![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
19-4402; Rev 1; 5/09 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer General Description The MAX19996A single, high-linearity downconversion mixer provides 8.7dB conversion gain, +24.5dBm IIP3, and 9.8dB noise figure for 2000MHz to 3900MHz WCS, LTE, WiMAXTM, and MMDS wireless infrastructure applications. With an ultra-wide LO frequency range of 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. For a 2.5GHz variant tuned specifically for low-side injection, refer to the MAX19996 data sheet. In addition to offering excellent linearity and noise performance, the MAX19996A also yields a high level of component integration. This device includes a double-balanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19996A requires a nominal LO drive of 0dBm, and supply current is typically 230mA at VCC = 5.0V, or 150mA at VCC = 3.3V. The MAX19996A is pin compatible with the MAX19996 2000MHz to 3000MHz mixer. The device is also pin similar with the MAX9984/MAX9986/MAX9986A 400MHz to 1000MHz mixers and the MAX9993/ MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX19996A is available in a compact 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended -40C to +85C temperature range. Features o 2000MHz to 3900MHz RF Frequency Range o 2100MHz to 4000MHz LO Frequency Range o 50MHz to 500MHz IF Frequency Range o 8.7dB Conversion Gain o 9.8dB Noise Figure o +24.5dBm Typical Input IP3 o 11dBm Typical Input 1dB Compression Point o 67dBc Typical 2LO-2RF Spurious Rejection at PRF = -10dBm o Integrated LO Buffer o Integrated RF and LO Baluns for Single-Ended Inputs o Low -3dBm to +3dBm LO Drive o Pin Compatible with the MAX19996 2000MHz to 3000MHz Mixer o Pin Similar with the MAX9993/MAX9994/MAX9996 Series of 1700MHz to 2200MHz Mixers and the MAX9984/MAX9986/MAX9986A Series of 400MHz to 1000MHz Mixers o Single 5.0V or 3.3V Supply o External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode MAX19996A Applications 2.3GHz WCS Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems PART MAX19996AETP+ MAX19996AETP+T Ordering Information TEMP RANGE -40C to +85C -40C to +85C PIN-PACKAGE 20 Thin QFN-EP* 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. WiMAX is a trademark of WiMAX Forum. Pin Configuration/Functional Diagram appears at end of data sheet. 1 ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A ABSOLUTE MAXIMUM RATINGS VCC to GND ...........................................................-0.3V to +5.5V IF+, IF-, LO to GND ....................................-0.3V to (VCC + 0.3V) RF, LO Input Power ........................................................+12dBm RF, LO Current (RF and LO is DC shorted to GND through a balun)...............................................................50mA Continuous Power Dissipation (Note 1) ...............................5.0W JA (Notes 2, 3)..............................................................+38C/W JC (Notes 1, 3)................................................................13C/W Operating Case Temperature Range (Note 4).........................................TC = -40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C Note 1: Based on junction temperature TJ = TC + (JC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150C. Note 2: Junction temperature TJ = TA + (JA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 4.75V to 5.25V, no input AC signals. TC = -40C to +85C, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25C, all parameters are production tested.) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC CONDITIONS MIN 4.75 TYP 5.0 230 MAX 5.25 245 UNITS V mA 3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 3.0V to 3.6V, no input AC signals. TC = -40C to +85C, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25C, parameters are guaranteed by design and not production tested, unless otherwise noted.) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current, VCC = 3.3V CONDITIONS MIN 3.0 TYP 3.3 150 MAX 3.6 UNITS V mA 2 _______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A RECOMMENDED AC OPERATING CONDITIONS PARAMETER RF Frequency Range SYMBOL CONDITIONS Typical Application Circuit with C1 = 8.2pF, see Table 1 for details (Note 5) fRF Typical Application Circuit with C1 = 1.5pF, see Table 1 for details (Note 5) (Note 5) Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5) Using Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5) MIN 2000 3000 2100 TYP MAX 3000 MHz 3900 4000 MHz UNITS LO Frequency fLO 100 500 IF Frequency fIF MHz 50 250 LO Drive PLO -3 0 +3 dBm 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER Small-Signal Conversion Gain SYMBOL CONDITIONS fRF = 2300MHz to 2900MHz, TC = +25C (Note 7) fRF = 2305MHz to 2360MHz fRF = 2500MHz to 2570MHz Gain Variation vs. Frequency GC fRF = 2570MHz to 2620MHz fRF = 2500MHz to 2690MHz fRF = 2700MHz to 2900MHz Conversion Gain Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient TCCG TC = -40C to +85C No blockers present NFSSB fRF = 2600MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C, no blockers present fRF = 2300MHz to 2900MHz, single sideband, no blockers present, TC = -40C to +85C +8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2900MHz, fBLOCKER = 2400MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C (Note 8) MIN 7.9 TYP 8.7 0.1 0.1 0.1 0.2 0.3 -0.012 9.8 9.8 0.018 12 10.5 dB dB/C dB MAX 9.2 UNITS dB TCNF dB/C Noise Figure Under Blocking NFB 18 22 dB _______________________________________________________________________________________ 3 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC 2LO-2RF Spur Rejection 3LO-3RF Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance 2x2 3x3 RLRF RLLO ZIF SYMBOL IP1dB IIP3 CONDITIONS TC = +25C (Note 9) fRF = 2600MHz TC = +25C (Notes 7, 9) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = +25C (Note 7) fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C fSPUR = fLO - 150MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm 60 55 75 65 MIN 9.5 10 22.5 TYP 11 11 24.5 0.3 67 62 85 75 17.5 19.5 200 MAX UNITS dBm dBm dB dBc dBc dB dB LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values PLO = +3dBm (Note 7) PLO = +3dBm PLO = +3dBm PLO = +3dBm (Note 7) fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH 27 25 IF Output Return Loss RLIF 25 dB 25 30 -28.6 -29.7 -28.4 -22.8 dB dBm dBm dBm RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port 4 _______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50 sources. Typical values are for TC = +25C, VCC = 3.3V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 6) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency Conversion Gain Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point SYMBOL GC GC TCCG NFSSB TCNF IP1dB IIP3 fRF = 2300MHz to 2900MHz, any 100MHz band TC = -40C to +85C No blockers present Single sideband, no blockers present, TC = -40C to +85C (Note 9) fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = -5dBm fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C 2x2 3x3 RLRF RLLO ZIF fSPUR = fLO - 150MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm CONDITIONS MIN TYP 8.3 0.15 -0.012 9.6 0.018 7.75 19.7 MAX UNITS dB dB dB/C dB dB/C dBm dBm MAX19996A IIP3 Variation with TC 0.5 64 59 74 64 17.5 19.5 200 dB 2LO-2RF Spur Rejection 3LO-3RF Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance dBc dBc dB dB LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH 25 IF Output Return Loss RLIF 25 dB 25 38 -30 -31 -34 dB dBm dBm dBm RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port fRF = 2300MHz to 2900MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm _______________________________________________________________________________________ 5 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz TO 2900MHz, LOW-SIDE LO INJECTION (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources. PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, all parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency Conversion Gain Temperature Coefficient SYMBOL GC GC TCCG CONDITIONS fRF = 2300MHz to 2900MHz, TC = +25C (Note 7) fRF = 2300MHz to 2900MHz, any 100MHz band TC = -40C to +85C No blockers present Single Sideband Noise Figure NFSSB fRF = 2600MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C, no blockers present Single sideband, no blockers present, TC = -40C to +85C TC = +25C (Note 9) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = +25C (Note 7) fRF = 2300MHz to 2900MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C 2x2 3x3 RLRF RLLO ZIF fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm 63 58 79 69 9.5 22 MIN 8.2 TYP 8.9 0.1 -0.012 9.5 9.5 12.5 10.5 dB MAX 9.5 UNITS dB dB dB/C Noise Figure Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC 2RF-2LO Spur Rejection 3RF-3LO Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance TCNF IP1dB IIP3 0.018 10.7 24.05 0.5 68 63 84 74 19 18 200 dB/C dBm dBm dB dBc dBc dB dB LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH 29 25 IF Output Return Loss RLIF 25 dB 25 36 -28 -29 -24 -20 -19 dB dBm dBm dBm RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port fRF = 2600MHz, PLO = +3dBm fLO = 1800MHz to 2900MHz, PLO = +3dBm fLO = 1800MHz to 2900MHz, PLO = +3dBm fLO = 1800MHz to 2900MHz, PLO = +3dBm 6 _______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER Small-Signal Conversion Gain SYMBOL GC CONDITIONS TC = +25C (Note 7) fRF = 3450MHz to 3750MHz, any 100MHz band fRF = 3450MHz to 3750MHz, any 200MHz band TC = -40C to +85C No blockers present Single Sideband Noise Figure Noise Figure Temperature Coefficient NFSSB fRF = 3500MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C, no blockers present fRF = 3100MHz to 3900MHz, single sideband, no blockers present, TC = -40C to +85C +8dBm blocker tone applied to RF port, fRF = 3500MHz, fLO = 3200MHz, fBLOCKER = 3750MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C (Note 8) fRF = 3500MHz (Note 9) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm (Note 7) fRF = 3100MHz to 3900MHz, fIF = 300MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C 2x2 3x3 RLRF RLLO ZIF fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm 60 55 78 68 10 23 MIN 7.5 TYP 8.0 0.15 dB 0.3 -0.012 10.5 10.5 0.018 13.5 11.6 dB dB/C MAX 8.5 UNITS dB MAX19996A Gain Variation vs. Frequency GC Conversion Gain Temperature Coefficient TCCG TCNF dB/C Noise Figure Under Blocking NFB 18.7 21 dB Input 1dB Compression Point Third-Order Input Intercept Point IP1dB IIP3 12 25 dBm dBm IIP3 Variation with TC 0.3 69 64 86 76 20 16.5 200 dB 2RF-2LO Spur Rejection 3RF-3LO Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance dBc dBc dB dB LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs _______________________________________________________________________________________ 7 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER SYMBOL CONDITIONS RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH 23 MIN TYP 25 MAX UNITS IF Output Return Loss RLIF 25 dB 25 27 -31 -27 -29.5 -20 -20 dB dBm dBm dBm RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port fRF = 2600MHz PLO = +3dBm (Note 7) fLO = 2800MHz to 3600MHz PLO = +3dBm PLO = +3dBm PLO = +3dBm (Note 7) +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz. Parameters are guaranteed by design and not production tested.) (Note 6) PARAMETER Small-Signal Conversion Gain SYMBOL GC fRF = 3450MHz to 3750MHz, any 100MHz band fRF = 3450MHz to 3750MHz, any 200MHz band TC = -40C to +85C No blockers present Single sideband, no blockers present, TC = -40C to +85C (Note 9) fRF1 = 3500MHz, fRF2 = 3501MHz, PRF1 = PRF2 = -5dBm fRF1 = 3500MHz, fRF2 = 3501MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C 2x2 fSPUR = fLO - 150MHz PRF = -10dBm PRF = -5dBm CONDITIONS MIN TYP 7.6 0.15 dB 0.3 -0.012 10.9 0.018 12.4 24.7 0.5 69 64 dB/C dB dB/C dBm dBm dB dBc MAX UNITS dB Gain Variation vs. Frequency GC Conversion Gain Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC 2LO-2RF Spur Rejection TCCG NFSSB TCNF IP1dB IIP3 8 _______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz. Parameters are guaranteed by design and not production tested.) (Note 6) PARAMETER 3LO-3RF Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance SYMBOL 3x3 RLRF RLLO ZIF CONDITIONS fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm MIN TYP 90 80 22 16.3 200 MAX UNITS dBc dB dB MAX19996A LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH 25 IF Output Return Loss RLIF 25 dB 25 26.6 -38 -13.5 -27 dB dBm dBm dBm RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port fRF = 3100MHz to 3700MHz, PLO = +3dBm fLO = 3400MHz to 4000MHz, PLO = +3dBm fLO = 3400MHz to 4000MHz, PLO = +3dBm fLO = 3400MHz to 4000MHz, PLO = +3dBm Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 6: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 7: 100% production tested for functional performance. Note 8: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 9: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50 source. _______________________________________________________________________________________ 9 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc01 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc02 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc03 11 TC = -30C 10 CONVERSION GAIN (dB) TC = +25C 11 11 10 CONVERSION GAIN (dB) 10 CONVERSION GAIN (dB) 9 9 9 8 8 PLO = -3dBm, 0dBm, +3dBm 7 8 VCC = 4.75V, 5.0V, 5.25V 7 7 TC = +85C 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19996A toc04 INPUT IP3 vs. RF FREQUENCY MAX19996A toc05 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE 25 INPUT IP3 (dBm) MAX19996A toc06 MAX19996A toc09 26 TC = +85C 25 INPUT IP3 (dBm) PRF = -5dBm/TONE 26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm) 26 24 TC = +25C 23 TC = -30C 24 PLO = -3dBm, 0dBm, +3dBm 23 24 VCC = 4.75V, 5.0V, 5.25V 23 22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19996A toc07 NOISE FIGURE vs. RF FREQUENCY MAX19996A toc08 NOISE FIGURE vs. RF FREQUENCY 12 12 TC = +85C 11 NOISE FIGURE (dB) 12 11 NOISE FIGURE (dB) 11 NOISE FIGURE (dB) 10 10 10 9 TC = +25C TC = -30C 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 9 PLO = -3dBm, 0dBm, +3dBm 9 VCC = 4.75V, 5.0V, 5.25V 8 8 8 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 10 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) MAX19996A 2LO-2RF RESPONSE vs. RF FREQUENCY MAX19996A toc10 2LO-2RF RESPONSE vs. RF FREQUENCY MAX19996A toc11 2LO-2RF RESPONSE vs. RF FREQUENCY PRF = -5dBm 2LO-2RF RESPONSE (dBc) 80 MAX19996A toc12 90 PRF = -5dBm 2LO-2RF RESPONSE (dBc) 80 90 PRF = -5dBm 2LO-2RF RESPONSE (dBc) 80 PLO = +3dBm PLO = 0dBm 70 90 70 70 60 TC = -30C, +25C, +85C 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 PLO = -3dBm 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 VCC = 4.75V, 5.0V, 5.25V 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 3LO-3RF RESPONSE vs. RF FREQUENCY MAX19996A toc13 3LO-3RF RESPONSE vs. RF FREQUENCY MAX19996A toc14 3LO-3RF RESPONSE vs. RF FREQUENCY PRF = -5dBm 3LO-3RF RESPONSE (dBc) 80 MAX19996A toc15 85 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 80 85 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 80 85 75 75 75 70 TC = -30C, +25C, +85C 70 PLO = -3dBm, 0dBm, +3dBm 70 VCC = 4.75V, 5.0V, 5.25V 65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX19996A toc16 INPUT P1dB vs. RF FREQUENCY MAX19996A toc17 INPUT P1dB vs. RF FREQUENCY MAX19996A toc18 13 TC = +85C 12 INPUT P1dB (dBm) 13 13 12 INPUT P1dB (dBm) 12 INPUT P1dB (dBm) 11 11 11 10 TC = -30C 9 2000 2200 2400 TC = +25C 10 PLO = -3dBm, 0dBm, +3dBm 10 VCC = 4.75V, 5.0V, 5.25V 9 9 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 11 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc19 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc21 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -20 TC = +85C -20 PLO = -3dBm, 0dBm, +3dBm -20 VCC = 4.75V, 5.0V, 5.25V -30 -30 -30 TC = +25C -40 2300 2500 2700 TC = -30C -40 2900 3100 3300 2300 2500 2700 2900 3100 3300 -40 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc22 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc23 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc24 60 60 60 VCC = 5.0V, 5.25V 50 RF-TO-IF ISOLATION (dBm) RF-TO-IF ISOLATION (dBm) 50 TC = +25C 50 40 40 RF-TO-IF ISOLATION (dBm) 40 30 TC = +85C 20 2000 2200 TC = -30C 30 PLO = -3dBm, 0dBm, +3dBm 20 30 VCC = 4.75V 20 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc25 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc26 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc27 -10 LO LEAKAGE AT RF PORT (dBm) -15 -20 -25 -30 -35 -40 2300 2520 2740 2960 3180 TC = -30C TC = +25C, +85C -10 LO LEAKAGE AT RF PORT (dBm) -15 PLO = -3dBm, 0dBm, +3dBm -20 -25 -30 -35 -40 -10 LO LEAKAGE AT RF PORT (dBm) -15 VCC = 5.25V -20 -25 -30 -35 -40 VCC = 4.75V, 5.0V 3400 2300 2520 2740 2960 3180 3400 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) 12 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc28 MAX19996A 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc29 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc30 -10 2LO LEAKAGE AT RF PORT (dBm) TC = -30C -20 -10 2LO LEAKAGE AT RF PORT (dBm) PLO = -3dBm, 0dBm, +3dBm -20 -10 2LO LEAKAGE AT RF PORT (dBm) -20 VCC = 4.75V -30 TC = +25C -40 TC = +85C -30 -30 VCC = 5.0V -40 VCC = 5.25V -40 -50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) -50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) -50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX19996A toc31 IF PORT RETURN LOSS vs. IF FREQUENCY VCC = 4.75V, 5.0V, 5.25V fLO = 2900MHz IF PORT RETURN LOSS (dB) 10 L1, L2 = 270nH MAX19996A toc32 LO PORT RETURN LOSS vs. LO FREQUENCY PLO = +3dBm LO PORT RETURN LOSS (dB) 10 MAX19996A toc33 0 0 0 RF PORT RETURN LOSS (dB) 10 20 20 20 30 L1, L2 = 390nH 30 PLO = -3dBm, 0dBm, +3dBm 40 L1, L2 = 470nH L1, L2 = 120nH 30 PLO = -3dBm 40 PLO = 0dBm 40 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 50 50 140 230 320 410 500 IF FREQUENCY (MHz) 1800 2350 2900 3450 4000 LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) MAX19996A toc34 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc35 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc36 250 VCC = 5.25V 240 SUPPLY CURRENT (mA) VCC = 5.0V -10 L3 = 0 LO LEAKAGE AT IF PORT (dBm) -20 50 L3 = 4.7nH RF-TO-IF ISOLATION (dB) 40 230 -30 220 VCC = 4.75V -40 L3 = 4.7nH 30 L3 = 0 210 200 -35 -5 25 TEMPERATURE (C) 55 85 -50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 13 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc37 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc38 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc39 11 VCC = 3.3V TC = -30C 10 CONVERSION GAIN (dB) TC = +25C 11 VCC = 3.3V 10 CONVERSION GAIN (dB) 11 10 CONVERSION GAIN (dB) 9 9 9 8 8 8 7 TC = +85C 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 7 PLO = -3dBm, 0dBm, +3dBm 7 VCC = 3.0V, 3.3V, 3.6V 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19996A toc40 INPUT IP3 vs. RF FREQUENCY MAX19996A toc41 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE MAX19996A toc42 MAX19996A toc45 21 TC = +85C INPUT IP3 (dBm) 20 PRF = -5dBm/TONE VCC = 3.3V 21 PRF = -5dBm/TONE VCC = 3.3V 20 21 INPUT IP3 (dBm) INPUT IP3 (dBm) PLO = -3dBm, 0dBm, +3dBm 20 19 TC = -30C, +25C 19 19 VCC = 3.0V, 3.3V, 3.6V 18 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 18 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 18 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19996A toc43 NOISE FIGURE vs. RF FREQUENCY VCC = 3.3V 11 NOISE FIGURE (dB) MAX19996A toc44 NOISE FIGURE vs. RF FREQUENCY 12 12 TC = +85C 11 NOISE FIGURE (dB) VCC = 3.3V 12 11 NOISE FIGURE (dB) 10 10 10 9 9 PLO = -3dBm, 0dBm, +3dBm 9 VCC = 3.0V, 3.3V, 3.6V 8 TC = -30C 7 2000 2200 2400 TC = +25C 8 8 7 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 14 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2LO-2RF RESPONSE vs. RF FREQUENCY MAX19996A toc46 MAX19996A 2LO-2RF RESPONSE vs. RF FREQUENCY MAX19996A toc47 2LO-2RF RESPONSE vs. RF FREQUENCY PRF = -5dBm 2LO-2RF RESPONSE (dBc) MAX19996A toc48 80 PRF = -5dBm VCC = 3.3V 2LO-2RF RESPONSE (dBc) 70 80 PRF = -5dBm VCC = 3.3V 2LO-2RF RESPONSE (dBc) PLO = +3dBm 70 PLO = 0dBm 80 70 60 60 60 TC = -30C, +25C, +85C 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 50 2000 2200 2400 PLO = -3dBm 50 2600 2800 3000 2000 2200 VCC = 3.0V, 3.3V, 3.6V 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 3LO-3RF RESPONSE vs. RF FREQUENCY MAX19996A toc49 3LO-3RF RESPONSE vs. RF FREQUENCY MAX19996A toc50 3LO-3RF RESPONSE vs. RF FREQUENCY PRF = -5dBm 3LO-3RF RESPONSE (dBc) MAX19996A toc51 80 PRF = -5dBm VCC = 3.3V 3LO-3RF RESPONSE (dBc) 70 80 PRF = -5dBm VCC = 3.3V 3LO-3RF RESPONSE (dBc) 70 80 70 60 TC = -30C, +25C, +85C 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 PLO = -3dBm, 0dBm, +3dBm 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 VCC = 3.0V, 3.3V, 3.6V 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX19996A toc52 INPUT P1dB vs. RF FREQUENCY VCC = 3.3V 9 INPUT P1dB (dBm) MAX19996A toc53 INPUT P1dB vs. RF FREQUENCY MAX19996A toc54 10 VCC = 3.3V 9 INPUT P1dB (dBm) TC = +85C 10 10 9 INPUT P1dB (dBm) VCC = 3.6V 8 8 8 7 TC = +25C 6 TC = -30C 7 PLO = -3dBm, 0dBm, +3dBm 7 VCC = 3.3V 6 6 VCC = 3.0V 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc55 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc56 LO LEAKAGE AT IF PORT vs. LO FREQUENCY VCC = 3.0V, 3.3V, 3.6V LO LEAKAGE AT IF PORT (dBm) MAX19996A toc57 -20 TC = +85C -30 -20 VCC = 3.3V VCC = 3.3V -20 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -30 -30 -40 TC = +25C TC = -30C -40 PLO = -3dBm, 0dBm, +3dBm -40 -50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz) -50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz) -50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc58 RF-TO-IF ISOLATION vs. RF FREQUENCY VCC = 3.3V RF-TO-IF ISOLATION (dB) 50 PLO = -3dBm, 0dBm, +3dBm MAX19996A toc59 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc60 60 VCC = 3.3V RF-TO-IF ISOLATION (dB) 50 TC = -30C, +25C, +85C 60 60 RF-TO-IF ISOLATION (dB) 50 VCC = 3.0V, 3.3V, 3.6V 40 40 40 30 30 30 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc61 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc62 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc63 -20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -30 -30 -30 -40 TC = -30C, +25C, +85C PLO = -3dBm, 0dBm, +3dBm -40 VCC = 3.0V, 3.3V, 3.6V -40 -50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) -50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) -50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) 16 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc64 MAX19996A 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc65 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc66 -10 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20 TC = -30C -30 -10 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20 -10 2LO LEAKAGE AT RF PORT (dBm) -20 VCC = 3.0V VCC = 3.3V -30 -30 -40 TC = +85C -50 2300 2520 2740 2960 TC = +25C -40 PLO = -3dBm, 0dBm, +3dBm -50 -40 VCC = 3.6V -50 3180 3400 2300 2520 2740 2960 3180 3400 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX19996A toc67 IF PORT RETURN LOSS vs. IF FREQUENCY MAX19996A toc68 LO PORT RETURN LOSS vs. LO FREQUENCY PLO = +3dBm LO PORT RETURN LOSS (dB) 10 VCC = 3.3V PLO = 0dBm MAX19996A toc69 0 VCC = 3.3V RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 2000 2200 2400 2600 2800 PLO = -3dBm, 0dBm, +3dBm 0 fLO = 2900MHz IF PORT RETURN LOSS (dB) 10 VCC = 3.0V, 3.3V, 3.6V 0 20 20 30 40 30 PLO = -3dBm 50 3000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) 40 1800 2350 2900 3450 4000 LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) MAX19996A toc70 LO LEAKAGE AT IF PORT vs. LO FREQUENCY VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) L3 = 0 -20 MAX19996A toc71 RF-TO-IF ISOLATION vs. RF FREQUENCY VCC = 3.3V L3 = 4.7nH RF-TO-IF ISOLATION (dB) MAX19996A toc72 170 VCC = 3.6V SUPPLY CURRENT (mA) 160 VCC = 3.3V -10 50 40 150 -30 30 L3 = 0 140 VCC = 3.0V 130 -35 -5 25 TEMPERATURE (C) 55 85 -40 L3 = 4.7nH -50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 17 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc73 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc74 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc75 11 TC = -30C 10 CONVERSION GAIN (dB) TC = +25C 11 11 10 CONVERSION GAIN (dB) 10 CONVERSION GAIN (dB) 9 9 9 8 8 PLO = -3dBm, 0dBm, +3dBm 7 8 VCC = 4.75V, 5.0V, 5.25V 7 7 TC = +85C 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19996A toc76 INPUT IP3 vs. RF FREQUENCY MAX19996A toc77 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE 25 INPUT IP3 (dBm) MAX19996A toc78 MAX19996A toc81 26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm) TC = +85C 26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm) 26 24 24 24 23 TC = +25C 22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) TC = -30C 23 PLO = -3dBm, 0dBm, +3dBm 23 VCC = 4.75V, 5.0V, 5.25V 22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19996A toc79 NOISE FIGURE vs. RF FREQUENCY MAX19996A toc80 NOISE FIGURE vs. RF FREQUENCY 12 12 TC = +85C 11 NOISE FIGURE (dB) 12 11 NOISE FIGURE (dB) 11 NOISE FIGURE (dB) 10 10 10 9 9 PLO = -3dBm, 0dBm, +3dBm 9 VCC = 4.75V, 5.0V, 5.25V 8 TC = -30C 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) TC = +25C 8 8 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 18 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2RF-2LO RESPONSE vs. RF FREQUENCY MAX19996A toc82 MAX19996A 2RF-2LO RESPONSE vs. RF FREQUENCY MAX19996A toc83 2RF-2LO RESPONSE vs. RF FREQUENCY PRF = -5dBm 2RF-2LO RESPONSE (dBc) 80 MAX19996A toc84 90 PRF = -5dBm 2RF-2LO RESPONSE (dBc) 80 90 PRF = -5dBm 2RF-2LO RESPONSE (dBc) 80 PLO = +3dBm 70 PLO = 0dBm 90 70 70 60 TC = -30C, +25C, +85C 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 PLO = -3dBm 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 VCC = 4.75V, 5.0V, 5.25V 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 3RF-3LO RESPONSE vs. RF FREQUENCY MAX19996A toc85 3RF-3LO RESPONSE vs. RF FREQUENCY MAX19996A toc86 3RF-3LO RESPONSE vs. RF FREQUENCY PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80 MAX19996A toc87 85 PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80 85 PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80 85 75 75 75 70 TC = -30C, +25C, +85C 65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 70 PLO = -3dBm, 0dBm, +3dBm 65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 70 VCC = 4.75V, 5.0V, 5.25V 65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX19996A toc88 INPUT P1dB vs. RF FREQUENCY MAX19996A toc89 INPUT P1dB vs. RF FREQUENCY MAX19996A toc90 13 13 13 12 INPUT P1dB (dBm) TC = +85C INPUT P1dB (dBm) 12 12 INPUT P1dB (dBm) VCC = 5.25V 11 11 11 10 TC = +25C 9 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) TC = -30C 10 PLO = -3dBm, 0dBm, +3dBm 9 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 10 VCC = 5.0V 9 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) VCC = 4.75V ______________________________________________________________________________________ 19 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc91 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc92 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc93 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) TC = -30C -20 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) PLO = -3dBm, 0dBm, +3dBm -20 VCC = 4.75V, 5.0V, 5.25V -20 -30 TC = +25C TC = +85C -40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) -30 -30 -40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) -40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc94 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc95 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc96 60 60 60 RF-TO-IF ISOLATION (dB) 50 TC = +25C, +85C 40 TC = -30C 30 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) 50 PLO = -3dBm, 0dBm, +3dBm 50 VCC = 4.75V, 5.0V, 5.25V 40 40 30 30 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc97 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc98 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc99 -10 LO LEAKAGE AT RF PORT (dBm) -15 -20 -25 -30 -35 -40 1800 2020 2240 2460 2680 -10 LO LEAKAGE AT RF PORT (dBm) -15 PLO = -3dBm, 0dBm, +3dBm -20 -25 -30 -35 -40 -10 LO LEAKAGE AT RF PORT (dBm) -15 -20 -25 -30 -35 -40 TC = -30C, +25C, +85C VCC = 4.75V, 5.0V, 5.25V 2900 1800 2020 2240 2460 2680 2900 1800 2020 2240 2460 2680 2900 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) 20 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc100 MAX19996A 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc101 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc102 -10 2LO LEAKAGE AT RF PORT (dBm) TC = -30C -20 -10 2LO LEAKAGE AT RF PORT (dBm) PLO = -3dBm, 0dBm, +3dBm -20 -10 2LO LEAKAGE AT RF PORT (dBm) -20 VCC = 4.75V -30 -30 -30 -40 TC = +85C TC = +25C -40 -40 VCC = 5.25V VCC = 5.0V 2460 2680 2900 -50 1800 2020 2240 2460 2680 2900 LO FREQUENCY (MHz) -50 1800 2020 2240 2460 2680 2900 LO FREQUENCY (MHz) -50 1800 2020 2240 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX19996A toc103 IF PORT RETURN LOSS vs. IF FREQUENCY VCC = 4.75V, 5.0V, 5.25V fLO = 2300MHz IF PORT RETURN LOSS (dB) 10 L1, L2 = 270nH MAX19996A toc104 LO PORT RETURN LOSS vs. LO FREQUENCY MAX19996A toc105 0 0 0 PLO = +3dBm 10 10 20 30 L1, L2 = 390nH 20 PLO = -3dBm, 0dBm, +3dBm 30 LO PORT RETURN LOSS (dB) RF PORT RETURN LOSS (dB) 20 PLO = 0dBm 30 PLO = -3dBm 40 40 L1, L2 = 470nH L1, L2 = 120nH 40 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 50 50 140 230 320 410 500 IF FREQUENCY (MHz) 1800 2350 2900 3450 4000 LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) MAX19996A toc106 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc107 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc108 250 VCC = 5.25V 240 SUPPLY CURRENT (mA) VCC = 5.0V 0 60 LO LEAKAGE AT IF PORT (dBm) RF-TO-IF ISOLATION (dB) -10 L3 = 0 50 L3 = 4.7nH 40 230 -20 220 VCC = 4.75V -30 L3 = 4.7nH 210 30 L3 = 0 200 -35 -5 25 TEMPERATURE (C) 55 85 -40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 21 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc109 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc110 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc111 10 TC = -30C TC = +25C CONVERSION GAIN (dB) 9 10 10 CONVERSION GAIN (dB) CONVERSION GAIN (dB) 9 9 8 8 8 7 TC = +85C 6 3000 3300 3600 3900 RF FREQUENCY (MHz) 7 PLO = -3dBm, 0dBm, +3dBm 7 VCC = 4.75V, 5.0V, 5.25V 6 6 3000 3300 3600 3900 RF FREQUENCY (MHz) 3000 3300 3600 3900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19996A toc112 INPUT IP3 vs. RF FREQUENCY MAX19996A toc113 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE 26 INPUT IP3 (dBm) MAX19996A toc114 MAX19996A toc117 27 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) TC = +85C 27 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) 27 25 25 25 24 TC = +25C TC = -30C 24 PLO = -3dBm, 0dBm, +3dBm 23 24 VCC = 4.75V, 5.0V, 5.25V 23 3000 3300 3600 3900 3000 3300 3600 3900 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 23 3000 3300 3600 3900 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19996A toc115 NOISE FIGURE vs. RF FREQUENCY MAX19996A toc116 NOISE FIGURE vs. RF FREQUENCY 13 13 TC = +85C 12 NOISE FIGURE (dB) 13 12 NOISE FIGURE (dB) 12 NOISE FIGURE (dB) 11 11 11 10 10 10 9 TC = -30C 8 3000 3300 3600 3900 RF FREQUENCY (MHz) TC = +25C 9 PLO = -3dBm, 0dBm, +3dBm 8 3000 3300 3600 3900 RF FREQUENCY (MHz) 9 VCC = 4.75V, 5.0V, 5.25V 8 3000 3300 3600 3900 RF FREQUENCY (MHz) 22 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2RF-2LO RESPONSE vs. RF FREQUENCY MAX19996A toc118 MAX19996A 2RF-2LO RESPONSE vs. RF FREQUENCY MAX19996A toc119 2RF-2LO RESPONSE vs. RF FREQUENCY PRF = -5dBm 2RF-2LO RESPONSE (dBc) MAX19996A toc120 80 PRF = -5dBm 2RF-2LO RESPONSE (dBc) 80 PRF = -5dBm 2RF-2LO RESPONSE (dBc) PLO = +3dBm 70 PLO = -0dBm 80 70 70 60 60 60 TC = -30C, +25C, +85C 50 3000 3300 3600 3900 RF FREQUENCY (MHz) 50 3000 PLO = -3dBm 50 3300 3600 3900 3000 VCC = 4.75V, 5.0V, 5.25V 3300 3600 3900 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 3RF-3LO RESPONSE vs. RF FREQUENCY MAX19996A toc121 3RF-3LO RESPONSE vs. RF FREQUENCY MAX19996A toc122 3RF-3LO RESPONSE vs. RF FREQUENCY PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80 MAX19996A toc123 85 PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80 85 PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80 85 75 75 75 70 TC = -30C, +25C, +85C 70 PLO = -3dBm, 0dBm, +3dBm 65 70 VCC = 4.75V, 5.0V, 5.25V 65 3000 3300 3600 3900 RF FREQUENCY (MHz) 65 3000 3300 3600 3900 3000 3300 3600 3900 RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX19996A toc124 INPUT P1dB vs. RF FREQUENCY MAX19996A toc125 INPUT P1dB vs. RF FREQUENCY VCC = 5.25V 13 INPUT P1dB (dBm) MAX19996A toc126 14 TC = +85C 13 INPUT P1dB (dBm) 14 14 13 INPUT P1dB (dBm) 12 12 12 11 TC = +25C 10 TC = -30C 11 PLO = -3dBm, 0dBm, +3dBm 10 11 VCC = 4.75V 10 VCC = 5.0V 9 3000 3300 3600 3900 RF FREQUENCY (MHz) 9 3000 3300 3600 3900 RF FREQUENCY (MHz) 9 3000 3300 3600 3900 RF FREQUENCY (MHz) ______________________________________________________________________________________ 23 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc127 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc128 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc129 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -20 TC = +85C -20 PLO = -3dBm, 0dBm, +3dBm LO LEAKAGE AT IF PORT (dBm) -20 VCC = 4.75V, 5.0V, 5.25V -30 -30 -30 TC = -30C -40 2700 3000 TC = +25C -40 3300 3600 2700 3000 3300 3600 -40 2700 3000 3300 3600 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc130 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc131 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc132 45 45 45 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = -30C, +25C, +85C 35 PLO = -3dBm, 0dBm, +3dBm 35 VCC = 4.75V, 5.0V, 5.25V 35 25 25 25 15 3000 3300 3600 3900 RF FREQUENCY (MHz) 15 3000 3300 3600 3900 RF FREQUENCY (MHz) 15 3000 3300 3600 3900 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc133 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc134 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc135 -15 LO LEAKAGE AT RF PORT (dBm) TC = -30C, +25C, +85C -25 -15 LO LEAKAGE AT RF PORT (dBm) PLO = -3dBm, 0dBm, +3dBm -25 -15 LO LEAKAGE AT RF PORT (dBm) VCC = 4.75V, 5.0V, 5.25V -25 -35 -35 -35 -45 2600 2900 3200 3500 3800 LO FREQUENCY (MHz) -45 2600 2900 3200 3500 3800 LO FREQUENCY (MHz) -45 2600 2900 3200 3500 3800 LO FREQUENCY (MHz) 24 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc136 MAX19996A 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY PLO = -3dBm, 0dBm, +3dBm -20 MAX19996A toc137 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc138 -10 2LO LEAKAGE AT RF PORT (dBm) TC = -30C, +25C, +85C -20 -10 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT (dBm) VCC = 4.75V, 5.0V, 5.25V -20 -30 -30 -30 -40 -40 -40 -50 2600 2900 3200 3500 3800 LO FREQUENCY (MHz) -50 2600 2900 3200 3500 3800 LO FREQUENCY (MHz) -50 2600 2900 3200 3500 3800 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX19996A toc139 IF PORT RETURN LOSS vs. IF FREQUENCY VCC = 4.75V, 5.0V, 5.25V fLO = 3200MHz IF PORT RETURN LOSS (dB) 10 L1, L2 = 270nH MAX19996A toc140 LO PORT RETURN LOSS vs. LO FREQUENCY MAX19996A toc141 0 5 RF PORT RETURN LOSS (dB) 10 15 20 25 PLO = -3dBm, 0dBm, +3dBm 30 3000 3200 3400 3600 3800 0 0 PLO = +3dBm 10 20 30 LO PORT RETURN LOSS (dB) 20 PLO = 0dBm 30 PLO = -3dBm 40 L1, L2 = 390nH 40 L1, L2 = 470nH L1, L2 = 120nH 50 4000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) 1800 2350 2900 3450 4000 LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) VCC = 5.25V 240 SUPPLY CURRENT (mA) VCC = 5.0V MAX19996A toc142 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc143 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc144 250 -10 L3 = 4.7nH 50 LO LEAKAGE AT IF PORT (dBm) -20 RF-TO-IF ISOLATION (dB) L3 = 0 40 230 -30 220 VCC = 4.75V -40 L3 = 0 30 210 -50 L3 = 4.7nH 200 -35 -5 25 TEMPERATURE (C) 55 85 -60 2700 3000 3300 3600 LO FREQUENCY (MHz) 20 3000 3300 3600 3900 RF FREQUENCY (MHz) ______________________________________________________________________________________ 25 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc145 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc146 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc147 10 TC = -30C CONVERSION GAIN (dB) 9 TC = +25C 10 10 CONVERSION GAIN (dB) CONVERSION GAIN (dB) 9 9 8 8 8 7 TC = +85C 6 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 7 PLO = -3dBm, 0dBm, +3dBm 6 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 7 VCC = 4.75V, 5.0V, 5.25V 6 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19996A toc148 INPUT IP3 vs. RF FREQUENCY MAX19996A toc149 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE MAX19996A toc150 MAX19996A toc153 26 PRF = -5dBm/TONE TC = +85C 26 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) INPUT IP3 (dBm) INPUT IP3 (dBm) PLO = -3dBm, 0dBm, +3dBm 25 25 25 24 TC = +25C TC = -30C 24 24 VCC = 4.75V, 5.0V, 5.25V 23 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 23 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 23 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19996A toc151 NOISE FIGURE vs. RF FREQUENCY MAX19996A toc152 NOISE FIGURE vs. RF FREQUENCY 13 13 TC = +85C 12 NOISE FIGURE (dB) 13 PLO = -3dBm 12 NOISE FIGURE (dB) 12 NOISE FIGURE (dB) 11 11 11 10 10 10 9 TC = -30C 8 3000 3175 3350 TC = +25C 9 PLO = 0dBm, +3dBm 9 VCC = 4.75V, 5.0V, 5.25V 8 3525 3700 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 8 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 26 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2LO-2RF RESPONSE vs. RF FREQUENCY MAX19996A toc154 MAX19996A 2LO-2RF RESPONSE vs. RF FREQUENCY MAX19996A toc155 2LO-2RF RESPONSE vs. RF FREQUENCY PRF = -5dBm 2LO-2RF RESPONSE (dBc) MAX19996A toc156 MAX19996A toc162 MAX19996A toc159 80 PRF = -5dBm TC = +85C 2LO-2RF RESPONSE (dBc) 70 80 PRF = -5dBm 2LO-2RF RESPONSE (dBc) PLO = +3dBm 70 PLO = 0dBm 80 70 60 TC = +25C TC = -30C 50 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 60 60 PLO = -3dBm 50 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 50 3000 VCC = 4.75V, 5.0V, 5.25V 3175 3350 3525 3700 RF FREQUENCY (MHz) 3LO-3RF RESPONSE vs. RF FREQUENCY MAX19996A toc157 3LO-3RF RESPONSE vs. RF FREQUENCY PLO = -3dBm 3LO-3RF RESPONSE (dBc) 85 PRF = -5dBm MAX19996A toc158 3LO-3RF RESPONSE vs. RF FREQUENCY 90 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85 90 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85 90 80 TC = -30C 75 TC = +25C 70 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) TC = +85C 80 PLO = +3dBm 75 PLO = 0dBm 70 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 80 VCC = 5.25V 75 VCC = 4.75V VCC = 5.0V 70 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX19996A toc160 INPUT P1dB vs. RF FREQUENCY MAX19996A toc161 INPUT P1dB vs. RF FREQUENCY 14 VCC = 5.25V 14 TC = +85C 13 INPUT P1dB (dBm) 14 13 INPUT P1dB (dBm) 13 INPUT P1dB (dBm) 12 12 12 11 TC = +25C 10 TC = -30C 11 PLO = -3dBm, 0dBm, +3dBm 11 VCC = 5.0V 10 VCC = 4.75V 10 9 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 9 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 9 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) ______________________________________________________________________________________ 27 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc163 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc164 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc165 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -20 TC = -30C -20 PLO = -3dBm PLO = 0dBm VCC = 4.75V, 5.0V, 5.25V -20 -30 TC = +25C TC = +85C -40 3300 3475 3650 3825 4000 LO FREQUENCY (MHz) -30 -30 PLO = +3dBm -40 3300 3475 3650 3825 4000 LO FREQUENCY (MHz) -40 3300 3475 3650 3825 4000 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc166 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc167 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc168 45 45 45 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = -30C, +25C, +85C 35 PLO = -3dBm, 0dBm, +3dBm 35 VCC = 4.75V, 5.0V, 5.25V 35 25 25 25 15 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 15 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 15 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc169 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc170 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc171 -15 LO LEAKAGE AT RF PORT (dBm) -15 LO LEAKAGE AT RF PORT (dBm) -15 LO LEAKAGE AT RF PORT (dBm) -25 TC = -30C, +25C, +85C -25 PLO = -3dBm, 0dBm, +3dBm -25 VCC = 4.75V, 5.0V, 5.25V -35 -35 -35 -45 3000 3250 3500 3750 4000 LO FREQUENCY (MHz) -45 3000 3250 3500 3750 4000 LO FREQUENCY (MHz) -45 3000 3250 3500 3750 4000 LO FREQUENCY (MHz) 28 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc172 MAX19996A 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc173 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc174 0 2LO LEAKAGE AT RF PORT (dBm) 0 2LO LEAKAGE AT RF PORT (dBm) 0 2LO LEAKAGE AT RF PORT (dBm) VCC = 4.75V, 5.0V, 5.25V -10 -10 TC = -30C, +25C, +85C -10 PLO = -3dBm, 0dBm, +3dBm -20 -20 -20 -30 -30 -30 -40 3000 3250 3500 3750 4000 LO FREQUENCY (MHz) -40 3000 3250 3500 3750 4000 LO FREQUENCY (MHz) -40 3000 3250 3500 3750 4000 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX19996A toc175 IF PORT RETURN LOSS vs. IF FREQUENCY VCC = 4.75V, 5.0V, 5.25V fLO = 3800MHz IF PORT RETURN LOSS (dB) 10 L1, L2 = 270nH MAX19996A toc176 LO PORT RETURN LOSS vs. LO FREQUENCY MAX19996A toc177 0 5 RF PORT RETURN LOSS (dB) 10 15 20 25 30 2700 2900 3100 3300 3500 PLO = -3dBm, 0dBm, +3dBm 0 0 PLO = +3dBm 10 20 30 LO PORT RETURN LOSS (dB) 20 PLO = 0dBm 30 PLO = -3dBm L1, L2 = 390nH 40 L1, L2 = 470nH 50 3700 50 140 230 320 410 500 L1, L2 = 120nH 40 1800 2350 2900 3450 4000 IF FREQUENCY (MHz) LO FREQUENCY (MHz) RF FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) MAX19996A toc178 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc179 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19996A toc180 250 VCC = 5.25V 240 SUPPLY CURRENT (mA) VCC = 5.0V -20 50 LO LEAKAGE AT IF PORT (dBm) -30 RF-TO-IF ISOLATION (dB) L3 = 0 40 230 -40 L3 = 4.7nH 220 VCC = 4.75V 30 210 -50 L3 = 0 L3 = 4.7nH 20 3825 4000 3000 3175 3350 3525 3700 200 -35 -5 25 TEMPERATURE (C) 55 85 -60 3300 3475 3650 LO FREQUENCY (MHz) RF FREQUENCY (MHz) ______________________________________________________________________________________ 29 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Pin Description PIN 1, 6, 8, 14 2 3, 4, 5, 10, 12, 13, 17 7 9, 15 11 16 18, 19 20 NAME VCC RF GND LOBIAS N.C. LO LEXT IF-, IF+ IFBIAS FUNCTION Power Supply. Bypass to GND with 0.01F capacitors as close as possible to the pin. Single-Ended 50 RF Input. Internally matched and DC shorted to GND through a balun. Requires an input DC-blocking capacitor. Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604 1% (230mA bias condition) from LOBIAS to ground. Not internally connected. Pins can be grounded. Local Oscillator Input. This input is internally matched to 50. Requires an input DC-blocking capacitor. External Inductor Connection. Connect an inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see the Typical Operating Characteristics for typical performance vs. inductor value). Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698 1% (230mA bias condition) from IFBIAS to GND. Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance. -- EP Detailed Description When used as a high-side LO injection mixer in the 2300MHz to 2900MHz RF band, the MAX19996A provides 8.7dB of conversion gain and +24.5dBm of IIP3 with a typical noise figure of 9.8dB. The integrated baluns and matching circuitry allow for 50 singleended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19996A's input to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2LO-2RF performance. Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX19996A is specified to operate over an RF input range of 2000MHz to 3900MHz, an LO range of 2100MHz to 4000MHz, and an IF range of 50MHz to 500MHz. The external IF components set the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). RF Input and Balun The MAX19996A RF input provides a 50 match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 14dB over the RF frequency range of 2300MHz to 2900MHz. A return loss of 15dB over the 3000MHz to 3900MHz range can be achieved by changing the DC-blocking capacitor to 1.5pF. LO Inputs, Buffer, and Balun With a broadband LO drive circuit spanning 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. The LO input is internally matched to 50, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. 30 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer High-Linearity Mixer The core of the MAX19996A is a double-balanced, high-performance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, IIP3, 2LO-2RF rejection, and noise-figure performance are typically +24.5dBm, 67dBc, and 9.8dB, respectively. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If 1% resistors are not readily available, substitute with 5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power consumption by up to 57%. See the 3.3V Supply AC Electrical Characteristics--fRF = 2300MHz to 2900MHz, High-Side LO Injection table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs. MAX19996A Differential IF Output Amplifier The MAX19996A has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components. The MAX19996A mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies would require higher inductor values to maintain a good IF match. The differential, open-collector IF output ports require these inductors to be connected to VCC. Note that these differential ports are ideal for providing enhanced 2LO-2RF and 2RF-2LO performance. Singleended IF applications require a 4:1 (impedance ratio) balun to transform the 200 differential IF impedance to a 50 single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. LEXT Inductor Short LEXT to ground using a 0 resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be so that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 90mA flows through LEXT, it is important to use a low-DCR wire-wound inductor. Layout Considerations A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be so that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19996A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. Applications Information Input and Output Matching The RF input provides a 50 match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to 3000MHz. A 1.5pF capacitor value should be used to match the RF port for the 3000MHz to 3900MHz band. The LO input is internally matched to 50; use a 2pF DC-blocking capacitor to cover operations spanning the 2100MHz to 4000MHz LO range. The IF output impedance is 200 (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50 singleended output (see the Typical Application Circuit). Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and Table 1. Reduced-Power Mode The MAX19996A has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 1. ______________________________________________________________________________________ 31 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Table 1. Component Values DESIGNATION QTY DESCRIPTION 8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 2000MHz to 3000MHz. C1 1 1.5pF microwave capacitor (0402). Use for RF frequencies ranging from 3000MHz to 3900MHz. C2, C6, C8, C11 C3, C9 C10 C13, C14 C15 L1, L2 L3 R1 R2 R3 T1 U1 4 0 1 2 1 2 1 1 1 1 1 1 0.01F microwave capacitors (0402) Not installed, capacitors 2pF microwave capacitor (0402) 1000pF microwave capacitors (0402) 82pF microwave capacitor (0402) 390nH wire-wound high-Q inductors* (0805) (see the Typical Operating Characteristics) 4.7nH wire-wound high-Q inductor (0603) 698 1% resistor (0402). Use for VCC = 5.0V applications. 1.1k 1% resistor (0402). Use for VCC = 3.3V applications. 604 1% resistor (0402). Use for VCC = 5.0V applications. 8451% resistor (0402). Use for VCC = 3.3V applications. 0 resistor (1206) 4:1 IF balun TC4-1W-17* MAX19996A IC (20 TQFN-EP) Murata Electronics North America, Inc. -- Murata Electronics North America, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. Coilcraft, Inc. Coilcraft, Inc. Digi-Key Corp. Digi-Key Corp. Digi-Key Corp. Mini-Circuits Maxim Integrated Products, Inc. Murata Electronics North America, Inc. COMPONENT SUPPLIER *Use 470nH inductors and TC4-1W-7A 4:1 balun for IF frequencies below 200MHz. Exposed Pad RF/Thermal Considerations The exposed pad (EP) of the MAX19996A's 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19996A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. 32 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Typical Application Circuit C13 L1 C15 3 6 IF OUTPUT T1 2 R3 C14 R1 L2 1 4:1 4 L3 IFBIAS IF+ IF+5.0V LEXT 16 N.C. GND 17 20 C3 C2 VCC C1 RF INPUT 19 18 1 15 RF 2 MAX19996A 14 VCC C11 +5.0V GND 3 13 GND GND 4 EP 12 GND C10 GND 5 11 LO LO INPUT 6 VCC 7 LOBIAS 8 VCC 9 N.C. 10 GND NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. +5.0V C6 R2 C8 +5.0V C9 ______________________________________________________________________________________ 33 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Pin Configuration/ Functional Diagram IFBIAS Chip Information PROCESS: SiGe BiCMOS TOP VIEW LEXT GND IF+ Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. 15 N.C. 20 VCC 19 18 IF- 17 16 1 PACKAGE TYPE 20 Thin QFN-EP PACKAGE CODE T2055+3 DOCUMENT NO. 21-0140 RF 2 MAX19996A 14 VCC GND 3 13 GND GND 4 EP 12 GND GND 5 11 LO 6 VCC 7 LOBIAS 8 VCC 9 N.C. 10 GND 34 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A Revision History REVISION NUMBER 0 1 REVISION DATE 1/09 5/09 Initial release Updated Electrical Characteristics table limits DESCRIPTION PAGES CHANGED -- 6 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35 (c) 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. |
Price & Availability of MAX19996A
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |