![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
NJW1124 Voice Switched Speakerphone circuit ! GENERAL DESCRIPTION The NJW1124 is a Voice Switched Speakerphone Circuit. NJW1124 includes all of functions processing a high quality hands-free speakerphone system, such as the necessary amplifiers ( Microphone , Receive ,Line), attenuators, level detectors functions. All external capacitors are sufficient small so that ceramic capacitors are applied. ! PACKAGE OUTLINE ! APPLICATION *Video Door Phone *Conference System *Wireless Application *Security System NJW1124V ! FEATURES * Operating voltage range * Force to Receive, Transmit, or Idle modes * Mode -watching monitor * Attenuator gain range between Transmit and Receive * Microphone amplifier with mute function * Background noise monitor for each path * Volume control range * 4-point signal sensing * Microphone and Receive Amplifiers pinned out for flexibility * Package Outline 2.9 to 4.5V 52dB 40dB SSOP32 ! BLOCK DIAGRAM C6 R2 100n 5.1k R3 51k C7 100n R4 51k R5 10k C8 100n C9 R6 100n 5.1k R7 51k Microphone C10 TXO LII LiOLiO+ V+ V + Line Out MCI MCO TLI2 TLI1 R1 300k VREF Mic Amplifier Tx Attenuator VREF -1 Line Amplifier V+ Monitor C11 1 C1 1 C3 470n C4 470n C2 1u MUT TLO2 RLO2 Level Detector CT V + C5 1 RTSW Background NoiseMonitor Attenuator Control Background NoiseMonitor CPT CPR TLO1 RLO1 C22 1 C20 470n C21 470n Level Detector C23 1 VREF VREF2 BIAS IC1 NJW1124 Receive Amplifier Rx Attenuator 1.2 A VREF GND RXO RLI2 V+ R10 15k 5.0V VLC R12 51k RLI1 FO C18 100n R13 5.1k FI R14 5.1k C19 100n + C16 10 C13 C17 100n R11 10k RVLC Recive In C15 1 1 Speaker IC2 NJU7084 Power Amplifier C14 1 R9 22k R8 11k C12 100n -1- NJW1124 !PIN CONFIGURATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 NJW1124 VREF2 MUT NC CPT TLO2 RLO2 CT MCI MCO TLI2 TLI1 TXO LII LIOLIO+ GND 29 28 27 26 25 24 23 22 21 20 19 18 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 MON RTSW VREF CPR RLO1 TLO1 VLC FI FO RLI1 RLI2 RXO NC NC NC V+ -2- NJW1124 ! ABSOLUTE MAXIMUM RATING (Ta=25C) PARAMETER SYMBOL Power Supply Voltage Power Dissipation Operating Temperature Range Storage Temperature Range Maximum Input Voltage V+ PD Topr Tstg VIMAX RATING 5.5 800 (Note1) -40 ~ +85 -40 ~ +125 0~V + UNIT V mW C C V (Note1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting (Note2) Don't apply the input voltage that exceeds supply voltage. ! OPERATING VOLTAGE PARAMETER Operating Voltage SYMBOL V + TEST CONDITION - MIN. 2.9 TYP. 4.0 MAX. 4.5 UNIT V ! ELECTRICAL CHARACTERISTICS (Ta=25C,V+=4V,MUT=ACTIVE,RTSW=OPEN,RVLC=0,GVM=0dB,ReceiveAmplifierGV=0dB) PARAMETER Operating Current 1 Operating Current 2 Operating Current 3 Reference Voltage SYMBOL ICC1 ICC2 ICC3 VREF TEST CONDITION RX-mode (Receive) TX-mode (Transmit) Idle-mode Idle-mode MIN. 0.7 0.7 0.7 1.7 TYP. 2.0 2.0 2.0 2.0 MAX. 4.0 4.0 4.0 2.3 UNIT mA mA mA V Receive Attenuator (RxIN=100Vrms,Receive Amplifier Gv=0dB) PARAMETER Receive Attenuator Gain 1 Receive Attenuator Gain 2 Receive Attenuator Gain 3 Range R to T mode Dynamic DC offset Volume control range Maximum DetecterSink Current SYMBOL GR1 GR2 GR3 GR GRDC GRVR IRSINKMAX TEST CONDITION RX-mode (Receive) TX-mode (Transmit) Idle-mode (Standby),CPT=CPR=V + MIN. 3.0 -43 -17 47 -50 30 - TYP. 6.0 -46 -20 52 40 - MAX. 9.0 -50 -23 57 50 50 200 UNIT dB dB dB dB mV dB A RX-mode - TX-mode RX-mode - TX-mode (DC) RX-mode,RVLC=0-100k RLI1,TLI1,Maximum Sink Current Transmit Attenuator (TxIN=100Vrms,Mic.amplifier Gv=0dB) PARAMETER Transmit Attenuator Gain 1 Transmit Attenuator Gain 2 Transmit Attenuator Gain 3 Range R to T mode Dynamic DC offset Volume control range Maximum DetecterSink Current SYMBOL GT1 GT2 GT3 GT GTDC GTVR IRSINKMAX TEST CONDITION TX-mode (Transmit) RX-mode (Receive) Idle-mode CPT=CPR=V TX-mode - RX-mode TX-mode - RX-mode (DC) RX-mode,RVLC=0-100k RLI1,TLI1,Maximum Sink Current + MIN. 3.0 -43 -17 47 -50 31 - TYP. 6.0 -46 -20 52 40 - MAX. 9.0 -50 -23 57 50 46 200 UNIT dB dB dB dB mV dB A -3- NJW1124 MIC Amplifier (TxIN=1mVrms,Gv=40dB,RL=5.1k) PARAMETER Output Offset Voltage Input Bias Current Voltage Gain 1 Voltage Gain 2 Maximum Output Voltage Maximum Output Current Maximum Attenuation SYMBOL VMOS IMBIAS GVM1 GVM2 VMMAX IMOMAX GMMUTE TEST CONDITION R5=300k,VMOS=VMCI -VMCO f=1kHz f=20kHz THD=1% R5=300k MIN. -30 0.9 70 TYP. 0.0 0.0 40 38 1.5 73 MAX. 30 - UNIT mV nA dB dB Vrms mA dB Receive Amplifier(RxIN=1mVrms,Gv=40dB,RL=5.1k) PARAMETER Output Offset Voltage Input Bias Current Voltage Gain 1 Voltage Gain 2 Maximum Output Voltage Maximum Output Current SYMBOL VROS IRBIAS GVR1 GVR2 VRMAX IROMAX TEST CONDITION RF=300k,VFOS=VFI -VFO f=1kHz f=20kHz THD=1% - MIN. -30 0.9 - TYP. 0.0 30 40 38 1.5 MAX. 30 - UNIT mV nA dB dB mVrms mA Line Amplifier (LINEIN=50mVrms, GV=26dB,RL=1.2k) PARAMETER Output Offset Voltage Input Bias Current Voltage Gain 1 Voltage Gain 2 Closed Loop Gain Maximum Output Voltage Total Harmonic Distortion Maximum Output Current SYMBOL VLOS ILBIAS GVL1 GVL2 GLC VLMAX THDLN ILOMAX TEST CONDITION R9=51k f=1kHz f=20kHz LIO- to LIO+ THD=1% f=1kHz - MIN. 20 -0.5 1.5 - TYP. 0.0 0.0 26 25 0 4.0 MAX. 20 0.5 0.5 - UNIT mV nA dB dB dB Vrms % mA Monitor Terminal (32Pin) Output Voltage PARAMETER RX-mode TX-mode Idle-mode Maximum Output Current SYMBOL Rx Tx Idle IMON - TEST CONDITION MIN. V -0.3 + TYP. V /2 1.0 + MAX. 0.3 - UNIT V V V mA No Signal Rx-mode / Tx-mode -4- NJW1124 ! CONTROL CHARACTERISTICS (MUT) PARAMETER Low Level Input Voltage High Level Input Voltage SYMBOL VIL1 VIH1 TEST CONDITION MIN. 1.5 TYP. MAX. 0.3 UNIT V V ! CONTROL CHARACTERISTICS (RTSW) PARAMETER Low Level Input Voltage High Level Input Voltage SYMBOL VIL2 VIH2 TEST CONDITION + MIN. V -0.3 TYP. - MAX. 0.3 - UNIT V V ! FUNCTION MUT (2pin) INPUT VOLTAGE VIH VIL RTSW (31pin) INPUT VOLTAGE VIH OPEN VIL RVLC (26pin) IMPEDANCE 0 100k STATUS VolMAM VolMIN OPERATION The Receive attenuator Volume is maximum. The Receive attenuator Volume is minimum. STATUS Receive AUTO Transmit OPERATION Force to Receive mode. Receive mode and Transmit mode are automatically switched. Force to Transmit mode. STATUS MUTE ACTIVE OPERATION The microphone input is made a mute. The microphone input is active. -5- NJW1124 ! MEASUREMENT CIRCUIT S12 OPEN V+ OPEN S13 R LMH 4.7k R LML 4.7k 1 S2 VIH VIL VREF2 MON 32 S6 31 30 29 28 27 S8 0ohm MONOUT 100 VIH OPEN VIL 100 2 3 MUT RTSW NC VREF 1u Vref S4 V+ OPEN 1u 1k 100n NJW1124 4 5 6 7 8 CPT TLO2 CPR 1u 1k 100n S7 V+ OPEN RLO1 100n RLO2 TLO1 100n 1u 300k TxIN 3k 40dB CT VLC 26 25 100k 100k S5 0dB 1u 300k 1u 0dB 3k 40dB MCI MCO FI RxIN 300k 300k S9 FilterOUT 100n MCOUT 100n 5.1k 9 10 5.1k FO 24 5.1k TLI2 RLI1 23 5.1k 11 100n TxOUT 1u LINEIN 51k 47p 5.1k TLI1 RLI2 22 100n 12 13 14 TXO RXO 21 20 19 18 Icc RxOUT LII NC LIO- NC LINEOUT 1.2k(R LL) 15 16 LIO+ NC GND V+ 17 1u V+ -6- NJW1124 ! APPLICATION CIRCUIT TR1 V+ 2.2k LED1 56k 0.47 Rx-Mode :V+ Tx-Mode :GND Idle :HI-Z 1 1 V+ :MUTE GND :ACTIVE V+ VREF2 MON 32 Monitor Out 300k 2 3 MUT RTSW 31 30 29 28 27 26 25 24 51k 100n 5.1k 100n 1 V+ NC VREF V+ :Recive GND :Trensmit Open :Auto 1 NJW1124 4 5 6 7 8 9 CPT TLO2 CPR 1 470n RLO1 470n 470n RLO2 TLO1 470n 1u 100k CT VLC 100n Mic In 5.1k 51k MCI MCO FI Receive In 5.1k 1 15k V+ :ACTIVE GND :Shut Down FO V+ 1 2 3 4 SD OUTB 8 7 6 10u V+ (2) + Speaker Out - 100n 51k 10 10k 100n 100n TLI2 RLI1 23 10k 1 SDTC NJU7084 GND 11 12 13 TLI1 RLI2 22 100n 1 + IN V+ TX OUT TXO RXO 21 Receive Out 0.1u 11k -IN OUTA 5 5.1k LII NC 20 19 18 17 1 V+ (1) 22k 51k + LINE OUT - 47p 14 15 16 LIO- NC LIO+ NC GND V+ -7- NJW1124 ! TYPICAL CHARACTERISTICS Volume control range vs ambient temperature ( VLC=0/100k) 50.0 700 Detector Max Sink Current vs ambient temperature (TLI1,TLI2,RLI1,RLI2 Max Sink Current) 600 45.0 Volume Control range [dB] 500 40.0 V+=4.0V Max Sink Current [ A] V+=4.0V V+=3.3V 400 V+=3.3V 35.0 300 200 30.0 100 25.0 -50 -30 -10 10 30 50 70 90 110 Ambient temperature [] 0 -50 -30 -10 10 30 50 70 90 110 Ambient temperature [] Tx ATT Gain vs ambient temperature (V+=3.3V , Receive Amp Gain = 0dB , VLC=0) 10.0 10.0 Tx ATT Gain vs ambient temperature (V+=4.0V , Receive Amp Gain = 0dB , VLC=0) 0.0 Tx-Mode 0.0 Tx-Mode -10.0 Tx ATT Gain [dB] Tx ATT Gain [dB] -10.0 -20.0 -20.0 Idle-Mode -30.0 Idle-Mode -30.0 -40.0 Rx-Mode -40.0 Rx-Mode -50.0 -50 -30 -10 10 30 50 70 90 110 Ambient temperature [] -50.0 -50 -30 -10 10 30 50 70 90 110 Ambient temperature [] Monitor Out vs ambient temperature (V+=3.3V , RLMH=RLML=4.7k) note : The MONITOR OUT(@Idole-mode) is Hi-Z when there are neither RLMH and RLML. 4.0 4.0 Monitor Out vs ambient temperature (V+=4.0V , RLMH=RLML=4.7k) note : The MONITOR OUT(@Idole-mode) is Hi-Z when there are neither RLMH and RLML. 3.5 Rx-Mode 3.5 Rx-Mode 3.0 Monitor output Voltage [V] Monitor output Voltage [V] 3.0 2.5 2.5 Idle-Mode 2.0 2.0 Idle-Mode 1.5 1.5 1.0 1.0 0.5 Tx-Mode -50 -30 -10 10 30 50 70 90 110 0.5 Tx-Mode -50 -30 -10 10 30 50 70 90 110 0.0 Ambient temperature [] 0.0 Ambient temperature [] -8- NJW1124 ! TYPICAL CHARACTERISTICS MUTE Pin Voltage vs MUTE ATT Ratio (V+=3.3V , MICAMP GAIN=40dB, Rf=300k, Ri=3k, A-weighted) MUTE Pin Voltage vs MUTE ATT Ratio (V+=4.0V , MICAMP GAIN=40dB, Rf=300k, Ri=3k, A-weighted) 10 0 -10 -20 MUTE ATT Ratio [dB] -30 85 25 -40 10 0 -10 -20 MUTE ATT Ratio [dB] -30 85 25 -40 -40 -50 -60 -70 -80 -90 -100 0 0.5 1 1.5 2 2.5 MUT PIN Voltage [V] -40 -50 -60 -70 -80 -90 -100 0 0.5 1 1.5 2 2.5 MUT PIN Voltage [V] MUTE Pin Voltage vs MUTE ATT Ratio (V+=3.3V , MICAMP GAIN=0dB, Rf=3k, Ri=3k, A-weighted) MUTE Pin Voltage vs MUTE ATT Ratio (V+=4.0V , MICAMP GAIN=0dB, Rf=3k, Ri=3k, A-weighted) 10 -40 25 10 -40 0 0 -10 MUTE ATT Ratio [dB] 85 -10 MUTE ATT Ratio [dB] 85 25 -20 -20 -30 -30 -40 -40 -50 -50 -60 0 0.5 1 1.5 2 2.5 MUT PIN Voltage [V] -60 0 0.5 1 1.5 2 2.5 MUT PIN Voltage [V] MICAMP Gain vs Frequency (V+=3.3V , RL=5.1k, Cin=1F, Rin=3k) 50 50 MICAMP Gain vs Frequency (V+=4.0V , RL=5.1k, Cin=1F, Rin=3k) Gv=40dB, Rf=300k, Vin=1mV 40 -40 25 85 Gv=40dB, Rf=300k, Vin=1mV 40 -40 25 85 30 Gain [dB] Gain [dB] 30 20 20 10 10 Gv=0dB, Rf=3k, Vin=100mV 0 -40 25 85 Gv=0dB, Rf=3k, Vin=100mV 0 -40 25 85 -10 10 100 1000 Frequency [Hz] 10000 100000 -10 10 100 1000 Frequency [Hz] 10000 100000 -9- NJW1124 ! TYPICAL CHARACTERISTICS Receive AMP Gain vs Frequency (V+=3.3V , RL=5.1k, Cin=1F, Rin=3k) 50 50 Receive AMP. Gain vs Frequency (V+=4.0V , RL=5.1k, Cin=1F, Rin=3k Gv=40dB, Rf=300k, Vin=1mV 40 40 Gv=40dB, Rf=300k,Vin=1mV 30 Gain [dB] Gain [dB] 30 20 20 10 10 0 Gv=0dB, Rf=3k, Vin=100mV 0 Gv=0dB, Rf=3k, Vin=100mV -10 10 100 1000 Frequency [Hz] LINEAMP Gain vs Frequency (V+=3.3V , RL=1.2k, Cin=1F, Rf=51k, Rin=5.1k, Cf=47pF) 30 28 10000 100000 -10 10 100 1000 Frequency [Hz] LINE AMP Gain vs Frequency (V+=4.0V , RL=1.2k, Cin=1F, Rf=51k, Rin=5.1k, Cf=47pF) 30 28 10000 100000 Gv=26dB, Vin=50mV 26 24 22 Gain [dB] 20 18 16 14 12 10 10 100 1000 Frequency [Hz] 10000 100000 Gain [dB] 26 24 22 20 18 16 14 12 10 10 100 Gv=26dB, Vin=50mV 1000 Frequency [Hz] 10000 100000 Receive AMP THD+N vs Input Voltage (V+=3.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) 10 10 Receive AMP THD+N vs Input Voltage (V+=4.0V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) THD+N [%] THD+N [%] 1 1 85 25 -40 0.1 0.0001 0.1 0.0001 85 25 -40 0.001 Input Voltage [Vrms] 0.01 0.1 0.001 Input Voltage [Vrms] 0.01 0.1 - 10 - NJW1124 ! TYPICAL CHARACTERISTICS Receive AMP THD+N vs Input Voltage (V+=3.3V, RL=5.1k , Gain=0dB , Rf=3k, Ri=3k, BW:400Hz-30kHz) 10 Receive AMP THD+N vs Input Voltage (V+=4.0V, RL=5.1k , Gain=0dB , Rf=3k, Ri=3k, BW:400Hz-30kHz) 10 1 1 THD+N [%] THD+N [%] 0.1 0.1 -40 0.01 85 25 85 -40 0.01 0.01 25 0.1 Input Voltage [Vrms] 1 10 0.001 0.01 0.1 Input Voltage [Vrms] 1 10 Mic AMP THD+N vs Input Voltage (V+=3.3V,MUT=0.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) 10 10 Mic AMP THD+N vs Input Voltage (V+=4.0V,MUT=0.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) THD+N [%] THD+N [%] 1 85 (MUT=0.3V) 1 85 (MUT=0.3V) 85 (MUT=0V) 25 -40 0.1 0.0001 0.1 0.0001 85 (MUT=0V) 25 -40 0.001 Input Voltage [Vrms] 0.01 0.1 0.001 Input Voltage [Vrms] 0.01 0.1 Mic AMP THD+N vs Input Voltage (V+=3.3V,MUT=0.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) 10 Mic AMP THD+N vs Input Voltage (V+=4.0V,MUT=0.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) 10 1 1 THD+N [%] THD+N [%] 0.1 85 (MUT=0.3V) 85 (MUT=0V) -40 25 0.1 85 (MUT=0.3V) 0.01 85 (MUT=0V) 25 0.01 0.01 -40 0.1 Input Voltage [Vrms] 1 10 0.001 0.01 0.1 Input Voltage [Vrms] 1 10 - 11 - NJW1124 ! TYPICAL CHARACTERISTICS LINE AMP THD+N vs Input Voltage (V+=3.3V, RL=1.2k , Gain=26dB , Rf=51k, Ri=5.1k, BW:400Hz-30kHz) 10 10 LINE AMP THD+N vs Input Voltage (V+=4.0V, RL=1.2k , Gain=26dB , Rf=51k, Ri=5.1k, BW:400Hz-30kHz) THD+N [%] 1 THD+N [%] 85 1 85 25 -40 0.1 0.001 0.1 0.001 -40 25 0.01 Input Voltage [Vrms] RTSW PIN Voltage vs Rx&Tx ATT. Gain (V+=3.3V) 10 10 0.1 1 0.01 Input Voltage [Vrms] RTSW PIN Voltage vs Rx&Tx ATT. Gain (V+=4.0V) 0.1 1 0 Tx 85 Tx 25 -10 Rx & Tx ATT. Gain Tx -40 Rx 85 Rx 25 Rx -40 Rx & Tx ATT. Gain 0 Tx 85 Tx 25 -10 Tx -40 Rx 85 Rx 25 Rx -40 -20 -20 Rx 85 -30 Rx 25 Rx -40 -40 Tx 85 Tx 25 Tx -40 Rx 85 -30 Rx 25 Rx -40 -40 Tx 85 Tx 25 Tx -40 -50 0 0.5 1 1.5 2 2.5 3 3.5 RTSW PIN Voltage [V] -50 0 0.5 1 1.5 2 2.5 3 3.5 4 RTSW PIN Voltage [V] - 12 - NJW1124 APPLICATION NOTES GENERAL DESCRIPTION The NJW1124 is a Voice Switched Speakerphone Circuit. The NJW1124 includes all of functions processing a high quality hands-free speakerphone system, such as the necessary amplifiers ( Microphone amplifier , Receive amplifier, Line amplifier), attenuators, level detectors . All external capacitors are sufficient small so that ceramic capacitors are applied. The NJW1124 detects a signal to judges which path is talking. After that, the one side path is active, another path is attenuated. This is half-duplex system. Appropriate operating keeps closed loop gain less than 0dB, and that prevents acoustic coupling. The resister and capacitor values in Fig.1 below are references. For correct operating, check in actual condition as possible as you can. And adjust the levels input each detectors. On this application notes, Base unit is defined as the unit included the NJW1124. C6 R2 100n 5.1k R3 51k C7 100n R4 51k R5 10k C8 100n C9 R6 100n 5.1k R7 51k Microphone C10 TXO LII LiOLiO+ V+ :MUTE :ACTIVE C1 1 C3 470n C4 470n C2 1u Line Out MCI MUT V+ GND MCO TLI2 TLI1 V+ R1 300k VREF Mic Amplifier Tx Attenuator VREF -1 Line Amplifier V+ Monitor C11 1 MUT TLO2 RLO2 Level Detector CT V + C5 1 V+ :Recive GND :Trensmit Open :idle RTSW Background NoiseMonitor Attenuator Control Background NoiseMonitor CPT CPR TLO1 RLO1 C22 1 C20 470n C21 470n Level Detector C23 1 VREF VREF2 BIAS IC1 NJW1124 Receive Amplifier Rx Attenuator 1.2 A VREF GND MUT V+ GND RXO RLI2 : Active : Disable C15 1 VLC R12 51k RLI1 FO C18 100n R13 5.1k FI R14 5.1k C19 100n V+ R10 15k 5.0V + C16 10 C13 C17 100n R11 10k RVLC Recive In 1 Speaker IC2 NJU7084 Power Amplifier C14 1 R9 22k R8 11k C12 100n Fig.1 NJW1124 Block Diagram The resistance and capacitor value above is just one example. Certain Half-duplex operation are not guaranteed. Best value depends on your microphone, speaker, and chassis. Especially, select capacitor value connected to V+(17pin) to be power supply ripple enough small (less than 5mVp-p). when 1F is not enough, select larger value capacitor. - 13 - NJW1124 1.Receive Attenuator Receive Attenuator has 3 modes depending on base and satellite unit condition. PARAMETER SYMBOL TEST CONDITION MIN. Receive Attenuator Gain 1 Receive Attenuator Gain 2 Receive Attenuator Gain 3 GR1 GR2 GR3 RX-mode (Receive) TX-mode (Transmit) Idle-mode (Standby),CPT=CPR=V+ 3.0 -43 -17 TYP. 6.0 -46 -20 MAX. 9.0 -50 -23 UNIT dB dB dB 1.Receive Attenuator Gain 1 , (Receive mode :Gain=+6dB) Condition: Receive signal from satellite unit, and no transmit signal to base unit. 2. Receive Attenuator Gain 2 , (Transmit mode :Gain=-46dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 3. Receive Attenuator Gain 3 , (Idle mode :Gain=-20dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 0 Volume Control Receive Attenuator includes Volume Control. Volume is controlled by resister value connected to VCL pin. Fig.2 shows Volume attenuate vs. Resister value. Volume max.(0dB) : 0, Volume min. (-40dB): 100k . Transmit Attenuator doesn't equip Volume Control. -40 0 20 40 60 VLC Resistor [k] 80 100 -10 Volume [dB] -20 -30 Fig.2 Volume vs. VCR Resister - 14 - NJW1124 2.Transmit Attenuator Transmit Attenuator has 3 modes depending on base and satellite unit condition. PARAMETER SYMBOL TEST CONDITION MIN. TYP. Transmit Attenuator Gain 1 Transmit Attenuator Gain 2 Transmit Attenuator Gain 3 GT1 GT2 GT3 RX-mode (Receive) TX-mode (Transmit) Idle-mode (Standby),CPT=CPR=V+ 3.0 -43 -17 6.0 -46 -20 MAX. 9.0 -50 -23 UNIT dB dB dB 1.Transmit Attenuator Gain 1 , (Transmit mode :Gain=+6dB) Condition: Receive signal from satellite unit, and no transmit signal to base unit. 2. Transmit Attenuator Gain 2 , (Transmit mode :Gain=-46dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 3. Transmit Attenuator Gain 3 , (Idle mode :Gain=-20dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 3.Microphone Amplifier Microphone Amplifier is an operational Amplifier amplifying the signal from microphone to line level. Fig.3 shows Block Diagram of Mic.Amp.. Non-inverting input keeps reference voltage inside. Mic.Amp is used as inverting amplifier. The Gain should be 40dB or less. Mic.amp equips Mute function. C6 R2 100n 5.1k R3 51k Microphone MCI MUT V+ GND MCO :MUTE :ACTIVE C1 1 V+ R1 300k VREF Mic Amplifier Tx Attenuator Fig.3 Mic.Amp Block.(20dB Application) Outside parts C6 R2 R3 R1 C1 Function DC decoupling Gain Setting Pop noise reduction recommend value 100nF10F 3k300k 100300k 100n10F Detail Gv=R3/R2 Input impedanceR2 The control voltage is made gradual with RC filter. Operation MICAMP MUTE MICAMP ACTIVE Memo Shape HPF : fc=1/(2xC6xR2) Recommend gain less than :40dB Large resistance value may cause oscillating. - MUT(2pin) Input Voltage VIH >1.5V VIL <0.3V - 15 - NJW1124 4.Receive Amplifier Receive Amplifier is an operational Amplifier receiving the signal from satellite unit. Fig.4 shows Block Diagram of Mic.Amp Block Non-inverting input keeps reference voltage inside. Receive Amp is used as inverting amplifier. The Gain should be 40dB or less. Receive Amplifier doesn't equip Mute function. Receive Amplifier Rx Attenuator VREF FO R13 5.1k FI R14 5.1k C19 100n Recive In Fig.4 Receive.Amp Block.(0dB Application) Outside parts C19 R4 R3 Function DC decoupling Gain Setting recommend value 100nF10F 3k300k Detail Gv=R13/R14 Input impedanceR14 Memo Shape HPF : fc=1/(2xC19xR14) Recommend gain less than :40dB Large resistance value may cause oscillating. - 16 - NJW1124 5.Line Amplifier Line Amplifier transmits the signal from Tx attenuator to satellite unit. Line Amplifier consists of two operational Amplifiers. First Amplifier non-inverting input keeps reference voltage inside. First Amplifier is used as inverting amplifier. Second Amplifier includes -1 fixed Gain. These two amplifiers enable to differential output from single-ended signal. C9 R6 100n 5.1k R7 51k C10 TXO LII LiOLiO+ Line Out -1 VREF Line Amplifier Fig.5 Line Amplifier Block(26dB Application) Outside parts Function DC decoupling C9 R6 Gain Setting R7 C10 oscillation prevention recommend value 100nF10F 3k300k 10p100pF Detail Gv=R7/R6 Input impedanceR6 Memo Shape HPF : fc=1/(2xC9xR6) Recommend gain less than :26dB Large resistance value may cause oscillating. Shape LPF : fc=1/(2xC10xR7) Line Amplifier may oscillates, long transmission path becoming large capacitive load. In this case, add ceramic capacitor (47p to 100p) between LII and LIO-. Add it as close as possible to the terminal. The frequency should be cut more than you need. LIO+,LIO- should not be short to GND. LIO+,LIO- terminal are biased to V+/2). C11 R8 100n 5.1k R9 51k LINE Cable CfL TXO LII LiOLiO+ -1 VREF Line Amplifier Fig.6 Forbidden Circuit. - 17 - NJW1124 6.Monitor Terminal Monitor Terminal switches Voltage mode depending NJW1124 condition. NJW1124 condition : Monitor Terminal Voltage Receive mode V+ Transmit mode GND Idle mode Hi-Z or (V+/2) 7.Level Detector Block The NJW1124 includes Level Detector Block and Background Noise Monitor on transmit block and receive block. Level Detector Block consists of two same detectors. Fig.7 shows Level Detector block. The signal(S1 to S4) output each detector transmits to attenuator controller to change the mode. Next 7.1 and 7.2 explain about each detector and Background Noise Monitor operation details. About S1 to S4 signals, refer to 8 part., Tx : TLO2 Rx : RLO1 Tx : TLI2 Rx : RLI1 Level Detector Circuit Background Noise Monitor Tx : S3 Rx : S4 Tx : RLI2 Rx : TLI1 Level Detector Circuit Tx : S1 Rx : S2 Tx:RLO2 Rx:TLO1 Fig.7 Level Detector Block - 18 - NJW1124 7.1 Level Detector Circuit Fig.8 shows level detector circuit. Level detector circuit includes logarithmic amplifier using diodes (D1,D2) to keep dynamic range. The signals input to each level detector through external coupling capacitor Ci , are converted to current by input resistance Rin and input logarithmic amplifier through TLI2,1 and RLI1,2. The current input changes diode(D1) current . When the current more than 0.54A(Current Source circuit ) inputs ,diode D1 is off, and A point voltage drops. In case of sinking current, the current increase D1 current, that increase A point voltage rises. The point voltage is defined as follows. . -6 -6 VA=0.026 x Ln [ { Iin + (0.54x10 ) } / (0.54x10 ) ] Iin=Vin/Rin.( Actually, Ci effects) The voltage A point goes through buffer Amplifier AMP2, charge the capacitor connected to TLO1.2,RLO1.2. The charging completes immediately. Response Example1 shows TLO2(Co=C5=0.1F) signal waveform outputting 200mVrms/1kHz from MICOUT(MCO pin). without input signal from TL1,TL2,RL1,and RL2,Co releases current. The Voltage Gradient is defined as follows: Vc=-0.3A/Co Response Example 2 shows the signal response finishing input the signal. Actual application being influenced on leak current and equivalent resistance in series, Vc does not accords with the formula completely. Check on the operation using actual capacitor (Use high input impedance probe like FET Measuring instrument) Small capacitor shortens the time to detect, and deteriorate the low frequency rectification characteristics. That influences on Noise Detector on next page. Large capacitor improves rectification characteristics, and noise detector function. However, extends the time to detect, it may judges the signal on noise. Appropriate capacitor value depends on a application. The input current TLI1,TLI2,RLI1,and RLI2 should be less than 100 for normal operating . Especially, gain mode has 9dB gain max, care of excessive input. Voice switch circuit may malfunctions with Excessive input current Fig.9 shows Rin(input impedance) vs. minimum input sensitivity of noise detector and maximum permissible voltage. Ci (C7,C8 C18,C17) Vin Iin Rin (R4,R5 TLI2,1 R12,R11) RLI1,2 D1 AMP1 D2 Ref I1 0.54uA I2 0.54uA I3 0.3uA A AMP2 TLO2,1 RLO1,2 IO Co (C3,C20 C21,C4) Fig.8 Level Detector Circuit Diagram Outside parts Cin Rin Co Function DC decoupling V/I Convert Detection level keeping recommend value 100nF1F 5k100k 0.05F1.0mF Detail IinVin/Rin VC -0.3uA / CO Memo Shape HPF : fc=1/(2xCinxRin) Use " Iin " by 100mA or less. Use the capacitor leaking a little. Small capacitor deteriorate the low frequency rectification characteristics . - 19 - NJW1124 400 1040 400 300 MCO TLO2 1040 1020 MCO TLO2 300 1020 200 1000 200 100 TLO2 [mV] 1000 980 960 TLO2 [mV] 100 MCO [mV] 980 MCO [mV] 0 960 0 Vc -100 940 -100 940 -200 920 -200 -300 -400 0 5 10 15 20 time [m sec] 25 30 35 40 920 900 880 VA -300 900 -400 0 1 2 3 time [m sec] 4 5 6 880 Response example.1 MCO vs. TLO2signal (starting input) MCO = 200mVrms/1kHz C5 = 0.1F Response example.2 MCO vs. TLO2signal (finishing input) MCO = 200mVrms/1kHz C5 = 0.1F 10000 Minumum Sensitivity Voltage Maximum Input Voltage MCO or FO Pin AC Voltage[mVrms] Maximum Input Voltage(Vin(Fig.8)),which equal to MCO or FO Maximum Output Voltage Minimum Input Voltage(sensitivity),which is the Voltage shifting mode(idle to receive, idle to transmit). 1000 100 Note: Maximum Voltage is defined by the smaller resister, 35% value of R5, R11 or R4, R11 value. 10 1 10 Input Resistance[k] 100 Fig.9 Minimum Input Voltage vs. Input Resistance (R4 or R12 Theoretical Value resistance R4=R5,R12=R11 condition) - 20 - NJW1124 7.2 Background Noise Monitor Background Noise Monitor judges whether the input signal is noise or sound or voice by TLO2 and RLO2 voltage, and change the mode. The NJW1124 includes the Background noise monitor on transmit side and receive side. Fig.10 shows Block diagram of Background noise monitor. The voltage difference between TLO2 or RLO1 and Ref is amplified 8.6dB on AMP1. nd The signal from AMP1 inputs 2 stage AMP2 and comparator (COMP). The COMP non-inverting input voltage becoming 36mV higher than inverting, COMP output 1,which shows the NJW1124 is transmit or receive mode. At the same time, external capacitor charged from 0.8A internal current source, until the CCP voltage becomes 46mV higher than AMP2 input voltage. The equivalent below shows CCP voltage charging. VCCP= 0.8A/CCP For example, CCP=1F, VCP=0.8V/sec. Without the input signal, C CP discharged and finally reset the Background noise monitor. Response example is ex.3. The signal like continued sign wave inputting, COMP output `0' which is noise-monitoring mode (idle-mode). The signal like conversation sound inputting, CCP continues to charge and discharge. COMP output continued to `1', which is transmit or receive mode. Small Ccp shortens the time shifting to `0' condition. Too small CCP attenuates even the conversation signal. Large CCP keeps `1' condition long, which lengthen attenuating time. Capacitor should be adjusted appropriately on actual application. (Use high input impedance like FET probe measuring voltage of CPT, CPR pin.) CCP (C2,C22) Tx : TLO2 Rx : RLO1 Tx : CPT Rx : CPR 19k Level Detector 32k AMP1 46mV 0.8 A AMP2 COMP Ref Tx : S3 Rx : S4 36mV Fig.8 Background Noise Monitor Block Diagram Function Noise Detection 1300 1250 1200 1150 TLO2 , CPT [mV] 1100 1050 1000 950 900 850 800 0 100 200 300 time [m sec] 400 500 TLO2 , CPT [mV] recommendation value 100nF1F Detail 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 0 10 Memo The time for noise detection depends on this. TLO2 CPT TLO2 CPT 20 time [m sec] 30 40 50 Response example.3 TLO2 vs. CPT signal (input start) MCO = 200mVrms/1kHz C5 = 0.1F, C4=1F Response example.4 TLO2 vs. CPT signal (input finish) MCO = 200mVrms/1kHz C5 = 0.1F, C4=1F - 21 - NJW1124 8.Attenuator Controller Attenuator Controller controls each mode(Transmit or Receive or idle) by the signal(S1 to S4) from level detector according as table.1 below Table.1 shows truth table (On RTSW=Open). Internal 12A current source circuit charges and discharges C7, connected with CT pin On the mode changing condition, VC5 shows voltage change according as the formula below. . VC7 = 12uA/C5 (11.1) (C7 is C5 capacitance connected to CT pin.) on initial state, CT pin voltage equals to Vref voltage. Shifting to transmit mode, C7 discharges and become lower voltage than Vref voltage. Example 5 and 6 shows behaviors. VCT voltage is CT voltage minus Vref voltage. On receive mode, internal current source charging C5 raises CT voltage. CT pin voltage shows operating condition(Transmit or Receive or idle). ( more than 100M impedance probe should be monitoring the voltage. `FAST idle mode' enables to shift promptly charging C7 rapidly. On `SLOW idle mode', mode shifts gently. Both time constants are below: =RAXC5 (RAX is RA1 RA2 resistance. After sec, The voltage is attenuated to 1/e default value) For example, C7=1F, =600m sec. attenuator gain GAT estimate as below: GAT(TX) = 0.1 x exp { -VCT / 0.026 } on transmit mode GAT(RX) =0.1 x exp { VCT / 0.026 } on receive mode (11.3) (11.4) C5 = 1F, attenuator time constant on SLOW idle mode is about 225m sec. Table.6 as below shows response of transmit signal wave: Fig.11 shows VCT vs. GAT. Adjust this order for appropriate operating: 1.Resistance connecting to TLI1.2 and RLI1.2 2.Capacitor connecting to TLO1.2 and RLO1.2 3.Capacitor connecting CPT, CPR. When adjusting above doesn't enable to appropriate operating(attenuating too fast or shifting too slow etc.), adjust C5 value connecting to CT pin . Typical value is 1F. Table.1 Truth Table S1 Tx Tx Rx Rx Tx Tx Rx RX S2 Tx Rx Tx Rx Tx Rx Tx Rx S3 1 y y X 0 0 0 X S4 X y y 1 X 0 0 0 Mode Tx Mode FAST Idle Mode FAST Idle Mode Rx Mode SLOW Idle Mode SLOW Idle Mode SLOW Idle Mode SLOW Idle Mode S1 Result comparing RLO2 and TLO2 (RLI2 and TLI2 ***Detecting Base Unit side) RLO2>TLO2 [Rx] TLO2>RLO2 [Tx] S2 Result comparing RLO1and TLO1 (RLI1 and TLI1***Detecting Satellite Unit side) RLO1>TLO1 [Rx] TLO1>RLO1 [Tx] S3S4 Output Background Noise Monitor [1]:Detecting signal [0]:Judging noise [x]Don't Care [y]Both C3 and C4 is not 0. - 22 - NJW1124 10 0 -10 200 -20 -30 VCT [mV] -40 -50 -60 -200 -70 -80 -90 0 2 4 6 8 time [m sec] 10 12 14 -300 -400 100 MCO[mV] 400 300 VCT MCO 800 600 400 MCO , TCO [mV] 200 0 -200 -400 -600 -800 0 2 4 6 8 time [m sec] 10 12 14 TXO MCO 0 -100 10 0 -10 Response example.5 MCO vs. CT-VREF signal (input start) MCO = 200mVrms/1kHz C7=1F Response example.6 MCO vs. TXO(AC) signal (input start) MCO = 200mVrms/1kHz C7=1F 800 600 400 TXO GATTx 2.5 2.0 1.5 1.0 200 TXO [mV] 0 -200 0.5 0.0 -0.5 -1.0 -400 -1.5 -600 -800 -2.0 -2.5 2000 GAT(Tx) -20 -30 VCT [mV] -40 -50 -60 -70 -80 -90 0 250 500 750 1000 time [m sec] 1250 1500 1750 2000 360m sec 0 250 500 750 1000 time [m sec] 1250 1500 1750 Response example.7 CT-VREF signal (input continue) MCO = 200mVrms/1kHz C7=1F SLOW idle mode 10 GAT(TX) GAT(RX) 0 Response example.8 GAT vs. TCO signal (input start) MCO = 200mVrms/1kHz C7=1F SLOW idle mode -10 GAT [dB] -20 -30 -40 -50 -100 -75 -50 -25 0 VCT [mV] 25 50 75 100 Fig.11 GAT vs. VCT Calculated Spectrum - 23 - NJW1124 RTSW shifts the mode forcibly. RTSW changes the CTpin voltage forcibly to shift the mode. Ex.9 shows the response to RTSW. 100 80 60 40 20 VCT [mV] 0 -20 -40 -60 -80 -100 0 2 4 6 8 10 time [m sec] 12 14 16 18 20 Tx Mode Level RTSW State : Rx -> Tx Rx Mode Level Response example.9 RTSW shifting (Receive mode to Transmit mode) C7=1F - 24 - NJW1124 10.Acoustic Coupling Reduction To reduce Acoustic Coupling, isolating speaker and microphone is effective. Adjusting resistance value connected to TLI1, TLI2, (R4, R5, R11) and RLI1 is also effective, For example, configure R12,R4 value is 2 to 6 times than R5,R11. Reducing sensitivity to echo enables to operate normally. C6 R2 100n 5.1k R3 51k C7 100n R4 51k R5 10k C8 100n C9 R6 100n 5.1k R7 51k Microphone C10 TXO LII LiOLiO+ V+ V + Line Out MCI MCO TLI2 TLI1 R1 300k VREF Mic Amplifier Sensitivity:Low Tx Attenuator VREF Line Amplifier -1 V+ Monitor C11 1 C1 1 C3 470n C4 470n C2 1u MUT TLO2 RLO2 Level Detector CT + C5 1 Receive Voice Acoustic coupling CPT Background NoiseMonitor Attenuator Control Sensitivity:High V Setting TLI2 resistance (R4) twice to RTSW 6times than RLI2 resistance (R11), Background NoiseMonitor reduces the level detector sensitivityC22 1 CPR to reduce acoustic coupling. C20 Level Detector TLO1 RLO1 470n C21 470n C23 1 VREF VREF2 BIAS IC1 NJW1124 Receive Amplifier Rx Attenuator GND 1.2 A VREF RXO RLI2 V+ R10 15k 5.0V VLC R12 51k RLI1 FO C18 R13 FI R14 C19 100n + C16 10 C13 C17 100n R11 10k RVLC 100n Receive5.1k Sound5.1k Recive In C15 1 1 Speaker IC2 NJU7084 Power Amplifier C14 1 R9 22k R8 11k C12 100n Fig.12 Acoustic Coupling Reduction Reducing the sensitivity of R4,R12 reduces the time shifting to noise mode. In case of too fast shifting, enlarge capacitor connected to CPT,CPR. - 25 - NJW1124 Notes:1 To reduce Pop-Noise of power-on and off. Appropriate power supply sequence reduces pop-noise. Initial condition: No power supply. CD switch of Speaker Amplifier should be standby condition. The circuit connected to Line out and Receive In is off. Power-on sequence 1.Power-on NJW1124. Concurrently The circuit connected to Receive In power on. 2.After 1 sec later, the circuit connected to Line OUT and Speaker Amplifier IC power on. 3.After 1 sec later, Speaker Amplifier IC shifts active mode. Power-off sequence 1.Speaker Amplifier shift standby mode. 2.After 1 sec later, the circuit connected to Line OUT and Speaker Amplifier power off. 3.After 1 sec later, NJW1124 power off. Concurrently, the circuit connected to Receive In power off. - 26 - NJW1124 Notes:2: Filter circuit using Receive amplifier, Mic. Amplifier, Line amplifier. Receive amplifier, Mic. Amplifier, Line amplifier enable to form active filter circuit which is 1 order or 2 HPF or LPF or BPF. 1.1 order HPF,LPF circuit example st Fig.13 shows 1 order (-6dB/oct) HPF, LPF circuit. Combining HPF formed by Co and R1, and LPF formed by C1 and R2, forms BPF. (Co should be also used typical application as DC decoupling.) st st nd order, C1 R2 C0 Receive In R1 FI FO Response f C ( HPF ) = f C ( LPF ) 1 2C0 R1 1 = 2C1 R2 +6dB/oc -6dB/oct Ref st Fig.13 1 order HPF,LPF circuit example Frequency fc(HPF) fc(LPF) 2.2 order LPF circuit example st Fig.14 shows 1 order (-12dB/oct) LPF circuit. Same as 1st order filter, Co should be used as DC decoupling. C2 selecting arbitrarily, Butterworth filter forming coefficient is as below. nd R1 = R2 C0 Receive In R1 R3 FI C1 Ref FO C2 1 2 2Gf C ( LPF )C2 1 2 2f C ( LPF )C2 1 2 2 (G + 1)fC ( LPF )C2 R2 = R3 = Fig.14 2 Response nd order LPF circuit example C3 = 2(G + 1)C2 G = Gain +6dB/oc -12dB/oct Frequency fc(HPF) fc(LPF) fC(HPF) is same as 1 order type above. st - 27 - NJW1124 Fig.15 shows 2 nd order LPF(Gain=20dB, fc(LPF) = 4kHz) circuit example. C0 Receive In 5.6k 56k 5.1k FI 12n 510p FO Fig.15 2 nd Ref order LPF(Gain=20dB, fc(LPF) = 4kHz, Butterworth filter) circuit example. 3.2 order HPF circuit example st Fig.16 shows 2 order (-12dB/oct) HPF circuit. Co=C2, Butterworth filter forming coefficient is as below. nd C1 C0 Receive In C2 FI R1 R2 R1 = FO 2 2f C ( HPF )C0 (2 + 1 / G ) R2 = 2G + 1 2f C ( HPF )C0 Ref Fig.16 2 nd order HPF circuit example. C0 G * C0 = C 2 C1 = Fig.17 shows HPF(Gain=20dB,Fc(HPF)=200Hz) circuit example. 100n Receive In 10n 100n FI 5.6k 160k FO Ref Fig.17 2 order HPF circuit example. Gain=20dB,Fc(HPF)=200Hz, Butterworth filter nd - 28 - NJW1124 Notes:3 list of Parts of Attenuator controller Terminal Cin Parts Recommend Value Notes The input capacitor forms HPF with Rin. V-I converter,which depends on sensitivity of each level detectors and noise detector. Smaller value lower detection level. Larger value raise detection level. Input voltage should be less than 100mA(200 @25oC). The capacitor keeps voltage level.Larger value extends swicthing time.Smaller value shortens swicthing time, and deteriorate rectification property that adverse affects back ground noise monitor on low frequency signal. The capacitor judges whether the signal is noise.Larger value extends the judging time.Smaller value shortens the judging time. The capacitor generates the voltage controlling attenuater. Larger value extends attenuating time on switching and idle mode.Smaller value shortens the attenuating time.Please be careful of conduction caused by condensation due to this terminal is high impedance.Attenuater gain may be fluctuant . C7,C8,C17,C1 100nF1F Rin 5.1k51k R4,R5,R11,R12 Co Ccp C4,C5,C20,C2 0.05F1F C2,C22 100nF1F Cct C5 1F [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 29 - |
Price & Availability of NJW1124
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |