![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Features and Benefits Low RDS(ON) outputs Internal mixed current decay mode Synchronous rectification for low power dissipation Internal UVLO Crossover-current protection 3.3 and 5 V compatible logic supply Thin profile QFN and TSSOP packages Thermal shutdown circuitry Short-to-ground protection Shorted load protection Low current Sleep mode, < 10 A Description The A4986 is a dual DMOS full-bridge stepper motor driver with parallel input communication and overcurrent protection. Each full-bridge output is rated up to 35 V and 2 A. The A4986 includes fixed off-time pulse width modulation (PWM) current regulators, along with 2- bit nonlinear DACs (digital-to-analog converters) that allow stepper motors to be controlled in full, half, and quarter steps. The PWM current regulator uses the Allegro(R) patented mixed decay mode for reduced audible motor noise, increased step accuracy, and reduced power dissipation. Internal synchronous rectification control circuitry is provided to improve power dissipation during PWM operation. Package: The outputs are protected from shorted load and short-toground events, which protect the driver and associated circuitry from thermal damage or flare-ups. Other protection features include thermal shutdown with hysteresis, undervoltage lockout (UVLO) and crossover current protection. Special power-up sequencing is not required. The A4986 is supplied in a 24-pin TSSOP (LP) with exposed thermal pad for enhanced thermal performance. It has a 0.65 pitch and an overall package height of 1.2 mm. It is lead (Pb) free, with 100% matte tin leadframe plating. Approximate size 24-pin TSSOP with exposed thermal pad (LP Package) Typical Application Diagram VDD 0.22 F VREG ROSC VDD Microcontroller or Controller Logic CP1 CP2 VCP VBB1 VBB2 OUT1A SLEEP IN01 IN02 PH1 IN11 IN12 PH2 VREF GND GND OUT2A OUT2B SENSE2 100 F 0.1 F 0.1 F 0.22 F A4986 OUT1B SENSE1 4986-DS A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Selection Guide Part Number A4986SLPTR-T Package 24-pin TSSOP with exposed thermal pad Packing 4000 pieces per 13-in. reel Absolute Maximum Ratings Characteristic Load Supply Voltage Output Current Logic Input Voltage Logic Supply Voltage VBBx to OUTx Sense Voltage Reference Voltage Operating Ambient Temperature Maximum Junction Storage Temperature VSENSE VREF TA TJ(max) Tstg Range S Symbol VBB IOUT VIN VDD Notes Rating 35 2 -0.3 to 5.5 -0.3 to 5.5 35 0.5 5.5 -20 to 85 150 -55 to 150 Units V A V V V V V C C C Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 2 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Functional Block Diagram 0.1 F Rosc VREG 0.22 F REGULATOR OSC CHARGE PUMP VCP CP1 CP2 0.1 F DMOS FULL-BRIDGE 1 VBB1 Sense2 To VBB2 - DAC OSC OCP + OUT1A PWM Latch BLANKING Mixed Decay VREF OUT1B VDD IN01 IN02 PH1 IN11 IN12 PH2 SLEEP CONTROL LOGIC GATE DRIVE SENSE1 DMOS FULL-BRIDGE 2 VBB2 OCP OUT2A PWM Latch BLANKING Mixed Decay OSC VCP VREG VREG OUT2B REF VREF Sense2 Sense2 GND GND SENSE2 - + VREF DAC Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 3 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Symbol Test Conditions Operating During Sleep Mode Operating Source Driver, IOUT = -1.5 A Sink Driver, IOUT = 1.5 A Source Diode, IF = -1.5 A Sink Diode, IF = 1.5 A fPWM < 50 kHz Operating, outputs disabled Sleep Mode fPWM < 50 kHz Outputs off Sleep Mode Min. 8 0 3.0 - - - - - - - - - - VDD0.7 VIN = VDD0.7 - -20 -20 - As a % of VDD OSC = VDD or GND ROSC = 25 k - 5 0.7 20 23 0 -3 - - - 100 2.1 - - 2.7 - Typ.2 - - - 320 320 - - - - - - - - - - <1.0 <1.0 100 50 11 1 30 30 - 0 - - - 475 - 165 15 2.8 90 Max. 35 35 5.5 430 430 1.3 1.3 4 2 10 8 5 10 - VDD0.3 20 20 - - 19 1.3 40 37 4 3 15 5 5 800 - - - 2.9 - Units V V V m m V V mA mA A mA mA A V V A A k k % s s s V A % % % ns A C C V mV ELECTRICAL CHARACTERISTICS1 at TA = 25C, VBB = 35 V (unless otherwise noted) Characteristics Output Drivers Load Supply Voltage Range Logic Supply Voltage Range Output On Resistance Body Diode Forward Voltage VBB VDD RDSON VF IBB Motor Supply Current Logic Supply Current Control Logic Logic Input Voltage Logic Input Current Logic Input Pull-down Logic Input Hysteresis Blank Time Fixed Off-Time Reference Input Voltage Range Reference Input Current Current Trip-Level Error3 Crossover Dead Time Protection Overcurrent Protection Threshold Thermal Shutdown Temperature Thermal Shutdown Hysteresis VDD Undervoltage Lockout VDD Undervoltage Hysteresis 1For 2Typical IDD VIN(1) VIN(0) IIN(1) IIN(0) RIN02 RIN12 VHYS(IN) tBLANK tOFF VREF IREF errI VIN = VDD0.3 VREF = 2 V, %ITripMAX = 33.3% VREF = 2 V, %ITripMAX = 66.7% VREF = 2 V, %ITripMAX = 100.00% tDT IOCPST TTSD TTSDHYS VDDUVLO VDDUVLOHYS VDD rising input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin. data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual units, within the specified maximum and minimum limits. 3V ERR = [(VREF/8) - VSENSE] / (VREF/8). Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 4 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection THERMAL CHARACTERISTICS may require derating at maximum conditions Characteristic Package Thermal Resistance Symbol RJA Test Conditions* LP package; on 4-layer PCB, based on JEDEC standard Value Units 28 C/W *In still air. Additional thermal information available on Allegro Web site. Maximum Power Dissipation, PD(max) 5.5 5.0 4.5 4.0 Power Dissipation, PD (W) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 (R J A = 28 C /W ) 20 40 60 80 100 120 Temperature (C) 140 160 180 Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 5 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Functional Description Device Operation. The A4986 is designed to operate one stepper motor in full, half, or quarter step mode. The currents in each of the output full-bridges, all N-channel DMOS, are regulated with fixed off-time pulse width modulated (PWM) control circuitry. Each full-bridge peak current is set by the value of an external current sense resistor, RSx , and a reference voltage, VREFx . Percentages of the peak current are set using a 2-bit nonlinear DAC that programs 33%, 66%, or 100% of the peak current, or disables the outputs. ROSC terminal. The ROSC terminal has two settings: ROSC tied to VDD or ground -- off-time internally set to 30 s ROSC through a resistor to ground -- off-time is determined by the following formula tOFF ROSC 825 Where tOFF is in s. Blanking. This function blanks the output of the current sense comparators when the outputs are switched by the internal current control circuitry. The comparator outputs are blanked to prevent false overcurrent detection due to reverse recovery currents of the clamp diodes, and switching transients related to the capacitance of the load. The blank time, tBLANK (s), is approximately tBLANK 1 s Internal PWM Current Control. Each full-bridge is controlled by a fixed off-time PWM current control circuit that limits the load current to a desired value, ITRIP . Initially, a diagonal pair of source and sink FET outputs are enabled and current flows through the motor winding and the current sense resistor, RSx. When the voltage across RSx equals the DAC output voltage, the current sense comparator resets the PWM latch. The latch then turns off the sink and source FETs. The maximum value of current limiting is set by the selection of RSx and the voltage at the VREF pin. The transconductance function is approximated by the maximum value of current limiting, ITripMAX (A), which is set by ITripMAX = VREF / ( 8 Shorted-Load and Short-to-Ground Protection. If the motor leads are shorted together, or if one of the leads is shorted to ground, the driver will protect itself by sensing the overcurrent event and disabling the driver that is shorted, protecting the device from damage. In the case of a short-to-ground, the LEEP device will remain disabled (latched) until the S input goes high or VDD power is removed. A short-to-ground overcurrent event is shown in figure 1. When the two outputs are shorted together, the current path is through the sense resistor. After the blanking time (1 s) expires, the sense resistor voltage is exceeding its trip value, due to the overcurrent condition that exists. This causes the driver to go into a fixed off-time cycle. After the fixed off-time expires the driver turns on again and the process repeats. In this condition the driver is completely protected against overcurrent events, but the short is repetitive with a period equal to the fixed off-time of the driver. This condition is shown in figure 2. If the driver is operating in Mixed decay mode, it is normal for the positive current to spike, due to the bridge going in the forward direction and also in the negative direction, as a result of the direction change implemented by the Mixed decay feature. This is shown in figure 3. In both instances the overcurrent circuitry is protecting the driver and prevents damage to the device. RS) where RS is the resistance of the sense resistor () and VREF is the input voltage on the REF pin (V). The 2-bit DAC output reduces the VREF output to the current sense comparator in precise steps, such that Itrip = (%ITripMAX / 100) x ITripMAX It is critical that the maximum rating (0.5 V) on the SENSE1 and SENSE2 pins is not exceeded. Fixed Off-Time. The internal PWM current control circuitry uses a one-shot circuit to control the duration of time that the DMOS FETs remain off. The off-time, tOFF, is determined by the Charge Pump (CP1 and CP2). The charge pump is used to generate a gate supply greater than that of VBB for driving the Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 6 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection 5 A / div. source-side FET gates. A 0.1 F ceramic capacitor, should be connected between CP1 and CP2. In addition, a 0.1 F ceramic capacitor is required between VCP and VBB, to act as a reservoir for operating the high-side FET gates. Capacitor values should be Class 2 dielectric 15% maximum, or tolerance R, according to EIA (Electronic Industries Alliance) specifications. Fault latched VREG (VREG). This internally-generated voltage is used to operate the sink-side FET outputs. The VREG pin must be decoupled with a 0.22 F ceramic capacitor to ground. VREG is internally monitored. In the case of a fault condition, the FET outputs of the A4986 are disabled. Capacitor values should be Class 2 dielectric 15% maximum, or tolerance R, according to EIA (Electronic Industries Alliance) specifications. t Figure 1. Short-to-ground event Shutdown. In the event of a fault, overtemperature (excess TJ) or an undervoltage (on VCP), the FET outputs of the A4986 are disabled until the fault condition is removed. At power-on, the UVLO (undervoltage lockout) circuit disables the FET outputs and resets the translator to the Home state. 5 A / div. Fixed off-time Sleep Mode ( ). To minimize power consumption SLEEP when the motor is not in use, this input disables much of the internal circuitry including the output FETs, current regulator, and charge pump. A logic low on the SLEEP pin puts the A4986 into Sleep mode. When emerging from Sleep mode, in order to allow the charge pump to stabilize, provide a delay of 1 ms before issuing a logic command. t Figure 2. Shorted load (OUTxA OUTxB) in Slow decay mode Mixed Decay Operation. The bridge operates in Mixed Decay mode, as shown in figures 5 through 7. As the trip point is reached, the A4986 initially goes into a fast decay mode for 31.25% of the off-time, tOFF. After that, it switches to Slow Decay mode for the remainder of tOFF. A timing diagram for this feature appears in figure 4. 5 A / div. Fixed off-time Synchronous Rectification. When a PWM-off cycle is triggered by an internal fixed-off time cycle, load current recirculates in Mixed Decay mode. This synchronous rectification feature turns on the appropriate FETs during current decay, and effectively shorts out the body diodes with the low FET RDS(ON). This reduces power dissipation significantly, and can eliminate the need for external Schottky diodes in many applications. Synchronous rectification turns off when the load current approaches zero (0 A), preventing reversal of the load current. Fast decay portion (direction change) t Figure 3. Shorted load (OUTxA OUTxB) in Mixed decay mode Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 7 A4986 VSTEP 100.00 70.71 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection See Enlargement A IOUT 0 -70.71 -100.00 Enlargement A toff IPEAK tFD tSD Slow Decay IOUT Mixed Decay Fa st De ca y t Symbol toff IPEAK tSD tFD IOUT Device fixed off-time Maximum output current Slow decay interval Fast decay interval Device output current Characteristic Figure 4. Current Decay Modes Timing Chart Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 8 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Application Layout Layout. The printed circuit board should use a heavy groundplane. For optimum electrical and thermal performance, the A4986 must be soldered directly onto the board. On the underside of the A4986 package is an exposed pad, which provides a path for enhanced thermal dissipation. The thermal pad should be soldered directly to an exposed surface on the PCB. Thermal vias are used to transfer heat to other layers of the PCB. In order to minimize the effects of ground bounce and offset issues, it is important to have a low impedance single-point ground, known as a star ground, located very close to the device. By making the connection between the pad and the ground plane directly under the A4986, that area becomes an ideal location for a star ground point. A low impedance ground will prevent ground bounce during high current operation and ensure that the supply voltage remains stable at the input terminal. The two input capacitors should be placed in parallel, and as close to the device supply pins as possible. The ceramic capacitor (CIN1) should be closer to the pins than the bulk capacitor (CIN2). This is necessary because the ceramic capacitor will be responsible for delivering the high frequency current components. The sense resistors, RSx , should have a very low impedance path to ground, because they must carry a large current while supporting very accurate voltage measurements by the current sense comparators. Long ground traces will cause additional voltage drops, adversely affecting the ability of the comparators to accurately measure the current in the windings. The SENSEx pins have very short traces to the RSx resistors and very thick, low impedance traces directly to the star ground underneath the device. If possible, there should be no other components on the sense circuits. A4986 Solder Trace (2 oz.) Signal (1 oz.) Ground (1 oz.) Thermal (2 oz.) PCB Thermal Vias OUT2B C3 U1 GND C5 ROSC C1 C4 C6 GND OUT2A R4 R5 OUT1A GND GND C3 C4 C5 CP1 CP2 VCP VREG INO2 IN12 IN11 A4986 GND PH2 OUT2B VBB2 PAD SENSE2 OUT2A OUT1A SENSE1 VBB1 OUT1B PH1 GND C6 R4 ROSC BULK GND GND GND CAPACITANCE C2 VDD VBB GND OUT1B ROSC SLEEP VDD IN01 REF R5 C1 C2 VBB VDD Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 9 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Pin Circuit Diagrams VDD VBB VBB 40 V VCP CP1 CP2 8V GND GND GND PGND GND 8V GND GND GND VBB VREG SENSE DMOS Parasitic GND VREG 10 V GND IN01 IN02 IN11 IN12 PH1 PH2 VREF ROSC SLEEP VBB OUT DMOS Parasitic DMOS Parasitic GND GND 8V GND Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 10 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Step Sequencing Diagrams 100.0 66.7 100.0 66.7 Phase 1 (%) 0 Phase 1 (%) 0 -66.7 -66.7 -100.0 -100.0 100.0 66.7 100.0 66.7 Phase 2 (%) 0 Phase 2 (%) 0 -66.7 -66.7 -100.0 -100.0 Full step 2 phase Modified full step 2 phase Half step 2 phase Modified half step 2 phase Figure 5. Step Sequencing for Full-Step Increments. Figure 6. Step Sequencing for Half-Step Increments. Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 11 A4986 100.0 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection 66.7 33.3 Phase 1 (%) 0 -33.3 -66.7 -100.0 100.0 66.7 33.3 Phase 2 (%) 0 -33.3 -66.7 -100.0 Figure 7. Step Sequence for Quarter-Step Increments Step Sequencing Settings Full 1/2 1 1/4 Phase 1 (%ITripMax) 0 33 100/66* 100 100 100 100/66* 33 0 33 100/66* 100 100 100 100/66* 33 I0x H L L/H* L L L L/H* L H L L/H* L L L L/H* L I1x H H L L L L L H H H L L L L L H PHASE x 1 1 1 1 1 1 1 x 0 0 0 0 0 0 0 Phase 2 (%ITripMax) 100 100 100/66* 33 0 33 100/66* 100 100 100 100/66* 33 0 33 100/66* 100 I0x L L L/H* L H L L/H* L L L L/H* L H L L/H* L I1x L L L H H H L L L L L H H H L L PHASE 1 1 1 1 X 0 0 0 0 0 0 0 X 1 1 1 1 2 1 2 3 4 3 5 6 2 4 7 8 5 9 10 3 6 11 12 7 13 14 4 8 15 16 * Denotes modified step mode Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 12 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection Pin-out Diagrams LP Package CP1 1 CP2 2 VCP 3 VREG 4 IN02 5 IN12 6 IN11 7 ROSC 8 SLEEP 9 VDD 10 IN01 11 REF 12 PAD 24 GND 23 PH2 22 OUT2B 21 VBB2 20 SENSE2 19 OUT2A 18 OUT1A 17 SENSE1 16 VBB1 15 OUT1B 14 PH1 13 GND Terminal List Table Name CP1 CP2 PH1 PH2 GND IN02 IN12 NC OUT1A OUT1B OUT2A OUT2B REF IN11 ROSC SENSE1 SENSE2 SLEEP IN01 VBB1 VBB2 VCP VDD VREG PAD Number LP 1 2 14 23 13, 24 5 6 - 18 15 19 22 12 7 8 17 20 9 11 16 21 3 10 4 - Charge pump capacitor terminal Charge pump capacitor terminal Logic input Logic input Ground* Logic input Logic input No connection DMOS Full Bridge 1 Output A DMOS Full Bridge 1 Output B DMOS Full Bridge 2 Output A DMOS Full Bridge 2 Output B Gm reference voltage input Logic input Timing set Sense resistor terminal for Bridge 1 Sense resistor terminal for Bridge 2 Logic input Logic input Load supply Load supply Reservoir capacitor terminal Logic supply Regulator decoupling terminal Exposed pad for enhanced thermal dissipation* Description *The GND pins must be tied together externally by connecting to the PAD ground plane under the device. Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 13 A4986 DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protection LP Package, 24-Pin TSSOP with Exposed Thermal Pad 7.80 0.10 24 4 4 +0.05 0.15 -0.06 0.45 0.65 B 3.00 A 4.40 0.10 6.40 0.20 0.60 0.15 (1.00) 3.00 6.10 1 2 4.32 0.25 SEATING PLANE 0.65 1.20 MAX 0.15 MAX C SEATING PLANE GAUGE PLANE 1.65 C 4.32 PCB Layout Reference View 24X 0.10 C +0.05 0.25 -0.06 For reference only (reference JEDEC MO-153 ADT) Dimensions in millimeters Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown A Terminal #1 mark area B Exposed thermal pad (bottom surface) C Reference land pattern layout (reference IPC7351 TSOP65P640X120-25M); all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances; when mounting on a multilayer PCB, thermal vias at the exposed thermal pad land can improve thermal dissipation (reference EIA/JEDEC Standard JESD51-5) Copyright (c)2009-2010, Allegro MicroSystems, Inc. The products described here are manufactured under one or more U.S. patents or U.S. patents pending. Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. For the latest version of this document, visit our website: www.allegromicro.com Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com 14 |
Price & Availability of A4986SLPTR-T
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |