![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
(R) M VN750SM HIGH SIDE DRIVER TYPE VN750SM s s RDS(on) 55 m IOUT 6A VCC 36 V CMOS COMPATIBLE INPUT ON STATE OPEN LOAD DETECTION s OFF STATE OPEN LOAD DETECTION s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s PROTECTION AGAINST LOSS OF GROUND s VERY LOW STAND-BY CURRENT s SO-8 ORDER CODES PACKAGE TUBE VN750SM T&R VN750SM13TR REVERSE BATTERY PROTECTION (*) SO-8 DESCRIPTION The VN750SM is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device detects open load condition both in on and off state. The openload threshold is aimed at BLOCK DIAGRAM detecting the 5W/12V standard bulb as an openload fault in the on state. Output shorted to VCC is detected in the off state. Device automatically turns off in case of ground pin disconnection. VCC VCC CLAMP OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION GND Power CLAMP INPUT LOGIC DRIVER OUTPUT CURRENT LIMITER STATUS ON STATE OPENLOAD DETECTION OVERTEMPERATURE DETECTION OFF STATE OPENLOAD AND OUTPUT SHORTED TO V CC DETECTION (*) See application schematic at page 8 Rev. 1 1/19 July 2004 VN750SM ABSOLUTE MAXIMUM RATING Symbol VCC - VCC - Ignd IOUT - IOUT IIN ISTAT Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT VESD - STATUS - OUTPUT - VCC Maximum Switching Energy (L=1.3mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=10A) Power Dissipation TC=25C Junction Operating Temperature Storage Temperature Value 41 - 0.3 - 200 Internally Limited -6 +/- 10 +/- 10 4000 4000 5000 5000 90 4.2 Internally Limited - 55 to 150 Unit V V mA A A mA mA V V V V mJ W C C EMAX Ptot Tj Tstg CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C. PINS VCC OUTPUT OUTPUT VCC 8 1 5 4 N.C. STATUS INPUT GND Connection / Pin Floating To Ground Status X N.C. X X Output X Input X Through 10K resistor CURRENT AND VOLTAGE CONVENTIONS IS VF IIN INPUT I STAT STATUS VCC IOUT OUTPUT GND VCC VIN VSTAT IGND VOUT 2/19 1 VN750SM THERMAL DATA Symbol Rthj-lead Rthj-amb Parameter Thermal Resistance Junction-lead Thermal Resistance Junction-ambient Value Unit C/W 82(2) C/W Max Max 30 93 (1) (1) When mounted on a standard single-sided FR-4 board with 0.5 cm2 of Cu (at least 35m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. (2) When mounted on a standard single-sided FR-4 board with 2 cm2 of Cu (at least 35m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. ELECTRICAL CHARACTERISTICS (8V Tj=25C On State; VCC=13V; VIN=5V; IOUT=0A IL(off1) IL(off2) IL(off3) IL(off4) Off Off Off Off State State State State Output Current Output Current Output Current Output Current VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; VCC=13V; Tj =125C VIN=VOUT=0V; VCC=13V; Tj =25C SWITCHING (V CC=13V) Symbol td(on) td(off) Parameter Turn-on Delay Time Turn-off Delay Time Test Conditions RL=6.5 from VIN rising edge to VOUT=1.3V RL=6.5 from VIN falling edge to VOUT=11.7V RL=6.5 from VOUT=1.3V to VOUT=10.4V Min Typ 40 30 See relative diagram See relative diagram Max Unit s s V/s dVOUT/dt(on) Turn-on Voltage Slope dVOUT/dt(off) Turn-off Voltage Slope RL=6.5 from VOUT=11.7V to VOUT =1.3V V/s INPUT PIN Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN=1.25V VIN=3.25V IIN=1mA IIN=-1mA 0.5 6 6.8 -0.7 Min 1 3.25 10 8 Typ Max 1.25 Unit V A V A V V V 3/19 1 VN750SM ELECTRICAL CHARACTERISTICS (continued) VCC - OUTPUT DIODE Symbol VF Parameter Forward on Voltage Test Conditions -IOUT =1.4A; Tj=150C Min Typ Max 0.6 Unit V STATUS PIN Symbol VSTAT ILSTAT CSTAT VSCL Parameter Status Low Output Voltage Status Leakage Current Status Pin Input Capacitance Status Clamp Voltage Test Conditions ISTAT =1.6mA Normal Operation; VSTAT=5V Normal Operation; VSTAT=5V ISTAT =1mA ISTAT =-1mA 6 6.8 -0.7 Min Typ Max 0.5 10 100 8 Unit V A pF V V PROTECTIONS (see note 1) Symbol TTSD TR Thyst tSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status delay in overload condition Current limitation Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 15 20 6 5.5V Note 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles OPENLOAD DETECTION Symbol IOL tDOL(on) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off OPEN LOAD STATUS TIMING (with external pull-up) IOUT< IOL VOUT > VOL VIN VIN OVER TEMP STATUS TIMING Tj > TTSD Test Conditions VIN=5V IOUT=0A Min 0.6 Typ 0.9 Max 1.2 200 Unit A s VOL tDOL(off) VIN=0V 1.5 2.5 3.5 V s 1000 VSTAT VSTAT tDOL(off) tDOL(on) tSDL tSDL 4/19 2 1 VN750SM Switching time Waveforms VOUT 90% 80% dVOUT/dt(on) dVOUT/dt(off) 10% t VIN td(on) td(off) t TRUTH TABLE CONDITIONS Normal Operation Current Limitation Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L 5/19 1 VN750SM ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2 I C C C C C C IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 6/19 1 1 VN750SM Figure 1: Waveforms NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VCC VUSD INPUT LOAD VOLTAGE STATUS undefined VUSDhyst OVERVOLTAGE VCC OPEN LOAD without external pull-up INPUT LOAD VOLTAGE STATUS Tj INPUT LOAD CURRENT STATUS TTSD TR OVERTEMPERATURE 7/19 1 1 VN750SM APPLICATION SCHEMATIC +5V +5V Rprot STATUS VCC Dld C Rprot INPUT OUTPUT GND VGND RGND DGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. C I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k. 8/19 1 1 VN750SM OPEN LOAD DETECTION IN OFF STATE Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL V batt. VPU VCC RPU INPUT DRIVER + LOGIC OUT + R STATUS VOL RL IL(off2) GROUND 9/19 1 VN750SM Off State Output Current IL(off1) (uA) 3 2.5 2 1.5 4 1 3 0.5 0 -0.5 -1 -50 -25 0 25 50 75 100 125 150 175 2 High Level Input Current Iih (uA) 7 6 Off state Vcc=36V Vin=Vout=0V Vin=3.25V 5 1 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Input Clamp Voltage Vicl (V) 8 7.8 Status Leakage Current Ilstat (uA) 0.05 Iin=1mA 7.6 7.4 7.2 7 6.8 6.6 6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175 0 -50 -25 0 25 50 75 100 125 150 175 0.01 0.02 0.03 0.04 Vstat=5V Tc (C) Tc (C) Status Low Output Voltage Vstat (V) 0.6 Status Clamp Voltage Vscl (V) 8 7.8 0.5 Istat=1mA 7.6 Istat=1.6mA 0.4 7.4 7.2 0.3 7 6.8 0.2 6.6 6.4 6.2 0 -50 -25 0 25 50 75 100 125 150 175 6 -50 -25 0 25 50 75 100 125 150 175 0.1 Tc (C) Tc (C) 10/19 1 VN750SM On State Resistance Vs. Tcase Ron (mOhm) 140 On State Resistance Vs. VCC Ron (mOhm) 120 110 120 100 Iout=2A Vcc=8V; 13V; 36V Iout=2A 100 Tc= 150C 90 80 80 Tc= 125C 70 60 50 60 40 Tc= 25C 40 20 30 0 -50 -25 0 25 50 75 100 125 150 175 20 5 10 15 20 25 Tc= - 40C 30 35 40 Tc (C) Vcc (V) Openload On State Detection Threshold Iol (A) 1.2 1.15 1.1 1.05 1 Input High Level Vih (V) 3.6 3.4 3.2 3 Vcc=13V Vin=5V 0.95 0.9 0.85 2.6 0.8 0.75 0.7 2.2 0.65 0.6 -50 -25 0 25 50 75 100 125 150 175 2 -50 -25 0 25 50 75 100 125 150 175 2.4 2.8 Tc (C) Tc (C) Input Low Level Vil (V) 2.8 2.6 2.4 2.2 2 Input Hysteresis Voltage Vhyst (V) 1.5 1.4 1.3 1.2 1.1 1 1.8 0.9 1.6 1.4 1.2 1 -50 -25 0 25 50 75 100 125 150 175 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) 11/19 1 1 VN750SM Overvoltage Shutdown Vov (V) 50 48 46 4 44 42 40 38 36 2 34 32 30 -50 -25 0 25 50 75 100 125 150 175 1.5 1 -50 -25 0 25 50 75 100 125 150 175 3.5 3 2.5 Openload Off State Voltage Detection Threshold Vol (V) 5 4.5 Vin=0V Tc (C) Tc (C) Turn-on Voltage Slope dVout/dt/(on) (V/ms) 1000 900 800 700 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 150 175 Turn-off Voltage Slope dVout/dt(off) (V/ms) 500 450 Vcc=13V Rl=6.5Ohm 400 350 300 250 200 150 100 50 0 -50 -25 Vcc=13V Rl=6.5Ohm 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Ilim Vs. Tcase Ilim (A) 20 18 Vcc=13V 16 14 12 10 8 6 4 2 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) 12/19 1 1 VN750SM Maximum turn off current versus load inductance ILMAX (A) 100 10 A B C 1 0.1 1 L(mH ) A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization 10 100 t 13/19 VN750SM SO-8 THERMAL DATA SO-8 PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.14cm2, 2cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (C/W) SO8 at 2 pins connected to TAB 110 105 100 95 90 85 80 75 70 0 0.5 1 1.5 2 2.5 PCB Cu heatsink area (cm^2) 14/19 1 VN750SM SO-8 Thermal Impedance Junction Ambient Single Pulse ZTH (C/W) 1000 100 0.5 cm2 2 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000 Thermal fitting model of a single channel HSD in SO-8 Pulse calculation formula Z TH = R TH + Z THtp ( 1 - ) where = tp T 0.5 0.05 0.8 3.5 21 16 58 0.006 2.60E-03 0.0075 0.045 0.35 1.05 2 Thermal Parameter Area/island (cm2) R1 (C/W) R2 (C/W) R3 ( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C) Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd 28 T_amb 2 15/19 VN750SM SO-8 MECHANICAL DATA mm. MIN. 0.1 0.65 0.35 0.19 0.25 4.8 5.8 1.27 3.81 3.8 0.4 4 1.27 0.6 8 (max.) 0.8 1.2 0.031 0.047 0.14 0.015 TYP MAX. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 45 (typ.) 5 6.2 0.188 0.228 0.050 0.150 0.157 0.050 0.023 0.196 0.244 0.025 0.013 0.007 0.010 0.003 MIN. inch TYP. MAX. 0.068 0.009 0.064 0.033 0.018 0.010 0.019 DIM. A a1 a2 a3 b b1 C c1 D E e e3 F L M S L1 16/19 1 1 VN750SM SO-8 TUBE SHIPMENT (no suffix) B C A Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1) All dimensions are in mm. 100 2000 532 3.2 6 0.6 TAPE AND REEL SHIPMENT (suffix "13TR") REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 12.4 60 18.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 12 4 8 1.5 1.5 5.5 4.5 2 End All dimensions are in mm. Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components 17/19 1 VN750SM REVISION HISTORY Date Revision - Minor changes - Current and voltage convention update (page 2). - "Configuration diagram (top view) & suggested connections for unused and n.c. Jul 2004 1 pins" insertion (page 2). - 2cm2 Cu condition insertion in Thermal Data table (page 3). - VCC - OUTPUT DIODE section update (page 4). - Revision History table insertion (page18). - Disclaimers update (page 19). Description of Changes 18/19 1 VN750SM Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com 19/19 |
Price & Availability of VN750SM
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |