= -2.5 V; VL tests done with VH = 7.5 V and VT = 7.5 V; VT tests done with VL = -2.5 V and VH = +7.5 V; unless otherwise specified Error measured at calibration points of 0 V and 5 V Measured at calibration points After two-point gain/offset calibration After two-point gain/offset calibration; measured over driver output ranges After two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V Over 0.1 V range; measured at end points of VH, VL, and VT functional range VL = -1.5 V: VH = -1.4 V 6.0 V, VT = -1.5 V 6.0 V; VH = 6.0 V: VL = -1.5 V 5.9 V, VT = -1.5 V 6.0 V; VT = 1.5 V: VL = -1.5 V 5.9 V, VH = -1.4 V 6.0 V; dc crosstalk on VL, VH, VT output level when other driver DACs are varied Sum of INL, crosstalk, DUTGND, and tempco over 5C, after gain/offset calibration Measured at calibration points Toggle DATAxx VH = 0.2 V, VL = 0.0 V, terminated; 20% to 80% VH = 1.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 2.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 3.0 V, VL = 0.0 V, unterminated; 10% to 90% VH = 5.0V, VL = 0.0 V, unterminated; 10% to 90% VH = 3.0 V, VL = 0.0 V, terminated; rise to fall within one channel
VH, VL, VT Uncalibrated Accuracy VH, VL, VT Offset Tempco VH, VL, VT DNL VH, VL, VT INL VH, VL, VT Resolution DUTGND Voltage Accuracy VH, VL, VT Crosstalk
-250
-10
75 450 1 2.5 0.6
+250
+10 +1 +7
mV V/C mV mV mV mV mV
P CT CT P PF P CT
-7
1.3 2
Overall Voltage Accuracy VH, VL, VT DC PSRR AC SPECIFICATIONS Rise/Fall Times 0.2 V Programmed Swing 1.0 V Programmed Swing 2.0 V Programmed Swing 3.0 V Programmed Swing 3.0 V Programmed Swing 5.0 V Programmed Swing Rise to Fall Matching
10 15
mV mV/V
CT CT
1000
1000 800 950 1175 1650 2350 30
1500
ps ps ps ps ps ps ps
CB CB CB P/CB CB CB CB
Rev. 0 | Page 5 of 56
ADATE305
Parameter Minimum Pulse Width 1.0 V Programmed Swing Min Typ 1.4 1.6 1.6 1.8 2.1 2.3 Max Unit ns ns ns ns ns ns Test Level CB CB CB CB CB CB Conditions/Comments Toggle DATAxx VH = 1.0 V, VL = 0.0 V, terminated; timing error 75 ps VH = 1.0 V, VL = 0.0 V, terminated; less than 10% amplitude degradation VH = 2.0 V, VL = 0.0 V, terminated; timing error 75 ps VH = 2.0 V, VL = 0.0 V, terminated; less than 10% amplitude degradation VH = 3.0 V, VL = 0.0 V, terminated; timing error 75 ps VH = 3.0 V, VL = 0.0 V, terminated; less than 10% amplitude degradation VH = 2.0 V, VH = 0.0 V, terminated, 10% amplitude degradation VH = 3.0 V, VH = 0.0 V, terminated, 10% amplitude degradation Toggle DATAxx VH = 3.0 V, VL = 0.0 V, terminated VH = 3.0 V, VL = 0.0 V, terminated VH = 3.0 V, VL = 0.0 V, terminated Rising vs. falling Rising vs. rising, falling vs. falling VH = 3.0 V, VL = 0.0 V, terminated; 5% to 95% duty cycle; 1 MHz VH = 3.0 V, VL = 0.0 V, terminated Toggle DATAxx VH = 3.0 V, VL = 0.0 V, terminated VH = 3.0 V, VL = 0.0 V, terminated Toggle RCVx
2.0 V Programmed Swing
3.0 V Programmed Swing
Maximum Toggle Rate 2.0 V Programmed Swing 3.0 V Programmed Swing Dynamic Performance, Drive (VH to VL and VL to VH) Propagation Delay Time Propagation Delay Tempco Delay Matching Edge to Edge Channel to Channel Delay Change vs. Duty Cycle Overshoot and Undershoot Settling Time (VH to VL) To Within 3% of Final Value To Within 1% of Final Value Dynamic Performance, VT (VH or VL to VT and VT to VH or VL) Propagation Delay Time Delay Matching, Edge to Edge Propagation Delay Tempco Transition Time, Active to VT and VT to Active Dynamic Performance, Inhibit (VH or VL to/from Inhibit) Propagation Delay Time Active to Inhibit Inhibit to Active Transition Time Active to Inhibit Inhibit to Active I/O Spike
1
250 200
MHz MHz
CB CB
3.0 3.0 115 30 30 20 5 35
ns ps/C ps ps ps mV ns ns
CB CT CB CB CB CB CB CB
3.3 100 4.0 0.85
ns ps ps/C ns
CB CB CT CB
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; rising vs. falling VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; 20% to 80% Toggle RCVx
VH = +1.0 V, VL = -1.0 V, terminated 4.5 6.9 2.6 0.75 190 ns ns ns ns mV CB CB VH =+1.0 V, VL = -1.0 V, terminated; 20% to 80% CB CB CB
VH = 0.0 V, VL = 0.0 V, terminated
The xP pins include DATA0P, DATA1P, RCV0P, and RCV1P; the xN pins include DATA0N, DATA1N, RCV0N, and RCV1N. For example, push 6 mA into the DATA0P pin, force 1.3 V into DATA0N, and measure the voltage from DATA0P to DATA0N.
Rev. 0 | Page 6 of 56
ADATE305
REFLECTION CLAMP
Clamp accuracy specifications apply when VCH > VCL. Table 3.
Parameter VCH Range Uncalibrated Accuracy Resolution Min -1.0 -200 Typ Max +6.0 +200 0.75 Unit V mV mV Test Level D P PF Conditions/Comments
50 0.6
DNL INL Tempco VCL Range Uncalibrated Accuracy Resolution -40
1 2 -0.3 -1.5 -200 +5.0 +200 0.75 +40
mV mV mV/C V mV mV
CT P CT D P PF
Driver high-Z, sinking 1 mA; VCH error measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sinking 1 mA; after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sinking 1 mA; after two-point gain/offset calibration Driver high-Z, sinking 1 mA; after two-point gain/offset calibration; measured over VCH range of -1.0 V to +6.0 V Measured at calibration points
50 0.6
DNL INL Tempco DC CLAMP CURRENT LIMIT VCH VCL DUTGND VOLTAGE ACCURACY -40
1 2 0.5 -120 60 -7 -85 85 1 -60 120 +7 +40
mV mV mV/C mA mA mV
CT P CT P P P
Driver high-Z, sourcing 1 mA; VCL error measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration; measured over VCL range of -1.5 V to +5 V Measured at calibration points Driver high-Z, VCH = 0 V, VCL = -1.5 V, VDUTx = +5 V Driver high-Z, VCH = 6.0 V, VCL = 5.0 V, VDUTx = 0.0 V Over 0.1 V range; measured at the end points of VCH and VCL functional range
NORMAL WINDOW COMPARATOR
VOH tests done with VOL = -1.5 V; VOL tests done with VOH = 6.0 V, unless otherwise specified. Table 4.
Parameter DC SPECIFICATIONS Input Voltage Range Differential Voltage Range Comparator Input Offset Voltage Accuracy, Uncalibrated Comparator Threshold Resolution Comparator Threshold DNL Comparator Threshold INL Min -1.5 0.1 -150 Typ Max +6.0 7.5 +150 1 Unit V V mV mV Test Level D D P PF Conditions/Comments
30 0.6
-7
1 1.3
+7
mV mV
CT P
Comparator Input Offset Voltage Tempco DUTGND Voltage Accuracy
100 -7 0.5 +7
V/C mV
CT P
Offset measured at the calibration points of 0.0 V and 5.0 V After two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0 V and 5 V After two-point gain/offset calibration After two-point gain/offset calibration; measured over VOH, VOL range of -1.5 V to +6.0 V Measured at calibration points Over 0.1 V range; measured at end points of VOH and VOL functional range
Rev. 0 | Page 7 of 56
ADATE305
Parameter Comparator Uncertainty Range Min Typ 6.0 Max Unit mV Test Level CB Conditions/Comments VDUTx = 0 V, sweep comparator threshold to determine uncertainty region VDUTx = 0 V Measured at calibration points Pull 1 mA and 10 mA from Logic 1 leg and measure V to calculate resistance; measured V/9 mA; done for both comparator logic states Measured with 100 differential termination Measured with no external termination Measured with 100 differential termination Measured with no external termination Measured with each comparator leg terminated 50 to GND Input transition time = 800 ps, 10% to 90%; measured with each comparator leg terminated 50 to GND; unless otherwise specified VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.75 V, VOL = -1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.75 V, VOL = -1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.75 V, VOL = -1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V
DC Hysteresis DC PSRR Digital Output Characteristics Internal Pull-Up Resistance to Comparator, COMP_VTT Pin VCOMP_VTT Range Common-Mode Voltage
0.5 5 40 50 60
mV mV/V
CB CT P
3.3 VCOMP_VTT - 1.88 VCOMP_VTT - 2.075
5.0
V V V mV mV ps
D CT P CT P CB
VCOMP_VTT - 1.675 250
Differential Voltage 400 Rise/Fall Time, 20% to 80% AC SPECIFICATIONS
500 450
600
Propagation Delay, Input to Output
1.75
ns
CB
Propagation Delay Tempco
5
ps/C
CT
Propagation Delay Matching
High Transition to Low Transition High to Low Comparator Propagation Delay Change (with Respect To) Slew Rate, 800 ps, 1 ns, 1.2 ns, and 2.2 ns (10% to 90%)
200 50
ps ps
CB CB
50
ps
CB
Overdrive, 250 mV and 1.5 V
75
ps
CB
Pulse Width, Sweep 1.6 ns to 10 ns
75
ps
CB
VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.75 V, VOL = -1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V For 250 mV: VDUTx = 0 V to 0.5 V swing; for 1.5 V: VDUTx = 0 V to 1.75 V swing; Driver VTERM mode, VT = 0.0 V; highside measurement: VOH = 0.25 V, VOL = -1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.25 V VDUTx = 0 V to 1.5 V swing @ 32.0 MHz, Driver VTERM mode, VT = 0.0 V; highside measurement: VOH = 0.5 V, VOL = -1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V
Rev. 0 | Page 8 of 56
ADATE305
Parameter Duty Cycle, 5% to 95% Min Typ 50 Max Unit ps Test Level CB Conditions/Comments VDUTx = 0 V to 1.5 V swing @ 1.0 MHz, Driver VTERM mode, VT =0.0 V; highside measurement: VOH = 0.75 V, VOL = -1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; less than 12% amplitude degradation measured by shmoo VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; as measured by shmoo VDUTx = 0 V to 3.0 V swing, driver high-Z; as measured by shmoo; input transition time of ~2000 ps, 10% to 90%
Minimum Pulse Width
2.0
ns
CB
Input Equivalent Bandwidth, Terminated ERT High-Z Mode, 3 V, 20% to 80%
500
MHz
CB
2.5
ns
CB
DIFFERENTIAL COMPARATOR
VOH tests done with VOL = -1.1 V, VOL tests done with VOH = +1.1 V, unless otherwise specified. Table 5.
Parameter DC SPECIFICATIONS Input Voltage Range Operational Differential Voltage Range Maximum Differential Voltage Range Comparator Input Offset Voltage Accuracy, Uncalibrated VOH, VOL Resolution Min -1.25 0.05 Typ Max +4.5 1.1 8 +150 1 Unit V V V mV mV Test Level D D D P/CT PF Conditions/Comments
-150
35 0.6
VOH, VOL DNL VOH, VOL INL VOH, VOL Offset Voltage Tempco Comparator Uncertainty Range DC Hysteresis CMRR DC PSRR AC SPECIFICATIONS Propagation Delay, Input to Output -15
1 2.0 200 18 0.5 0.15 1.5 +15
mV mV V/C mV mV mV/V mV/V
CT P CT CB CB P CT
1
1.7
ns
CB
Propagation Delay Tempco
5
ps/C
CT
Propagation Delay Matching
Offset measured at differential calibration points +1.0 V and -1.0 V, with common mode = 0.0 V After two-point gain/offset calibration; range/number of DAC bits as measured at differential calibration points +1.0 V and -1.0 V, with common mode = 0.0 V After two-point gain/offset calibration; common mode = 0.0 V After two-point gain/offset calibration; measured over VOH, VOL range of -1.1 V to +1.1 V, common mode = 0.0 V Measured at calibration points VDUTx = 0 V, sweep comparator threshold to determine uncertainty region VDUTx = 0 V Offset measured at common-mode voltage points of -1.5 V and +4.5 V, with differential voltage = 0.0 V Measured at calibration points Input transition time = 800 ps, 10% to 90%, measured with each comparator leg terminated 50 to GND VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
High Transition to Low Transition High-to-Low Comparator
100 50
ps ps
CB CB
Rev. 0 | Page 9 of 56
ADATE305
Parameter Propagation Delay Change (with Respect To) Min Typ Max Unit Test Level Conditions/Comments VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, for 250 mV: VDUT1 = 0 V to 0.5 V swing; for 750 mV: VDUT1 = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; VOH = -0.25 V; repeat for other DUT channel with comparator threshold = +0.25 V VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing @ 32 MHz, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing @ 1 MHz, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; less than 10% amplitude degradation measured by shmoo; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = -0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = -1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; less than 22% amplitude degradation measured by shmoo; repeat for other DUT channel
Slew Rate, 800 ps, 1ns, 1.2ns, and 2.2 ns (10% to 90%)
60
ps
CB
Overdrive, 250 mV and 750 mV
100
ps
CB
Pulse Width, Sweep from 1.6 ns to 10 ns
75
ps
CB
Duty Cycle, 5% to 95%
60
ps
CB
Minimum Pulse Width
2.5
ns
CB
Input Equivalent Bandwidth, Terminated
400
MHz
CB
Rev. 0 | Page 10 of 56
ADATE305
ACTIVE LOAD
See Table 29 for load control information. Table 6.
Parameter DC SPECIFICATIONS Input Characteristics VCOM Voltage Range VDUT Range VCOM Accuracy, Uncalibrated VCOM Resolution Min Typ Max Unit Test Level Conditions/Comments Load active on, RCV active, unless otherwise noted
-1.25 -1.5 -200
30 0.6
+5.75 +6.0 +200 1
V V mV mV
D D P PF
VCOM DNL VCOM INL DUTGND Voltage Accuracy Output Characteristics IOL Maximum Source Current Uncalibrated Offset Uncalibrated Gain Resolution
-7 -7
1 2 1
+7 +7
mV mV mV
CT P P
IOH = IOL = 6 mA, VCOM error measured at the calibration points of 0.0 V and 5.0 V IOH = IOL = 6 mA, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V IOH = IOL = 6 mA, after two-point gain/offset calibration IOH = IOL = 6 mA, after two-point gain/offset calibration; measured over VCOM range of -1.25 V to +5.75 V Over 0.1 V range; measured at end points of VCOM functional range
12 -600.0 -12
100 4 1.5
+600.0 +12 2
mA A % A
D P P PF
DNL INL 90% Commutation Voltage -80
3.0 20 +80 0.25
A A V
CT P P
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL offset calculated from the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL gain calculated from the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/ offset calibration; range/number of DAC bits as measured at the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/offset calibration IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/ offset calibration; measured over IOL range of 0 mA to 12 mA IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL reference at VDUTx = -1.0 V, measure IOL current at VDUTx = 1.75 V, ensure > 90% of reference current
IOH Maximum Sink Current Uncalibrated Offset Uncalibrated Gain Resolution
12 -600.0 -12
100 4 1.5
+600.0 +12 2
mA A % A
D P P PF
DNL INL 90% Commutation Voltage -80
3.0 20 +80 0.25
A A V
CT P P
Output Current Tempco
1.5
A/C
CT
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH offset calculated from the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH gain calculated from the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/offset calibration IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/ offset calibration; measured over IOH range of 0 mA to 12 mA IOH = IOL =12 mA, VCOM = 2.0 V, measure IOH reference at VDUTx = 5.0 V, measure IOH current at VDUTx = 2.25 V, ensure > 90% of reference current Measured at calibration points
Rev. 0 | Page 11 of 56
ADATE305
Parameter AC SPECIFICATIONS Dynamic Performance Propagation Delay, Load Active On to Load Active Off; 50%, 90% Propagation Delay, Load Active Off to Load Active On; 50%, 90% Propagation Delay Matching Min Typ Max Unit Test Level Conditions/Comments Load active on, unless otherwise noted Toggle RCV, DUTx terminated 50 to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = -1.25 V for IOH; measured from 50% point of RCVxP - RCVxN to 90% point of final output, repeat for drive low and high Toggle RCV, DUTx terminated 50 to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = -1.25 V for IOH; measured from 50% point of RCVxP - RCVxN to 90% point of final output, repeat for drive low and high Toggle RCV, DUTx terminated 50 to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = -1.25 V for IOH; active on vs. active off, repeat for drive low and high Toggle RCV, DUTx terminated 50 to GND, IOH = IOL = 0 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = -1.25 V for IOH; repeat for drive low and high Toggle RCV, DUTx terminated 50 to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = -1.25 V for IOH; measured at 90% of final value
7.3
ns
CB
10.3
ns
CB
3.0
ns
CB
Load Spike
190
mV
CB
Settling Time to 90%
1.9
ns
CB
PMU
FV = force voltage, MV = measure voltage, FI = force current, MI = measure current, FN = force nothing. Table 7.
Parameter FORCE VOL TAGE (FV) Current Range A Current Range B Current Range C Current Range D Current Range E Force Input Voltage Range at Output for All Ranges Force Voltage Uncalibrated Accuracy for Range C Force Voltage Uncalibrated Accuracy for All Ranges Force Voltage Offset Tempco for All Ranges Force Voltage Gain Tempco for All Ranges Forced Voltage INL Force Voltage Compliance vs. Current Load Min 32 2 200 20 2 -1.5 -100 25 25 25 10 -7 2 +7 Typ Max Unit mA mA A A A V mV mV V/C ppm/C mV Test Level D D D D D D P CT CT CT P PMU enabled, FV, Range C, PE disabled, error measured at calibration points of 0.0 V and 5.0 V PMU enabled, FV, PE disabled, error measured at calibration points of 0.0 V and 5.0 V; repeat for each PMU current range Measured at calibration points for each PMU current range Measured at calibration points for each PMU current range PMU enabled, FV, Range C, PE disabled, after two-point gain/offset calibration; measured over output range of -1.5 V to +6.0 V PMU enabled, FV, PE disabled, force -1.5 V, measure voltage while PMU sinking zero and full-scale current; measure V; force 6.0 V, measure voltage while PMU sourcing zero and fullscale current; measure V; repeat for each PMU current range Conditions/Comments
+6.0 +100
Range A Range B to Range E
4 1
mV mV
CT CT
Rev. 0 | Page 12 of 56
ADATE305
Parameter Current Limit, Source, and Sink Range A Min 108 Typ 140 Max 180 Unit %FS Test Level P Conditions/Comments PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to 6.0 V; source: force 2.5 V, short DUTx to -1.0 V; Range A FS = 32 mA, 108% FS = 35 mA, 180% FS = 58 mA PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to 6.0 V; source: force 2.5 V, short DUTx to -1.0 V; repeat for each PMU current range; example: Range B FS = 2 mA, 120 % FS = 2.4 mA, 180% FS = 3.6 mA Over 0.1 V range; measured at end points of FV functional range VDUTx externally forced to 0.0V, unless otherwise specified, ideal MEASOUT transfer functions: VMEASOUT01 [V] = (IMEASOUT01 x 5/FSR) + 2.5 + VDUTGND I(VMEASOUT01) [A] = (VMEASOUT01 - VDUTGND - 2.5) x FSR/5
Range B to Range E
120
145
180
%FS
P
DUTGND Voltage Accuracy MEASURE CURRENT (MI)
-7
1
+7
mV
P
Measure Current, Pin DUTx Voltage Range for All Ranges Measure Current Uncalibrated Accuracy Range A Range B Range C Range D Range E Measure Current Offset Tempco Range A Range B Range C Range D and Range E Measure Current Gain Error, Nominal Gain = 1 Range A Range B Range C to Range E Measure Current Gain Tempco Range A Range B to Range E Measure Current INL Range A
-1.5
+6.0
V
D
500 -400 3.0 2.00 0.30 0.08 +400
A A A A A
CT P CT CT CT
PMU enabled, FIMI, Range A, PE disabled, error at calibration points -25 mA and +25 mA, error = (I(VMEASOUT01) - IDUTx) PMU enabled, FIMI, Range B, PE disabled, error at calibration points -1.6 mA and +1.6 mA, error = (I(VMEASOUT01) - IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of 80% FS, error = (I(VMEASOUT01)1 - IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of 80% FS, error = (I(VMEASOUT01) - IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of 80% FS, error = (I(VMEASOUT01) - IDUTx) Measured at calibration points Measured at calibration points Measured at calibration points Measured at calibration points
2 25 5 1
A/C nA/C nA/C nA/C
CT CT CT CT
2.5 -20 2 4 +20
% % %
CT P CT
PMU enabled, FIMI, PE disabled, gain error from calibration points 80% FS PMU enabled, FIMI, Range B, PE disabled, gain error from calibration points 1.6 mA PMU enabled, FIMI, PE disabled, gain error from calibration points 80% FS Measured at calibration points
300 50 0.05
ppm/C ppm/C %FSR
CT CT CT PMU enabled, FIMI, Range A, PE disabled, after two-point gain/offset calibration, measured over FSR output of -32 mA to +32 mA PMU enabled, FIM,I Range B, PE disabled, after two-point gain/ offset calibration measured over FSR output of -2 mA to +2 mA PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output PMU enabled, FVMI, Range B, PE disabled, force -1 V and +5 V into load of 1 mA; measure I reported at MEASOUT01 Over 0.1 V range; measured at end points of MI functional range
Range B Range B to Range E FVMI DUT Pin Voltage Rejection DUTGND Voltage Accuracy
-0.02 0.01 -0.01 2.5
+0.02
%FSR %FSR
P CT P CT
+0.01
%FSR/V mV
Rev. 0 | Page 13 of 56
ADATE305
Parameter FORCE CURRENT (FI) Force Current, DUTx Pin Voltage Range for All Ranges Force Current Uncalibrated Accuracy Range A Range B Range C Range D Range E Force Current Offset Tempco Range A Range B Range C to Range E Forced Current Gain Error, Nominal Gain = 1 Forced Current Gain Tempco Range A Range B to Range E Force Current INL Range A Min Typ Max Unit Test Level Conditions/Comments VDUTx externally forced to 0.0V, unless otherwise specified, ideal force current transfer function: IFORCE = (PMUDAC - 2.5) x (FSR/5)
-1.5
+6.0
V
D
-5.0 -400 -40 -4 -400
0.5 40 4 0.4 75
+5.0 +400 +40 +4 +400
mA A A A nA
P P P P P
PMU enabled, FIMI, Range A, PE disabled, error at calibration points of -25 mA and +25 mA PMU enabled, FIMI, Range B, PE disabled, error at calibration points of -1.6 mA and 1.6 mA PMU enabled, FIMI, Range C, PE disabled, error at calibration points of 80% FS PMU enabled, FIMI, Range D, PE disabled, error at calibration points of 80% FS PMU enabled, FIMI, Range E, PE disabled, error at calibration points of 80% FS Measured at calibration points Measured at calibration points Measured at calibration points PMU enabled, FIMI, PE disabled, gain error from calibration points of 80% FS Measured at calibration points
-20
1 80 4 4
+20
A/C nA/C nA/C %
CT CT CT P
-500 75 -0.3 0.05 +0.3
ppm/C ppm/C %FSR
CT CT P PMU enabled, FIMI, Range A, PE disabled, after two-point gain/offset calibration; measured over FSR output of -32 mA to +32 mA PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output PMU enabled, FIMV, PE disabled; force positive full-scale current driving -1.5 V and +6.0 V, measure I @ DUTx pin; force negative full-scale current driving -1.5 V and +6.0 V, measure I @ DUTx pin
Range B to Range E Force Current Compliance vs. Voltage Load
-0.2
0.015
+0.2
%FSR
P
Range A to Range D Range E MEASURE VOLTAGE Measure Voltage Range Measure Voltage Uncalibrated Accuracy Measure Voltage Offset Tempco Measure Voltage Gain Error Measure Voltage Gain Tempco Measure Voltage INL
-0.6 -1.0 -1.5 -25
0.06 0.1
+0.6 +1.0 +6.0 +25
%FSR %FSR V mV V/C % ppm/C mV
P P D P CT P CT P
2.0 10 0.01 25 1
-2
+2
-7
+7
Rejection of Measure V vs. IDUTx MEASOUT01 DC CHARACTERISTICS MEASOUT01 Voltage Range DC Output Current MEASOUT01 Pin Output Impedance
-1.5
0.1
+1.5
mV
P
PMU enabled, FVMV, Range B, PE disabled, error at calibration points 0 V and 5 V, error = (VMEASOUT01 - VDUTx) Measured at calibration points PMU enabled, FVMV, Range B, PE disabled, gain error from calibration points 0 V and 5 V Measured at calibration points PMU enabled, FVMV, Range B, PE disabled, after two-point gain/offset calibration; measured over output range of -1.5 V to +6.0 V PMU enabled, FVMV, Range D, PE disabled, force 0 V into load of -10 A and +10 A; measure V reported at MEASOUT01
-1.5 25
+6.0 4 200
V mA
D D P
Output Leakage Current when Tristated
-1
+1
A
P
PMU enabled, FVMV, PE disabled; source resistance: PMU force 6.0 V and load with 0 mA and 4 mA; sink resistance: PMU force -1.5 V and load with 0 mA and -4 mA; resistance = V/I at MEASOUT01 pin Tested at -1.5 V and +6.0 V
Rev. 0 | Page 14 of 56
ADATE305
Parameter Output Short-Circuit Current Min -25 Typ Max +25 Unit mA Test Level P Conditions/Comments PMU enabled, FVMV, PE disabled; source: PMU force +6.0 V, short MEASOUT01 to -1.5 V; sink: PMU force -1.5 V, short MEASOUT01 to +6.0 V
VOLTAGE CLAMPS Low Clamp Range (VCL) High Clamp Range (VCH) Positive Clamp Voltage Droop
-1.5 0.0 -300
+10
+4.0 6.0 +300
V V mV
D D P
Negative Clamp Voltage Droop
-300
-10
+300
mV
P
Uncalibrated Accuracy
-250
100
+250
mV
P
INL
-70
5
+70
mV
P
DUTGND Voltage Accuracy SETTLING/SWITCHING TIMES Voltage Force Settling Time to 0.1% of Final Value: Range A, 200 pF and 2000 pF Load Range B, 200 pF and 2000 pF Load Range C, 200 pF and 2000 pF Load Range D, 200 pF and 2000 pF Load Range E, 200 pF and 2000 pF Load Voltage Force Settling Time to 1.0% of Final Value: Range A, 200 pF and 2000 pF Load Range B, 200 pF and 2000 pF Load Range C, 200 pF and 2000 pF Load Range D, 200 pF Load Range D, 2000 pF Load Range E, 200 pF Load Range E, 2000 pF Load Voltage Force Settling Time to 1.0% of Final Value: Range A, 200 pF and 2000 pF Load Range B, 200 pF Load Range B, 2000 pF Load Range C, 200 pF Load Range C, 2000 pF Load Range D, 200 pF Load Range D, 2000 pF Load Range E, 200 pF Load Range E, 2000 pF Load
1
mV
CT
PMU enabled, FIMI, Range A, PE disabled, PMU clamps enabled, VCH = 5 V,VCL = -1 V, PMU force 2 mA and 32 mA into open; V seen at DUTx pin PMU enabled, FIMI, Range A, PE disabled, PMU clamps enabled, VCH = 5 V,VCL = -1 V, PMU force -2 mA and -32 mA into open; V seen at DUTx pin PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled, PMU force 1 mA into open; VCH errors at calibration points 0 V and 5 V; VCL errors at the calibration points 0 V and 4 V PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled, PMU force 1 mA into open; after two-point gain/offset calibration; measured over PMU clamp range Over 0.1 V range; measured at end points of PMU clamp functional range SCAP = 330 pF, FFCAP = 220 pF PMU enabled, FV, PE disabled, program PMUDAC steps of 500 mV and 5.0 V; simulation of worst case, 2000 pF load, PMUDAC step of 5.0 V
15 20 124 1015 3455
s s s s s
S S S S S PMU enabled, FV, PE disabled, start with PMUDAC programmed to 0.0 V, program PMUDAC to 500 mV
14 14 14 45 45 45 225
s s s s s s s
CB CB CB CB CB CB CB PMU enabled, FV, PE disabled, start with PMUDAC programmed to 0.0 V, program PMUDAC to 5.0 V
4.0 4.2 4.2 5.8 19 50 210 360 610
s s s s s s s s s
CB CB CB CB CB CB CB CB CB
Rev. 0 | Page 15 of 56
ADATE305
Parameter Current Force Settling Time to 0.1% of Final Value Range A, 200 pF in Parallel with 120 Range B, 200 pF in Parallel with 1.5 k Range C, 200 pF in Parallel with 15.0 k Range D, 200 pF in Parallel with 150 k Range E, 200 pF in Parallel with 1.5 M Current Force Settling Time to 1.0% of Final Value: Range A, 200 pF in Parallel with 120 Range B, 200 pF in Parallel with 1.5 k Range C, 200 pF in Parallel with 15.0 k Range D, 200 pF in Parallel with 150 k Range E, 200 pF in Parallel with 1.5 M INTERACTION AND CROSSTALK Measure Voltage Channel-toChannel Crosstalk Min Typ Max Unit Test Level Conditions/Comments PMU enabled, FI, PE disabled, start with PMUDAC programmed to 0 current, program PMUDAC to FS current
8.2 9.4 30 281 2668
s s s s s
S S S S S PMU enabled, FI, PE disabled, start with PMUDAC programmed to 0 current, program PMUDAC to FS current
4.2 4.3 8.1 205 505
s s s s s
CB CB CB CB CB
0.125
%FSR
CT
Measure Current Channel-toChannel Crosstalk
0.01
%FSR
CT
PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into 0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA into 0 V load; report V of MEASOUT01 pin under test; 0.125% x 8.0 V = 10 mV PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into 0 mA current load; other channel: Range E, forcing a step of 0 V to 5 V into 0 mA current load; report V of MEASOUT01 pin under test; 0.01% x 5.0 V = 0.5 mV
EXTERNAL SENSE (PMUS_CHX)
Table 8.
Parameter EXTERNAL SENSE (PMUS_CHX) Voltage Range Input Leakage Current Min -1.5 -20 Typ Max +6.0 +20 Unit V nA Test Level D P Conditions/Comments
Tested at -1.5 V and +6.0 V
DUTGND INPUT
Table 9.
Parameter DUTGND INPUT Input Voltage Range, Referenced to GND Input Bias Current Min -0.1 1 Typ Max +0.1 100 Unit V A Test Level D P Conditions/Comments
Tested at -100 mV and +100 mV
Rev. 0 | Page 16 of 56
ADATE305
SERIAL PERIPHERAL INTERFACE
Table 10.
Parameter SERIAL PERIPHERAL INTERFACE Serial Input Logic High Serial Input Logic Low Input Bias Current SCLK Clock Rate SCLK Pulse Width SCLK Crosstalk on DUTx Pin Serial Output Logic High Serial Output Logic Low Update Time Min 1.8 0 -10 Typ Max VCC 0.7 +10 Unit V V A MHz ns mV V V s Test Level PF PF P PF CT CB PF PF D Conditions/Comments
1 50 9 8
Tested at 0.0 V and 3.3 V
VCC - 0.4 0 10
VCC 0.8
PE disabled, PMU FV enabled and forcing 0 V Sourcing 2 mA Sinking 2 mA Maximum delay time required for the part to enter a stable state after a serial bus command is loaded
HVOUT DRIVER
Table 11.
Parameter VHH BUFFER Voltage Range Output High Output Low Accuracy Uncalibrated Offset Tempco Resolution -500 100 1 1.21 Min 5.9 13.5 5.9 +500 Typ Max VPLUS - 3.25 Unit V V V mV mV/C mV Test Level D P P P CT PF Conditions/Comments VHH = (VT + 1 V) x 2 + DUTGND VPLUS = 16.75 V nominal; in this condition, VHVOUT max = 13.5 V VHH mode enabled, RCV active, VHH level = full scale, sourcing 15 mA VHH mode enabled, RCV active, VHH level = zero scale, sinking 15 mA VHH mode enabled, RCV active, VHVOUT error measured at the calibration points of 7 V and 12 V Measured at calibration points VHH mode enabled, RCV active, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 7 V and 12 V VHH mode enabled, RCV active, after two-point gain/offset calibration; measured over VHH range of 5.9 V to 13.5 V Over 0.1 V range; measured at end points of VHH functional range VHH mode enabled, RCV active, source: VHH = 10.0 V, IHVOUT= 0 mA and 15 mA; sink: VHH = 6.5 V, IHVOUT = 0 mA and -15 mA; V/I VHH mode enabled, RCV active, VHH = 10.0 V, short HVOUT pin to 5.9 V, measure current VHH mode enabled, RCV active, VHH = 6.5 V, short HVOUT pin to 14.1 V, measure current VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; 20% to 80%, for DATA = high and DATA = low VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; 20% to 80%, for DATA = high and DATA = low VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; for DATA = high and DATA = low
1.5
INL DUTGND Voltage Accuracy Output Resistance
-30
15 1 1
+30
mV mV
P CT P
10
DC Output Current Limit Source DC Output Current Limit Sink Rise Time (From VL or VH to VHH) Fall Time (From VHH to VL or VH) Preshoot, Overshoot, and Undershoot
60 -100 200 26 125
100 -60
mA mA ns ns mV
P P CB CB CB
Rev. 0 | Page 17 of 56
ADATE305
Parameter VL/VH BUFFER Voltage Range Accuracy Uncalibrated Offset Tempco Resolution Min -0.1 -500 Typ Max +6.0 +500 Unit V mV mV/C mV Test Level D P CT PF Conditions/Comments
100 1 0.61
0.75
INL
-20
4
+20
mV
P
DUTGND Voltage Accuracy Output Resistance 46
2 48 50
mV
CT P
DC Output Current Limit Source DC Output Current Limit Sink Rise Time (VL to VH) Fall Time (VH to VL) Preshoot, Overshoot, and Undershoot
60 -100 10.0 11.3 54
100 -60
mA mA ns ns mV
P P CB CB CB
VHH mode enabled, RCV inactive, error measured at the calibration points 0 V and 5 V Measured at calibration points VHH mode enabled, RCV inactive, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points 0 V and 5 V VHH mode enabled, RCV inactive, after two-point gain/offset calibration; measured over range of -0.1 V to +6.0 V Over 0.1 V range; measured at end points of VH and VL, functional range VHH mode enabled, RCV inactive, source: VH = 3.0 V, IHVOUT = 1 mA and 50 mA; sink: VL = 2.0 V, IHVOUT = -1 mA and -50 mA; V/I VHH mode enabled, RCV inactive, VH = 6.0 V, short HVOUT pin to -0.1 V, DATA high, measure current VHH mode enabled, RCV inactive, VL = -0.1 V, short HVOUT pin to 6.0 V, DATA low, measure current VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA; 20% to 80% VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA; 20% to 80% VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA
OVERVOLTAGE DETECTOR (OVD)
Table 12.
Parameter DC CHARACTERISTICS Programmable Voltage Range Accuracy Uncalibrated Hysteresis LOGIC OUTPUT CHARACTERISTICS Off State Leakage Max On Voltage @ 100 A Propagation Delay Min -3.0 -200 112 10 0.2 1.6 1000 0.7 Typ Max +7.0 +200 Unit V mV mV nA V s Test Level D P CB P P CB Disable OVD alarm, apply 3.3 V to OVD pin, measure leakage current Activate alarm, force 100 A into OVD pin, measure active alarm voltage For OVD high: DUTx = 0 V to 6 V swing, OVD high = 3.0 V, OVD low = -3.0 V; for OVD low: DUTx = 0 V to 6 V swing, OVD high = 7.0 V, OVD low = 3.0 V Conditions/Comments
OVD offset errors measured at programmed levels of +7.0 V and -3.0 V
16-BIT DAC MONITOR MUX
Table 13.
Parameter DC CHARACTERISTICS Programmable Voltage Range Output Resistance Min -2.5 16 Typ Max +7.5 Unit V k Test Level D CT Conditions/Comments
PMUDAC = 0.0 V, FV, I = 0, 200 A; V/I
Rev. 0 | Page 18 of 56
ADATE305 ABSOLUTE MAXIMUM RATINGS
Table 14.
Parameter Supply Voltages Positive Supply Voltage (VDD to GND) Positive VCC Supply Voltage (VCC to GND) Negative Supply Voltage (VSS to GND) Supply Voltage Difference (VDD to VSS) Reference Ground (DUTGND to GND) AGND to DGND VPLUS Supply Voltage (VPLUS to GND) Input Voltages Input Common-Mode Voltage Short-Circuit Voltage1 High Speed Input Voltage2 High Speed Differential Input Voltage3 VREF DUTx I/O Pin Current DCL Maximum Short-Circuit Current4 Temperature Operating Temperature, Junction Storage Temperature Range
1
THERMAL RESISTANCE
Rating -0.5 V to +11.0 V -0.5 V to +4.0 V -6.25 V to +0.5 V -1.0 V to +16.5 V -0.5 V to +0.5 V -0.5 V to +0.5 V -0.5 V to +17.5 V VSS to VDD -3.0 V to +8.0 V 0.0 V to VCC 0.0 V to VCC -0.5 V to +5.5 V 140 mA 125C -65C to +150C
For liquid cooled applications, JC = 1.1C/W. Table 15. Thermal Resistance
Airflow Natural Convection 1 meter per second 2 meters per second JA 33 30 28.5 Unit C/W C/W C/W
EXPLANATION OF TEST LEVELS
D S P PF CT CB Definition Design verification simulation 100% production tested Functionally checked during production test Characterized on tester Characterized on bench
RL = 0 , VDUT continuous short-circuit condition, (VH, VL, VT, high-Z, VCOM, clamp modes). 2 DATAxP, DATAxN, RCVxP, RCVxN, under source R = 0 . 3 DATAxP to DATAxN, RCVxP, RCVxN. 4 RL = 0 , VDUTx = -3 V to +8 V; DCL current limit. Continuous short-circuit condition. ADATE305 must current limit and survive continuous short circuit.
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. 0 | Page 19 of 56
ADATE305 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VDDO_1 (DRIVE) VDDO_0 (DRIVE) VSSO_1 (DRIVE) VSSO_0 (DRIVE) PMUS_CH1 PMUS_CH0 AGND AGND AGND AGND AGND DUT1 DUT0 VDD VDD VDD VDD VSS VSS VSS VSS
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
NC
NC
NC
NC NC TEMPSENSE VDD/VDD_TMPSNS SCAP1 FFCAP_1B VDD OVD_CH1 DATA1N
1 2 3 4 5 6 7 8 9 PIN 1
75 74 73 72 71 70 69 68 67 66 65
NC NC HVOUT VPLUS SCAP0 FFCAP_0B VDD OVD_CH0 DATA0N DATA0P FFCAP_0A VSS RCV0P AGND COMP_QL0P COMP_VTT0 COMP_QH0P COMP_QH0N AGND AGND AGND NC NC
DATA1P 10 FFCAP_1A 11 VSS 12 RCV1N 13 RCV1P 14 AGND 15 COMP_QL1P 16 COMP_QL1N 17 COMP_VTT1 18 COMP_QH1P 19 COMP_QH1N 20 AGND 21 AGND 22 AGND 23 NC 24 NC 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
ADATE305
TOP VIEW (Not to Scale)
64
63 RCV0N 62 61 60
59 COMP_QL0N 58 57 56 55 54 53 52 51
MEASOUT01/TEMP SENSE
VSS
SCLK
SDIN
VSS
NC
NC
NC
NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD IS CONNEC TED TO VSS.
DAC16_MON
VREF_GND
VDD
VDD
DGND
VCC
AGND
AGND
AGND
DUTGND
AGND
SDOUT
AGND
VREF
RST
NC
CS
Figure 2. Pin Configuration
Table 16. Pin Function Descriptions
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 Mnemonic NC NC TEMPSENSE VDD/VDD_TMPSNS SCAP1 FFCAP_1B VDD OVD_CH1 DATA1N DATA1P FFCAP_1A VSS Description No Connect. No physical connection to die. No Connect. No physical connection to die. Temperature Sense Output. Temperature Sense Supply +10.0 V. PMU Stability Capacitor Connection Channel 1 (330 pF). PMU Feed Forward Capacitor Connection B Channel 1 (220 pF). Supply +10.0 V. Overvoltage Detection Flag Output Channel 1. Driver Data Input (Negative) Channel 1. Driver Data Input (Positive) Channel 1. PMU Feedforward Capacitor Connection A Channel 1 (220 pF). Supply -5.75 V.
Rev. 0 | Page 20 of 56
07280-002
ADATE305
Pin No. 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Mnemonic RCV1N RCV1P AGND COMP_QL1P COMP_QL1N COMP_VTT1 COMP_QH1P COMP_QH1N AGND AGND AGND NC NC NC NC MEASOUT01/TEMP SENSE Description Receive Data Input (Negative) Channel 1. Receive Data Input (Positive) Channel 1. Analog Ground. Low-Side Comparator Output (Positive) Channel 1. Low-Side Comparator Output (Negative) Channel 1. Comparator Supply Channel 1. High-Side Comparator Output (Positive) Channel 1. High-Side Comparator Output (Negative) Channel 1. Analog Ground. Analog Ground. Analog Ground. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. Shared Muxed Output. Muxed output shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1, and the temperature sense and temperature sense GND reference. Device Under Test Ground Reference. Analog Ground. Analog Ground. Serial Peripheral Interface (SPI(R)) Chip Select. 16-Bit DAC Monitor Mux Output. Supply -5.75 V. Supply +10.0 V. Digital Ground. Serial Programmable Interface (SPI) Data Output. Serial Programmable Interface (SPI) Clock. Serial Programmable Interface (SPI) Data Input. Supply +10.0 V. Supply +3.3 V. Supply -5.75 V. Serial Peripheral Interface (SPI) Reset. Analog Ground. Analog Ground. Analog Ground. +5 V DAC Reference Voltage. DAC Ground Reference. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. Analog Ground. Analog Ground. Analog Ground. High-Side Comparator Output (Negative) Channel 0. High-Side Comparator Output (Positive) Channel 0. Comparator Supply Channel 0. Low-Side Comparator Output (Negative) Channel 0. Low-Side Comparator Output (Positive) Channel 0. Analog Ground. Receive Data Input (Positive) Channel 0.
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
DUTGND AGND AGND CS DAC16_MON VSS VDD DGND SDOUT SCLK SDIN VDD VCC VSS RST AGND AGND AGND VREF VREF_GND NC NC NC NC AGND AGND AGND Comp_QH0N Comp_QH0P Comp_VTT0 Comp_QL0N Comp_QL0P AGND RCV0P
Rev. 0 | Page 21 of 56
ADATE305
Pin No. 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 EP Mnemonic RCV0N VSS FFCAP_0A DATA0P DATA0N OVD_CH0 VDD FFCAP_0B SCAP0 VPLUS HVOUT NC NC NC NC PMUS_CH0 VSS VDD VSSO_0 (DRIVE) DUT0 VDDO_0 (DRIVE) AGND AGND VSS VDD AGND VDD VSS AGND AGND VDDO_1 (DRIVE) DUT1 VSSO_1 (DRIVE) VDD VSS PMUS_CH1 NC NC Description Receive Data Input (Negative) Channel 0. Supply -5.75 V. PMU Feedforward Capacitor Connection A Channel 0 (220 pF). Driver Data Input (Positive) Channel 0. Driver Data Input (Negative) Channel 0. Overvoltage Detection Flag Output Channel 0. Supply +10.0 V. PMU Feedforward Capacitor Connection B Channel 0 (220 pF). PMU Stability Capacitor Connection Channel 0 (330 pF). Supply +16.75 V. High Voltage Driver Output. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. PMU External Sense Path Channel 0. Supply -5.75 V. Supply +10.0 V. Driver Output Supply -5.75 V Channel 0. Device Under Test Channel 0. Driver Output Supply +10.0 V Channel 0. Analog Ground. Analog Ground. Supply -5.75 V. Supply +10.0 V. Analog Ground. Supply +10.0 V. Supply -5.75 V. Analog Ground. Analog Ground. Driver Output Supply +10.0 V Channel 1. Device Under Test Channel 1. Driver Output Supply -5.75 V Channel 1. Supply +10.0 V. Supply -5.75 V. PMU External Sense Path Channel 1. No Connect. No physical connection to die. No Connect. No physical connection to die. Exposed Pad. The exposed pad is connected to VSS.
Rev. 0 | Page 22 of 56
ADATE305 TYPICAL PERFORMANCE CHARACTERISTICS
0.30 0.25 0.20
1.0 1.6 3V
0.5V
1.4 1.2 2V
VOLTAGE (V)
0.15 0.10 0.05 0.2V
VOLTAGE (V)
0.8 0.6 0.4 0.2 1V
0 -0.05
0
07280-023
0
2
4
6
8
10
12
14
16
18
0
0.5
1.0
1.5
TIME (ns)
2.0 2.5 TIME (ns)
3.0
3.5
4.0
4.5
Figure 3. Driver Small Signal Response; VH = 0.2 V, 0.5 V; VL = 0.0 V; 50 Termination
1.6 1.4 1.2 1.0 3V
Figure 6. 50 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V, 50 Termination
1.8 1.6 1.4 1.2 3V
VOLTAGE (V)
VOLTAGE (V)
2V 0.8 0.6 0.4 0.2 0
07280-024
1.0 0.8 0.6 0.4 0.2 0
2V
1V
1V
0
2
4
6
8 10 TIME (ns)
12
14
16
18
0
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 TIME (ns)
Figure 4. Driver Large Signal Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Termination
6 5V 5 4
Figure 7. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Termination
1.6 1.4 1.2 2V 3V
VOLTAGE (V)
3 2 1 0
3V
VOLTAGE (V)
1.0 0.8 0.6 0.4 0.2 1V
1V
07280-031
0
2
4
6
8 10 TIME (ns)
12
14
16
18
0
1
2
3
4
5 6 TIME (ns)
7
8
9
10
Figure 5. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V; VL = 0 .0 V; 500 Termination
Figure 8. Response at 200 MH; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Termination
Rev. 0 | Page 23 of 56
07280-032
-1
0
07280-021
-0.2
-0.2
07280-022
-0.2
ADATE305
1.6 1.4 1.2 3V
0.4 0.6
0.5
VOLTAGE (V)
0.8 0.6 0.4
2V
VOLTAGE (V)
07280-026
1.0
0.3
1V
0.2
0.5V 0.2 0
0.1
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 TIME (ns)
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
TIME (ns)
Figure 9. 300 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Termination
0.9 0.8 0.7 0.6 3V
Figure 12. Driver Active (VH and VL) to and from VTERM Transition; VH = 1.0 V, VT = 0.5 V, VL = 0.0 V
1.2
1.0
2V
0.8
VOLTAGE (V)
0.5 0.4 0.3 0.2 0.1
1V
VOLTAGE (V)
0.6
0.4
0.5V
0.2
07280-027
0
0.5
1.0
1.5
2.0 2.5 3.0 TIME (ns)
3.5
4.0
4.5
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
TIME (ns)
Figure 10. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Termination
1.2
Figure 13. Driver Active (VH and VL) to and from VTERM Transition; VH = 2.0 V, VT = 1.0 V, VL = 0.0 V
1.6 1.4 1.2
1.0
0.8
VOLTAGE (V)
1.0
VOLTAGE (V)
0.6
0.8 0.6 0.4 0.2 0
0.4
0.2
07280-084
200
250
300
350 400 450 FREQUENCY (MHz)
500
550
600
0
2
4
6
8
10 TIME (ns)
12
14
16
18
20
Figure 11. Driver Toggle Rate, VH = 2.0 V, VL = 0.0 V, 50 Termination
Figure 14. Driver Active (VH and VL) to and from VTERM Transition; VH = 3.0 V, VT = 1.5 V, VL = 0.0 V
Rev. 0 | Page 24 of 56
07280-030
0
-0.2
07280-029
0
0
07280-028
0
ADATE305
20 40 2V NEG 20 0 0.2V NEG
TRAILING EDGE ERROR (ps)
TRAILING EDGE ERROR (ps)
0 -20 -40 -60 -80 2V POS
-20
0.2V POS
-40
-60
07280-036
1
2
3 4 PULSEWIDTH (ns)
5
6
7
8 9 10
1
2
3 4 PULSEWIDTH (ns)
5
6
7
8 9 10
Figure 15. Driver Minimum Pulse Width; VH = 0.2 V, VL = 0.0 V
20
Figure 18. Driver Minimum Pulse Width; VH = 2.0 V, VL = 0.0 V
40 20
TRAILING EDGE ERROR (ps)
0
0.5V NEG
TRAILING EDGE ERROR (ps)
3V POS 0 -20 -40 -60 -80
3V NEG
0.5V POS -20
-40
07280-037
1
2
3 4 PULSEWIDTH (ns)
5
6
7
8 9 10
1
2
3 4 PULSE WIDTH (ns)
5
6
7
8 9 10
Figure 16. Driver Minimum Pulse Width; VH = 0.5 V, VL = 0.0 V
10 1V NEG 0
Figure 19. Driver Minimum Pulse Width; VH = 3.0 V, VL = 0.0 V
1.5 1.0
TRAILING EDGE ERROR (ps)
-10 -20 -30 -40 -50 -60
1V POS
LINEARITY ERROR (mV)
0.5 0 -0.5 -1.0 -1.5 -2.0 -2
07280-033
1
2
3 4 PULSEWIDTH (ns)
5
6
7
8 9 10
-1
0
1 2 3 4 5 DRIVER OUTPUT VOLTAGE (V)
6
7
Figure 17. Driver Minimum Pulse Width; VH = 1.0 V, VL = 0.0 V
Figure 20. Driver VH Linearity Error
Rev. 0 | Page 25 of 56
07280-051
07280-035
-60
-100
07280-034
-80
-100
ADATE305
1.5
100 90
DRIVER OUTPUT CURRENT (mA)
07280-052
1.0
80 70 60 50 40 30 20 10 0
LINEARITY ERROR (mV)
0.5
0
-0.5
-1.0
-1
0 1 2 3 4 DRIVER OUTPUT VOLTAGE (V)
5
6
-1
0
1
2 VDUTx (V)
3
4
5
6
Figure 21. Driver VL Linearity Error
1.5 1.0
Figure 24. Driver Output Current Limit; Driver Programmed to -2.0 V; VDUTx Swept from -2.0 V to +6.0 V
0 -10
DRIVER OUTPUT CURRENT (mA)
-20 -30 -40 -50 -60 -70 -80 -90
LINEARITY ERROR (mV)
0.5 0 -0.5 -1.0 -1.5 -2.0 -2
07280-053
-1
0 1 2 3 4 DRIVER OUTPUT VOLTAGE (V)
5
6
-1
0
1
2 VDUTx (V)
3
4
5
6
Figure 22. Driver VT Linearity Error
48.5
Figure 25. Driver Output Current Limit; Driver Programmed to 6.0 V; VDUTx Swept from -2.0 V to +6.0 V
-722 -723
DRIVER OUTPUT RESISTANCE ()
48.0
LINEARITY ERROR (mV)
-724 -725 -726 -727 -728 -729
47.5
47.0
46.5
007280-054
-40
-20 0 20 DRIVER OUTPUT CURRENT (mA)
40
60
0
1 2 3 4 VL PROGRAMMED VOLTAGE (V)
5
6
Figure 23. Driver Output Resistance vs. Output Current
Figure 26. HVOUT VL Linearity Error
Rev. 0 | Page 26 of 56
07280-057
46.0 -60
-730 -1
07280-056
-100 -2
07280-055
-1.5 -2
-10 -2
ADATE305
6 4 2
0.8 RISE SHMOO 1.0 RISE INPUT
LINEARITY ERROR (mV)
0
VOLTAGE (V)
-2 -4 -6 -8 -10
07280-058
0.6
0.4
0.2
FALL SHMOO FALL INPUT
5
6
7
8 9 10 11 12 VL PROGRAMMED VOLTAGE (V)
13
14
0
0.6
1.2 TIME (ns)
1.8
2.4
3.0
Figure 27. HVOUT VHH Linearity Error
80 70
Figure 30. Comparator Shmoo, 1.0 V Input, 1.0 ns (10% to 90%) Input, 50 Terminated
1.6 RISE INPUT 1.2
HVOUT DRIVER CURRENT (mA)
60 50
VOLTAGE (V)
40 30 20 10 0
07280-059
RISE SHMOO 0.8
0.4
FALL SHMOO FALL INPUT
0
1
2 3 VHVOUT (V)
4
5
6
0
0.6
1.2 1.8 TIME (ns)
2.4
3.0
Figure 28. HVOUT VH Current Limit; VH = -0.1 V; VHVOUT Swept from -0.1 V to +6.0 V
80 60
Figure 31. Comparator Shmoo, 1.5 V Input, 1.5 ns (10% to 90%) Input, 50 Terminated
1.6 RISE INPUT 1.2
HVOUT DRIVER CURRENT (mA)
40
VOLTAGE (V)
20 0 -20 -40 -60
07280-060
RISE SHMOO 0.8
0.4
FALL SHMOO FALL INPUT
5
6
7
8
9
11 VHVOUT (V)
10
12
13
14
15
0
0.6
1.2 1.8 TIME (ns)
2.4
3.0
Figure 29. HVOUT VHH Current Limit; VHH = 10.0 V; VHVOUT Swept from -5.9 V to +14.1 V
Figure 32. Comparator Shmoo, 1.5 V Input, 1.2 ns (10% to 90%) Input, 50 Terminated
Rev. 0 | Page 27 of 56
07280-047
-80
0
07280-048
-10 -1
0
07280-049
-12
0
ADATE305
1.6 RISE INPUT
100
PROPAGATION DELAY VARIATION (ps)
75
TOTAL
1.2
50
VOLTAGE (V)
RISE SHMOO 0.8
25 RISING 0 FALLING -25
0.4
FALL SHMOO FALL INPUT
07280-046
0
0.6
1.2 1.8 TIME (ns)
2.4
3.0
1.0 1.5 2.0 INPUT SLEW RATE (10%-90%) (ns)
2.5
Figure 33. Comparator Shmoo, 1.5 V Input, 1.0 ns (10% to 90%) Input, 50 Terminated
1.6 RISE INPUT 1.2
Figure 36. Comparator Slew Rate Dispersion, Input Swing = 1.5 V, Comparator Threshold = 0.75 V
1.6 1.4 COMP_QH0N 1.2 COMP_QH0P
VOLTAGE (V)
VOLTAGE (V)
RISE SHMOO 0.8
1.0 0.8 0.6 0.4
0.4 FALL SHMOO FALL INPUT
0.2 0
07280-045
0
0.6
1.2 TIME (ns)
1.8
2.4
3.0
TIME (ns)
Figure 34. Comparator Shmoo, 1.5 V Input, 0.625 ns (10% to 90%) Input, 50 Terminated
10 0
Figure 37. Comparator Output Waveform, COMP_QH0P, COMP_QH0N
0.8 0.6 0.4
TRAILING EDGE ERROR (ps)
-10 -20 -30 1V POS -40 -50 1V NEG -60 -70
07280-038
LINEARITY ERROR (mV)
0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2
1
2
3 4 PULSEWIDTH (ns)
5
6
7
8 9 10
-1
0 1 2 3 4 5 PROGRAMMED THRESHOLD VOLTAGE (V)
6
Figure 35. Comparator Minimum Pulse Width, 1.0 V
Figure 38. Comparator Threshold Linearity
Rev. 0 | Page 28 of 56
07280-061
-80
-1.4 -2
07280-025
0
0
5
10
15
20
25
30
35
40
45
50
07280-050
0
-50 0.5
ADATE305
2.2
0.8 0.6 0.4
DIFFERENTIAL COMPARATOR OFFSET (mV)
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4
07280-062
LINEARITY ERROR (mV)
0.2 0 -0.2 -0.4 -0.6 -0.8
07280-065
0.2 -2
-1
0 1 2 3 INPUT COMMON-MODE VOLTAGE (V)
4
5
-1 -2
-1
0
1 2 3 VCOM VOLTAGE (V)
4
5
6
Figure 39. Differential Comparator CMRR
15
Figure 42. Active Load VCOM Linearity
3.4 3.2 3.0
10
LOAD CURRENT (mA)
5
IDUTx (nA)
07280-063
2.8 2.6 2.4 2.2 2.0 -2
0
-5
-10
-1
0
1
2 VDUTx (V)
3
4
5
6
-1
0
1
2 VDUTx (V)
3
4
5
6
Figure 40. Active Load Commutation Response; VCOM = 2.0 V; IOH = IOL = 12 mA
6 4
3.0 2.5 2.0
Figure 43. DUTx Pin Leakage in Low Leakage Mode
LINEARITY ERROR (A)
2
IDUTx (nA)
0 -2 -4 -6 -8
1.5 1.0 0.5 0
07280-064
0
2
4 6 8 ACTIVE LOAD CURRENT (mA)
10
12
-1
0
1
2 VDUTx (V)
3
4
5
6
Figure 41. Active Load Current Linearity
Figure 44. DUTx Pin Leakage in High-Z Mode
Rev. 0 | Page 29 of 56
07280-066
-0.5 -2
07280-067
-15 -2
ADATE305
40 20 0
0.008 0.006
LINEARITY ERROR (A)
-20 -40 -60 -80 -100 -120
07280-068
LINEARITY ERROR (A)
0.004 0.002 0 -0.002 -0.004 -0.006 -0.020 -0.015 -0.010 -0.005 0 0.005 0.010 PMU OUTPUT CURRENT (mA)
-30
-20 -10 0 10 20 PMU OUTPUT CURRENT (mA)
30
40
0.015
0.020
Figure 45. PMU Force Current Range A Linearity
0.8 0.6
Figure 48. PMU Force Current Range D Linearity
0.0005 0.0004 0.0003
LINEARITY ERROR (A)
LINEARITY ERROR (A)
0.4 0.2 0 -0.2 -0.4 -0.6
07280-069
0.0002 0.0001 0 -0.0001 -0.0002 -0.0003 -0.0004 -0.0005
-1.5
-1.0 -0.5 0 0.5 1.0 PMU OUTPUT CURRENT (mA)
1.5
2.0
Figure 46. PMU Force Current Range B Linearity
0.08 0.06
Figure 49. PMU Force Current Range E Linearity
5 4
LINEARITY ERROR (A)
0.04 0.02 0 -0.02 -0.04 -0.06 -0.20
PMU VOLTAGE ERROR (mV)
3 2 1 0 -1 -2 -3
07280-070
-0.15
-0.10 -0.05 0 0.05 0.10 PMU OUTPUT CURRENT (mA)
0.15
0.20
-30
-20
-10
0 10 IDUTx (mA)
20
30
40
Figure 47. PMU Force Current Range C Linearity
Figure 50. PMU Force Voltage Range A Output Voltage Error at 6.0 V vs. Output Current
Rev. 0 | Page 30 of 56
07280-073
-4 -40
07280-072
-0.8 -2.0
-0.0006 -0.0020 -0.0015 -0.0010 -0.0050 0 0.0050 0.0010 0.0015 0.0020 PMU OUTPUT CURRENT (mA)
07280-071
-140 -40
ADATE305
5 4
10 0
PMU VOLTAGE ERROR (mV)
PMU CURRENT ERROR (A)
07280-074
3 2 1 0 -1 -2 -3 -4 -40
-10 -20 -30 -40 -50 -60 -2
-30
-20
-10
0 10 IDUTx (mA)
20
30
40
-1
0
1
2 VDUTx (V)
3
4
5
6
Figure 51. PMU FV Range A Output Voltage Error at -1.5 V vs. Output Current
0.6 0.4
Figure 54. PMU FI Range A Output Current Error at -32 mA vs. Output Voltage; Output Voltage Is Pulled Externally
10 0
PMU VOLTAGE ERROR (mV)
PMU CURRENT ERROR (A)
0.2 0 -0.2 -0.4 -0.6 -0.8 -2.0
-10 -20 -30 -40 -50 -60 -2
07280-075
-1.5
-1.0
-0.5
0 0.5 IDUTx (mA)
1.0
1.5
2.0
-1
0
1
2 VDUTx (V)
3
4
5
6
Figure 52. PMU FV Range B Output Voltage Error at 6.0 V vs. Output Current
0.6 0.4
Figure 55. PMU FI Range A Output Current Error at +32 mA vs. Output Voltage; Output Voltage Is Pulled Externally
0.5 0.4
PMU VOLTAGE ERROR (mV)
0.2 0 -0.2 -0.4 -0.6 -0.8 -2.0
PMU CURRENT ERROR (A)
0.3 0.2 0.1 0 -0.1 -0.2 -2
07280-076
-1.5
-1.0
-0.5
0 0.5 IDUTx (mA)
1.0
1.5
2.0
-1
0
1
2 VDUTx (V)
3
4
5
6
Figure 53. PMU FV Range B Output Voltage Error at -1.5 V vs. Output Current
Figure 56. PMU FI Range B Output Current Error at -2 mA vs. Output Voltage; Output Voltage Is Pulled Externally
Rev. 0 | Page 31 of 56
07280-079
07280-078
07280-077
ADATE305
0.7 0.6 0.45 0.40
0.4 0.3 0.2 0.1 0 -0.1
07280-080
PMU VOLTAGE ERROR (mV)
PMU CURRENT ERROR (A)
0.5
0.35 0.30 0.25 0.20 0.15 0.10 0.05
07280-083
-0.2 -2
-1
0
1
2 VDUTx (V)
3
4
5
6
0 -2
-1
0
1 2 VDUTx (V)
3
4
5
Figure 57. PMU FI Range B Output Current Error at +2 mA vs. Output Voltage; Output Voltage Is Pulled Externally
0.0015
Figure 60. PMU Measure Current CMRR, Externally Pulling 1 mA, FVMI; Error of MI vs. External 1 mA
PMU CURRENT ERROR (A)
0.0010
0
-0.0005
89mV/DIV
0.0005
-1
0
1
2 VDUTx (V)
3
4
5
6
07280-081
-0.0010 -2
960ps/DIV
Figure 58. PMU FI Range E Output Current Error at -2 A vs. Output Voltage; Output Voltage Is Pulled Externally
0.0016 0.0014
Figure 61. Eye Diagram, 200 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V
PMU CURRENT ERROR (A)
0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 0
07280-082
89mV/DIV
-0.0002 -2
-1
0
1
2 VDUTx (V)
3
4
5
6
400ps/DIV
Figure 59. PMU FI Range E Output Current Error at +2 A vs. Output Voltage; Output Voltage Is Pulled Externally
Figure 62. Eye Diagram, 400 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V
Rev. 0 | Page 32 of 56
07280-040
07280-039
ADATE305
100mV/DIV
130mV/DIV
250ps/DIV
07280-041
400ps/DIV
Figure 63. Eye Diagram, 600 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V
Figure 65. Eye Diagram, 400 Mbps, PRBS31; VH = 2.0 V, VL = 0.0 V
100mV/DIV
130mV/DIV
200ps/DIV
07280-042
250ps/DIV
Figure 64. Eye Diagram, 800 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V
Figure 66. Eye Diagram, 600 Mbps, PRBS31; VH = 2.0 V, VL = 0.0 V
Rev. 0 | Page 33 of 56
07280-044
07280-043
ADATE305 SPI DETAILS
tCH
SCLK
tCSHA
CS
tCSSA
tCL tCSHD
tCSSD
tCSW tDH tDS
SDIN
DATA[15] DATA[14]
CH[1]
R/W
ADDR[1]
ADDR[0]
SDOUT
DO_15 LAST
DO_14 LAST
DO_13 LAST tDO
DO_12 LAST
DO_2LAST
DO_1LAST
DO_0LAST
Figure 67. SPI Timing Diagram
Table 17. Serial Peripheral Interface Timing Requirements
Symbol tCH tCL tCSHA tCSSA tCSHD tCSSD tDH tDS tDO tCSW tCSTP Parameter SCLK minimum high SCLK minimum low CS assert hold CS assert setup CS deassert hold CS deassert setup SDIN hold SDIN setup SDOUT Data Out CS minimum between assertions 1 CS minimum directly after a read request Minimum delay after CS is deasserted before SCLK can be stopped (not shown in Figure 67); this allows any internal operations to complete Min 9.0 9.0 3.0 3.0 3.0 3.0 3.0 3.0 2 3 16 Max Unit ns ns ns ns ns ns ns ns ns SCLK cycles SCLK cycles SCLK cycles
15.0
1
An extra cycle is needed after a read request to prime the read data into the SPI shift register.
Rev. 0 | Page 34 of 56
07280-003
ADATE305
DEFINITION OF SPI WORD
The SPI can accept variable length words, depending on the operation. At most, the word length equals 24 bits: 16 bits of data, two channel selects, one R/W selector, and a 5-bit address. Depending on the operation, the data can be smaller or, in the case of a read operation, nonexistent. Table 18. Channel Selection
Channel 1 0 0 1 1 Channel 0 0 1 0 1 Channel Selected NOP (no channel selected, no register changes) Channel 0 selected Channel 1 selected Channel 0 and Channel 1 selected
Table 19. R/W Definition
R/W 0 1 Description Current register specified by address shifts out of SDOUT on next shift operation Current data is written to the register specified by address and channel select
Example 1: 16-Bit Write
Write 16 bits of data to a register or DAC; ignore unused MSBs. For example, Bit 15 and Bit 14 are ignored, and Bit 13 through Bit 0 are applied to the 14-bit DAC.
DATA[15:0] CH[1:0] R/W ADDR[4:0]
07280-004
07280-005
07280-008
Figure 68. 16-Bit Write
Example 2: 14-Bit Write
Write 14 bits of data to the DAC.
DATA[13:0] CH[1:0] R/W ADDR[4:0]
Figure 69. 14-Bit Write
Example 3a: 2-Bit Write
Write two bits of data to the 2-bit register.
DATA[1:0] CH[1:0] R/W ADDR[4:0]
07280-006
Figure 70. 2-Bit Write
Example 3b: 2-Bit Write
Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored and Bit 1 through Bit 0 are applied to the register.
07280-007
DATA[15:0]
CH[1:0]
R/W
ADDR[4:0]
Figure 71. 2-Bit Write
Example 4: Read Request
Read request and follow with a second instruction (could be NOP) to clock out the data.
CH[1:0] DATA[15:0] CH[1:0]
R/W = 0 R/W
ADDR[4:0] ADDR[4:0]
Figure 72. Read Request
Rev. 0 | Page 35 of 56
ADATE305
WRITE OPERATION
CS INPUT
SCLK INPUT
SDIN INPUT
DATA[15] DATA[14] DATA[13]
DATA[2] DATA[1] DATA[0]
CH[1]
CH[0]
R/W
ADDR[4]
ADDR[3]
ADDR[2]
ADDR[1]
ADDR[0]
X 24 25
0 SDOUT OUTPUT NOTES 1. R/W = 1. 2. X = DON'T CARE.
1
2
13
14
15
16
17
18 X
19
20
21
22
23
Figure 73. 16-Bit SPI Write
CS INPUT
SCLK INPUT
SDIN INPUT
DATA[1] DATA[0]
CH[1]
CH[0]
R/W
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]
X
0 SDOUT OUTPUT NOTES 1. R/W = 1. 2. X = DON'T CARE.
1
2
3
4
5
6
7
8
9 X
10
11
Figure 74. 2-Bit SPI Write
Rev. 0 | Page 36 of 56
07280-010
07280-009
ADATE305
READ OPERATION
The read operation is a two-stage operation. First, a word is shifted in, specifying which register to read. CS is deasserted for three clock cycles, and then a second word is shifted in to obtain the readback data. This second word can be either another operation or an NOP address. If another operation is shifted in, it needs to shift in at least eight bits of data to read back the previous specified data. The NOP address can be used for this read if there is no need to write/read another register. To maintain the clarity of the operation, it is strongly recommended that the NOP address be used for all reads. Any register read that is fewer than 16 bits has zeroes filled in the top bits to make it a 16-bit word.
CS INPUT SCLK INPUT
SDIN INPUT
READ INSTRUCTION
X
NOP
X
SDOUT OUTPUT NOTES 1. X = DON'T CARE.
X
READ DATA
X
07280-011
Figure 75. SPI Read Overview
CS INPUT SCLK INPUT
SDIN INPUT 0 SDOUT OUTPUT NOTES 1. X = DON'T CARE.
DATA[15:0], VALUE IS A DON'T CARE 1 2 13 14 15
CH[1]
CH[0]
R/W
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]
X 24 25
16
17 X
18
19
20
21
22
23
Figure 76. SPI Read--Details of Read Request
CS INPUT SCLK INPUT
SDIN INPUT 0 SDOUT OUTPUT
DATA[15:0], VALUE IS A DON'T CARE 1
RDATA[14]
CH[1]
CH[0]
R/W = 1
ADDR[4:0] = 0x00 (NOP) 19 20 21 X 22 23 24
X 25
2
13
RDATA[2]
14
RDATA[1]
15
RDATA[0]
16
17
18
RDATA[15]
NOTES 1. RDATA IS THE REGISTER VALUE BEING READ. 2. X = DON'T CARE.
Figure 77. SPI Read--Details of Read Out
Rev. 0 | Page 37 of 56
07280-013
07280-012
ADATE305
RESET OPERATION
The ADATE305 contains an asynchronous reset feature. The ADATE305 can be reset to the default values shown in Table 20
100ns MINIMUM RST
by utilizing the RST pin. To initiate the reset operation, deassert the RST pin for a minimum of 100 ns and deassert the CS pin for a minimum of two SCLK cycles.
CS
MINIMUM OF TWO SCLK EDGES AFTER ASSERTING RST BEFORE RESUMING NORMAL OPERATION.
Figure 78. Reset Operation
Rev. 0 | Page 38 of 56
07280-014
SCLK
ADATE305 REGISTER MAP
The ADDR[4:0] bits determine the destination register of the data being written to the ADATE305. Table 20. Register Selection
DATA[15:0] N/A 1 DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[15:0] DATA[2:0] DATA[2:0] DATA[9:0] DATA[2:0] DATA[0] DATA[1:0] DATA[1:0] DATA[2:0] N/A
1
CH[1:0] N/A CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1] CH[0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] N/A
R/W N/A R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R N/A
ADDR[4:0] 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 to 0x1F
Register Selected NOP VH DAC level VL DAC level VT/VCOM DAC level VOL DAC level VOH DAC level VCH DAC level VCL DAC level V(IOH ) DAC level V(IOL ) DAC level OVD high level OVD low level PMUDAC level PE/PMU enable Channel state PMU state PMU measure enable Differential comparator enable 16-bit DAC monitor OVD_CHx alarm mask OVD_CHx alarm state Reserved
Reset State N/A 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 16384d 000b 000b 0d 000b 0b 00b 01b N/A N/A
N/A means not applicable.
Rev. 0 | Page 39 of 56
ADATE305 DETAILS OF REGISTERS
Table 21. PE/PMU Enable (ADDR[4:0] = 0x0C)
Bit DATA[2] Name PMU enable Description 0 = disable PMU force output and clamps, place PMU in MV mode 1 = enable PMU force output When set to 0, the PMU state bits are ignored, except for PMU sense path (Data[7]) 0 = normal driver operation 1 = force driver to VT See Table 29 for complete functionality of this bit 0 = enable driver functions 1 = disable driver (low leakage) See Table 29 for complete functionality of this bit
DATA[1]
Force VT
DATA[0]
PE disable
Table 22. Channel State (ADDR[4:0] = 0x0D)
Bit DATA[2] Name HV mode select Description 0 = HV driver in low impedance. 1 = enable HV driver. This bit affects Channel 0 only. Ensure that the Channel 0 bit in SPI write is active. Channel 1 bit in SPI write is don't care. 0 = disable load. 1 = enable load. See Table 29 for complete functionality of this bit. 0 = enable Driver high-Z function. 1 = enable Driver VTERM function. See Table 29 for complete functionality of this bit.
DATA[1]
Load enable
DATA[0]
Driver high-Z or VT
Table 23. PMU State (ADDR[4:0] = 0x0E) 1, 2
Bit DATA[9:8] Name PMU input selection Description 00 = VDUTGND (calibrated for 0.0 V voltage reference) 01 = 2.5 V + VDUTGND (calibrated for 0.0 A current reference) 1X = PMUDAC 0 = internal sense 1 = external sense 0 = disable clamps 1 = enable clamps 0 = measure voltage mode 1 = measure current mode 0 = force voltage mode 1 = force current mode 0XX = 2 A range 100 = 20 A range 101 = 200 A range 110 = 2 mA range 111 = 32 mA range
DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0]
PMU sense path Reserved PMU clamp enable PMU measure voltage or current PMU force voltage or current PMU range
1
2
Note that when ADDR[4:0] = 0x0C, the PMU enable bit (DATA[2]) = 0, PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage mode. PMU State DATA[9:8] and DATA[6:0] are ignored, and only the DATA[7] PMU sense path is valid. X = don't care.
Rev. 0 | Page 40 of 56
ADATE305
Table 24. PMU Measure Enable (ADDR[4:0] = 0x0F) 1
Bit DATA[2:1] Name MEASOUT01 select Description 00 = PMU MEASOUT Channel 0 01 = PMU MEASOUT Channel 1 10 = Temp sensor ground reference 11 = Temp sensor 0 = MEASOUT01 is tristated 1 = MEASOUT01 is enabled
DATA[0]
1
MEASOUT01 output enable
This register is written to or read from when either of the CH[1:0] bits is 1.
Table 25. Differential Comparator Enable (ADDR[4:0] = 0x10) 1
Bit DATA[0] Name Differential Comparator Enable Description 0 = differential comparator is disabled; the Channel 0 normal window comparator (NWC) outputs are located on Channel 0 1 = differential comparator is enabled; the differential comparator outputs are located on Channel 0
1
This register is written to or read from when either of the CH[1:0] bits is 1.
Table 26. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11) 1
Bit DATA[1] DATA[0] Name 16-Bit DAC mux enable 16-Bit DAC mux select Description 0 = 16-bit DAC mux is tristated 1 = 16-bit DAC mux is enabled 0 = 16-bit DAC Channel 0 1 = 16-bit DAC Channel 1
1
This register is written to or read from when either of the CH[1:0] bits is 1.
Table 27. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12)
Bit DATA[1] DATA[0] Name PMU mask OVD mask Description 0 = disable PMU alarm flag 1 = enable PMU alarm flag 0 = disable OVD alarm flag 1 = enable OVD alarm flag
Table 28. OVD_CHx Alarm State (ADDR[4:0] = 0x13) 1
Bit DATA[2] DATA[1] DATA[0] Name PMU clamp flag OVD high flag OVD low flag Description 0 = PMU is not clamped 1 = PMU is clamped 0 = DUT voltage < OVD high voltage 1 = DUT voltage > OVD high voltage 0 = DUT voltage > OVD low voltage 1 = DUT voltage < OVD low voltage
1
This register is a read-only register.
Rev. 0 | Page 41 of 56
ADATE305 USER INFORMATION
Table 29. Driver and Load Truth Table 1
PE Disable DATA[0] ADDR[4:0] = 0x0C 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
Registers Force VT Load Enable DATA[1] DATA[1] ADDR[4:0] = 0x0C ADDR[4:0] = 0x0D X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Signals Driver High-Z/VT DATA[0] ADDR[4:0] = 0x0D X X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
DATAx X X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
RCVx X X 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Driver State High-Z without clamps VT VL High-Z with clamps VH High-Z with clamps VL VT VH VT VL High-Z with clamps VH High-Z with clamps VL High-Z with clamps VH High-Z with clamps
Load State Power-down Power-down Power-down Power-down Power-down Power-down Power-down Power-down Power-down Power-down Active off Active on Active off Active on Active on Active on Active on Active on
X = don't care.
Table 30. HVOUT Truth Table 1
HVOUT Mode Select DATA[2] ADDR[4:0] =0x0D 1 1 1 0
1
Channel 0 RCV 1 0 0 X
Channel 0 DATA X 0 1 X
HVOUT Driver Output VHH mode; VHH = (VT + 1 V) x 2 + DUTGND (Channel 0 VT DAC) VL (Channel 0 VL DAC) VH (Channel 0 VH DAC) Disabled (HVOUT pin set to 0 V low impedance)
X = don't care.
Table 31. Comparator Truth Table
Differential Comparator Enable DATA[0] ADDR[4:0] = 0x10 0
1
COMP_QH0 Normal window mode Logic high: VOH0 < VDUT0 Logic low: VOH0 > VDUT0 Differential comparator mode Logic high: VOH0 < VDUT0 - VDUT1 Logic low: VOH0 > VDUT0 - VDUT1
COMP_QL0 Normal window mode Logic high: VOL0 < VDUT0 Logic low: VOL0 > VDUT0 Differential comparator mode Logic high: VOL0 < VDUT0 - VDUT1 Logic low: VOL0 > VDUT0 - VDUT1
COMP_QH1 Normal window mode Logic high: VOH1 < VDUT1 Logic low: VOH1 > VDUT1 Normal window mode Logic high: VOH1 < VDUT1 Logic low: VOH1 > VDUT1
COMP_QL1 Normal window mode Logic high: VOL1 < VDUT1 Logic low: VOL1 > VDUT1 Normal window mode Logic high: VOL1 < VDUT1 Logic low: VOL1 > VDUT1
Rev. 0 | Page 42 of 56
ADATE305
DETAILS OF DACS vs. LEVELS
There are ten 14-bit DACs per channel. These DACs provide levels for the driver, comparator, load currents, VHH buffer, OVD, and clamp levels. There are three versions of output levels as follows: * -2.5 V to +7.5 V and tracks DUTGND. Controls the VH, VL, VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels. * * -3.0 V to +7.0 V and tracks DUTGND. Controls the OVD levels. -2.5 V to +7.5 V and does not track DUTGND. Controls the IOH and IOL levels.
There is one 16-bit DAC per channel. This DAC provides the levels for the PMU. The output level is as follows: * -2.5 V to +7.5 V and tracks DUTGND; controls the PMU levels.
Table 32. Level Transfer Functions
DAC Transfer Function VOUT = 2.0 x (VREF - VREF_GND) x (Code/(214)) - 0.5 x (VREF - VREF_GND) + VDUTGND Code = [VOUT - VDUTGND + 0.5 x (VREF - VREF_GND)] x [(214)/(2.0 x (VREF - VREF_GND))] VOUT = 4.0 x (VREF - VREF_GND) x (Code/(214)) - 1.0 x (VREF - VREF_GND) + 2.0 + VDUTGND Code = [VOUT - VDUTGND - 2.0 + 1.0 x (VREF - VREF_GND)] x [(214)/(4.0 x (VREF - VREF_GND))] VOUT = 2.0 x (VREF - VREF_GND) x (Code/(214)) - 0.6 x (VREF - VREF_GND) + VDUTGND Code = [VOUT - VDUTGND + 0.6 x (VREF - VREF_GND)] x [(214)/(2.0 x (VREF - VREF_GND))] IOUT = [2.0 x (VREF - VREF_GND) x (Code/(214)) - 0.5 x (VREF - VREF_GND)] x (0.012/5.0) Code = [(IOUT x (5.0/0.012)) + 0.5 x (VREF - VREF_GND)] x [(214)/(2.0 x (VREF - VREF_GND))] VOUT = 2.0 x (VREF - VREF_GND) x (Code/(216)) - 0.5 x (VREF - VREF_GND) + VDUTGND Code = [VOUT - VDUTGND + 0.5 x (VREF - VREF_GND)] x [(216)/(2.0 x (VREF - VREF_GND))] IOUT = [2.0 x (VREF - VREF_GND) x (Code/(216)) - 0.5 x (VREF - VREF_GND) - 2.5] x (0.050/5.0) Code = [(IOUT x (5.0/0.050)) + 2.5 + 0.5 x (VREF - VREF_GND)] x [(216)/(2.0 x (VREF - VREF_GND))] IOUT = [2.0 x (VREF - VREF_GND) x (Code/(216)) - 0.5 x (VREF - VREF_GND) - 2.5] x (0.004/5.0) Code = [(IOUT x (5.0/0.004)) + 2.5 + 0.5 x (VREF - VREF_GND)] x [(216)/(2.0 x (VREF - VREF_GND))] IOUT = [2.0 x (VREF - VREF_GND) x (Code/(216)) - 0.5 x (VREF - VREF_GND) - 2.5] x (0.0004/5.0) Code = [(IOUT x (5.0/0.0004)) + 2.5 + 0.5 x (VREF - VREF_GND)] x [(216)/(2.0 x (VREF - VREF_GND))] IOUT = [2.0 x (VREF - VREF_GND) x (Code/(216)) - 0.5 x (VREF - VREF_GND) - 2.5] x (0.00004/5.0) Code = [(IOUT x (5.0/0.00004)) + 2.5 + 0.5 x (VREF - VREF_GND)] x [(216)/(2.0 x (VREF - VREF_GND))] IOUT = [2.0 x (VREF - VREF_GND) x (Code/(216)) - 0.5 x (VREF - VREF_GND) - 2.5] x (0.000004/5.0) Code = [(IOUT x (5.0/0.000004)) + 2.5 + 0.5 x (VREF - VREF_GND)] x [(216)/(2.0 x (VREF - VREF_GND))]
1
Programmable Range 1 (All 0s to All 1s) -2.5 V to +7.5 V -3.0 V to +17.0 V -3.0 V to +7.0 V -6 mA to +18 mA -2.5 V to +7.5 V -50 mA to +50 mA -4 mA to +4 mA -400 A to +400 A -40 A to +40 A -4 A to +4 A
Levels VH, VL, VT/VCOM, VOL, VOH, VCH, VCL VHH OVD IOH, IOL PMUDAC PMUDAC (PMU FI Range A) PMUDAC (PMU FI Range B) PMUDAC (PMU FI Range C) PMUDAC (PMU FI Range D) PMUDAC (PMU FI Range E)
Programmable range includes a margin outside of the specified part performance, allowing for offset/gain calibration.
Table 33. Load Transfer Functions
Load Level IOL IOH
1
Transfer Function 1 V(IOL)/5 V x 12 mA V(IOH)/5 V x 12 mA
V(IOH), V(IOL) DAC levels are not referenced to DUTGND.
Table 34. PMU Transfer Functions
PMU Mode Force Voltage Measure Voltage Force Current Measure Current
1
Transfer Functions VOUT = PMUDAC VMEASOUT01 = VDUTx (internal sense) or VMEASOUT01 = VPMUS_CHx (external sense) IOUT = [PMUDAC - (VREF/2)]/(R 1 x 5) VMEASOUT01 = (VREF/2) + VDUTGND + (IDUTx x 5 x R1)
R = 15.5 for Range A; 250 for Range B; 2.5 k for Range C; 25 k for Range D; 250 k for Range E.
Rev. 0 | Page 43 of 56
ADATE305
Table 35. PMU User Required Capacitors
Capacitor 220 pF 220 pF 330 pF 330 pF Location Across Pin 70 (FFCAP_0B) and Pin 65 (FFCAP_0A) Across Pin 6 (FFCAP_1B) and Pin 11 (FFCAP_1A) Between GND and Pin 71 (SCAP0) Between GND and Pin 5 (SCAP1)
Table 36. Temperature Sensor
Temperature 0K 300 K xK Output 0V 3V (x K) x 10 mV/K
Table 37. Power Supply Ranges
Parameter Nominal VDD Nominal VSS Driver VH range VL range VT range Functional Amplitude Reflection Clamp VCH Range VCL Range Comparator Input Voltage Range Active Load VCOM Range PMU Force Voltage Range Measure Voltage Range Force Current Voltage Range Measure Current Voltage Range Low Clamp Range High Clamp Range Range 1 +10.0 V -5.25 V -1.4 V to +6.0 V -1.5 V to +5.9 V -1.5 V to +6.0 V 7.5 V -1.0 V to +6.0 V -1.5 V to +5.0 V -1.5 V to +6.0 V -1.25 V to +5.75 V -1.5 V to +6.0 V -1.5 V to +6.0 V -1.5 V to +6.0 V -1.5 V to +6.0 V -1.5 V to +4.0 V 0.0 V to +6.0 V Range 2 +10.0 V -5.75 V -1.9 V to +6.0 V -2.0 V to +5.9 V -2.0 V to +6.0 V 8.0 V -1.5 V to +6.0 V -2.0 V to +5.0 V -2.0 V to +6.0 V -1.75 V to +5.75 V -2.0 V to +6.0 V -2.0 V to +6.0 V -2.0 V to +6.0 V -2.0 V to +6.0 V -2.0 V to +4.0 V 0.0 V to +6.0 V
Rev. 0 | Page 44 of 56
ADATE305
Table 38. Default Test Conditions (Range 1)
Name VH DAC Level VL DAC Level VT/VCOM DAC Level VOL DAC Level VOH DAC Level VCH DAC Level VCL DAC Level IOH DAC Level IOL DAC Level OVD Low DAC Level OVD High DAC Level PMUDAC DAC Level PE/PMU Enable Channel State PMU State PMU Measure Enable Differential Comparator Enable 16-Bit DAC Monitor OVD_CHx Alarm Mask Data Input Receive Input DUTx Pin Comparator Output Default Test Condition +2.0 V +0.0 V +1.0 V -1.0 V +6.0 V +7.5 V -2.5 V 0.0 A 0.0 A -2.5 V +6.5 V 0.0 V 0x0000: PMU disabled, VT not forced through driver, PE enabled 0x0000: HV mode disabled, load disabled, VTERM inactive 0x0000: Input of DUTGND, internal sense, clamps disabled, FVMV, Range E 0x0000: MEASOUT01 pin tristated 0x0000: Normal window comparator mode 0x0000: DAC16_MON tristated 0x0000: disable alarm functions Logic low Logic low Unterminated Unterminated
Rev. 0 | Page 45 of 56
ADATE305
RECOMMENDED PMU MODE SWITCHING SEQUENCES
To minimize any possible aberrations and voltage spikes on the DUT output, specific mode switching sequences are recommended for the following transitions: * * * PMU disable to PMU enable. PMU force voltage mode to PMU force current mode. PMU force current mode to PMU force voltage mode.
PMU Disable to PMU Enable
Note that in Table 39 through Table 49, X indicates the don't care bit. Step 1. Table 39 lists the state of the registers in PMU disabled mode. Table 39.
Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits DATA[2] DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 0 XX X X X X X XXX
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 40). Table 40.
Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 1X or 00 X X X X 0 XXX Comments Set desired input selection
This bit must be set to force voltage mode to reduce aberrations Set desired range
Step 3. Write to Register ADDR[4:0] = 0x0C (see Table 41). Table 41.
Register PE/PMU Enable Register, ADDR[4:0] = 0x0C Bits DATA[2] Setting 1 Comments PMU is now enabled in force voltage mode
PMU Force Voltage Mode to PMU Force Current Mode
Step 1. Table 42 lists the state of registers in force voltage mode. Table 42.
Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits DATA[2] DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 1 XX X X X X 0 XXX
Rev. 0 | Page 46 of 56
ADATE305
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 43). Table 43.
Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 01 X X X X 1 0XX Comments Set 2.5 V + DUTGND input selection
Set to force current mode 2 A range has the minimum offset current
Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 44). Table 44.
Register VIN 16-Bit DAC, ADDR[4:0] = 0x0B Bits DATA[15:0] Setting X Comments Update the VIN 16-Bit DAC register to the desired value
Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 45). Table 45.
Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 1X X X X X 1 XXX Comments Set VIN input selection
Set to the desired current range
Transition from PMU Force Current Mode to PMU Force Voltage Mode
Step 1. Table 46 lists the state of the registers in force current mode. Table 46.
Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits DATA[2] DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 1 XX X X X X 1 XXX
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 47). Table 47.
Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 00 X X X X 0 XXX Comments Set DUTGND input selection
Set to force voltage mode Set to the desired current range
Rev. 0 | Page 47 of 56
ADATE305
Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 48). Table 48.
Register VIN 16-Bit DAC, ADDR[4:0] = 0x0B Bits DATA[15:0] Setting X Comments Update the VIN 16-Bit DAC register to the desired value
Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 49). Table 49.
Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 1X X X X X 0 XXX Comments Set VIN input selection
Force voltage mode
Rev. 0 | Page 48 of 56
ADATE305 BLOCK DIAGRAMS
VCL VH VL DATA DRIVER VCH PE DISABLE DATA[0] (ADDR[4:0] = 0x0C) FORCES SWITCH OPEN WHEN 1 ROUT = 47 (TRIMMED) DUT
VT
DRIVER HIGH-Z/VT DATA[0] (ADDR[4:0] = 0x0D) VT BUFFER WHEN 1 HIGH-Z BUFFER WHEN 0 RCV
V(IOH)
VCOM
FORCE VT DATA[1] (ADDR[4:0] = 0x0C) OVERRIDES THE RCV PIN AND FORCES VTERM MODE ON THE DRIVER AND LOAD POWER-DOWN MODE
V(IOL) LOAD ENABLE DATA[1] (ADDR[4:0] = 0x0D) FORCES SWITCHES OPEN AND POWERS DOWN LOAD WHEN 0
07280-015
Figure 79. Driver and Load Block Diagram
VHH = (VT + 1V) x 2 + DUTGND
~5 HVOUT
VH VL DATA RCV (SHOWN IN RCV = 0 STATE)
48
HV MODE SELECT DATA[2] (ADDR [4:0] = 0x0D) DISABLES HV DRIVER AND FORCES 0V ON HVOUT WHEN 0
Figure 80. HVOUT Driver Output Stage
Rev. 0 | Page 49 of 56
07280-016
ADATE305
VOH0 DUT0 - VOH NWC + + VOL NWC - - VOH DMC + 2:1 COMP_QH0 MUX DIFFERENTIAL COMPARATOR ENABLE DATA[0] (ADDR[4:0] = 0x10) 2:1 COMP_QL0 MUX
VOL0 VOH0
DUT1
DU T0 - DUT0- DU T1 DUT1
DIFFERENTIAL BUFFER VOL0
+ VOL DMC -
07280-017
NOTES 1. DIFFERENTIAL COMPARATOR ONLY ON CHANNEL 0.
Figure 81. Comparator Block Diagram
COMPARATOR OUTPUT (AB)
VTT = 3.3V
RECEIVER
OUT HIGH = 1.55V 100 OUT CM = 1.42V OUT LOW = 1.30V 50 50
GND
Figure 82. Comparator Output Scheme
Rev. 0 | Page 50 of 56
07280-018
ADATE305
PMU MEASURE V/I DATA[4] (ADDR[4:0] = 0x0E) PMU SENSE PATH DATA[7] (ADDR[4:0] = 0x0E)
MEASURE V MEASURE I MEASOUT01 SELECT DATA[2:1] (ADDR[4:0] = 0x0F) MUX PMU FORCE V/I DATA[3] (ADDR[4:0] = 0x0E) MEASURE OUT CH[1] PMU V/I TEMP SENSE GND REF TEMP SENSE MUX MEASOUT01 OUTPUT ENABLE DATA[0] (ADDR[4:0] = 0x0F) ONE PER DEVICE MUX MUX
EXTERNAL DUT SENSE PIN
IN-AMP G = 5
10k
REF
2.5 + DUTGND
225k 2A 20A
22.5k 200A
2.25k 2mA
250 DUTx
15.5
PMU INPUT SELECTION DATA[9:8] (ADDR[4:0] = 0x0E)
MV VIN 2.5V + DUTGND DUTGND MUX PMU CLAMP ENABLE DATA[5] (ADDR[4:0] = 0x0E) VCH 330pF SCAPx (EXTERNAL) 32mA BUFFER
FFCAP_xA
FFCAP_xB CRA = 220pF
MEASURE V (AT OUTPUT OF SENSE MUX)
VCL
32mA
NOTES 1. SWITCHES CONNECTED WITH DOTTED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE D ATA[2] = 0 (ADDR[4:0] = 0x0C), ALL SWITCHES OPEN AND PMU POWERS DOWN. 2. THE EXTERNAL SENSE PATH MUST CLOSE THE LOOP TO ENABLE THE CLAMPS TO OPERATE CORRECTLY. 3. 32mA RANGE HAS ITS OWN OUTPUT BUFFER. 4. 32mA BUFFER TRISTATES WHEN NOT IN USE.
Figure 83. PMU Block Diagram
Rev. 0 | Page 51 of 56
07280-019
ADATE305
(ADDR[4:0] = 0x12) DATA[0] OVD MASK ENABLES OVD FLAGS TO ALARM OVD_CHx PIN 6.5V 1 OVD HIGH LEVEL DAC (ADDR[4:0] = 0x0A, CH[1]) OVD_CHx SHORT-CIRCUIT CURRENT = 100A DUT
ADATE305
-2.5V 1 OVD LOW LEVEL DAC (ADDR[4:0] = 0x0A, CH[0])
PMU V/I CLAMP FLAG
(ADDR[4:0] = 0x12) DATA[1] PMU MASK ENABLES PMU V/I FLAG TO ALARM OVD_CHx PIN
(ADDR[4:0] = 0x13) 2 DATA[2] DATA[1] DATA[0]
1THE OVD HIGH/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THEREFORE, ONLY ONE OVD HIGH/LOW VOLTAGE
07280-020
2THIS IS A READ ONLY REGISTER THAT ALLOWS THE USER TO DETERMINE THE CAUSE OF THE ACTIVE OVD FLAG.
LEVEL CAN BE SET PER CHIP. THE OVD DACs PROVIDE A VOLTAGE RANGE OF -3V TO +7V. THE RECOMMENDED HIGH/LOW SETTINGS ARE +6.5V/-2.5V. (THESE VALUES NEED TO BE PROGRAMMED BY THE USER UPON STARTUP/RESET.)
Figure 84. OVD Block Diagram
Rev. 0 | Page 52 of 56
ADATE305 OUTLINE DIMENSIONS
0.75 0.60 0.45 1.20 MAX
100 1 PIN 1
16.00 BSC SQ 14.00 BSC SQ
76 75
EXPOSED PAD
8.00 BSC SQ
1.05 1.00 0.95
0 MIN
0.15 0.05
SEATING PLANE
0.20 0.09 7 3.5 0 0.08 MAX COPLANARITY
TOP VIEW
(PINS DOWN) 25 26 50 51
VIEW A
0.50 BSC LEAD PITCH
0.27 0.22 0.17
ROTATED 90 CCW
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HU
Figure 85. 100-Lead, Thin Quad Flatpack, Exposed Pad [TQFP_EP] (SV-100-7) Dimensions shown in millimeters
ORDERING GUIDE
Model ADATE305BSVZ 1
1
Temperature Range -40C to +85C
Package Description 100-Lead, Thin Quad Flatpack, Exposed Pad [TQFP_EP]
Package Option SV-100-7
Z = RoHS Compliant Part.
Rev. 0 | Page 53 of 56
072408-A
VIEW A
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
ADATE305 NOTES
Rev. 0 | Page 54 of 56
ADATE305 NOTES
Rev. 0 | Page 55 of 56
ADATE305 NOTES
(c)2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07280-0-8/08(0)
Rev. 0 | Page 56 of 56


▲Up To Search▲   

 
Price & Availability of ADATE305

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X