![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
19-4679; Rev 0; 8/09 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer General Description The MAX2042 single, high-linearity upconversion/downconversion mixer provides +36dBm IIP3, 7.3dB noise figure, and 7.2dB conversion loss for 2000MHz to 3000MHz WCS, LTE, WiMAXK, and MMDS wireless infrastructure applications. With a wide LO frequency range of 1800MHz to 2800MHz, this particular mixer is ideal for low-side LO injection receiver and transmitter architectures. High-side LO injection is supported by the MAX2042A, which is pinpin and functionally compatible with the MAX2042. In addition to offering excellent linearity and noise performance, the MAX2042 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2042 requires a nominal LO drive of 0dBm, and supply current is typically 138mA at VCC = +5.0V or 120mA at VCC = +3.3V. The MAX2042 is pin compatible with the MAX2042A 2000MHz to 3900MHz mixer. The device is also pin similar with the MAX2029/MAX2031 650MHz to 1000MHz mixers, the MAX2039/MAX2041 1700MHz to 3000MHz mixers, and the MAX2044/MAX2044A 3000MHz to 4000MHz mixers, making this entire family of up/downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX2042 is available in a compact 20-pin thin QFN (5mm x 5mm) package with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range. S S S S S S S S S S S S S Features 2000MHz to 3000MHz RF Frequency Range 1800MHz to 2800MHz LO Frequency Range 50MHz to 500MHz IF Frequency Range 7.2dB Conversion Loss 7.3dB Noise Figure +36dBm Typical IIP3 +23.4dBm Typical Input 1dB Compression Point 70dBc Typical 2RF-2LO Spurious Rejection at PRF = -10dBm Integrated LO Buffer Integrated RF and LO Baluns for Single-Ended Inputs Low -3dBm to +3dBm LO Drive Pin Compatible with the MAX2042A 2000MHz to 3900MHz High-Side LO Injection Mixer Pin Similar with the MAX2029/MAX2031 650MHz to 1000MHz Mixers, MAX2039/MAX2041 1700MHz to 3000MHz Mixers, and MAX2044/MAX2044A 3000MHz to 4000MHz Mixers Single +5.0V or +3.3V Supply External Current-Setting Resistor Provides Option for Operating Device in Reduced-Power/ReducedPerformance Mode MAX2042 S S Pin Configuration/ Functional Diagram GND GND 16 15 GND IF18 TOP VIEW GND Applications 2.3GHz WCS Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems GND RF VCC + 1 20 IF+ 19 17 2 MAX2042 14 VCC 3 13 GND GND 4 EP* 12 GND Ordering Information PART MAX2042ETP+ TEMP RANGE -40NC to +85NC PIN-PACKAGE 20 Thin QFN-EP* GND 5 6 VCC 7 LOBIAS 8 VCC 9 GND 10 GND 11 LO MAX2042ETP+T -40NC to +85NC 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. *EXPOSED PAD WiMAX is a trademark of WiMAX Forum. _______________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 ABSOLUTE MAXIMUM RATINGS VCC to GND..........................................................-0.3V to +5.5V IF+, IF-, LOBIAS to GND .......................... -0.3V to (VCC + 0.3V) RF, LO Input Power ....................................................... +20dBm RF, LO Current (RF and LO are DC shorted to GND through a balun)................................... .............50mA Continuous Power Dissipation (Note 1) .............................5.0W BJA (Notes 2, 3) ............................................................ +38NC/W BJC (Notes 1, 3) ............................................................ +13NC/W Operating Case Temperature Range (Note 4)........................................................... -40NC to +85NC Junction Temperature .....................................................+150NC Storage Temperature Range............................ -65NC to +150NC Lead Temperature (soldering, 10s) ................................+300NC Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. +5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = +4.75V to +5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +5.0V, TC = +25NC, all parameters are production tested.) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC CONDITIONS MIN 4.75 TYP 5.0 138 MAX 5.25 150 UNITS V mA +3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = +3.0V to +3.6V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +3.3V, TC = +25NC, all parameters are production tested.) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC CONDITIONS MIN 3.0 TYP 3.3 120 MAX 3.6 135 UNITS V mA RECOMMENDED AC OPERATING CONDITIONS PARAMETER RF Frequency Range LO Frequency IF Frequency LO Drive fLO fIF PLO SYMBOL CONDITIONS Typical Application Circuit with C1 = 8.2pF, see Table 1 for details (Notes 5, 6) (Notes 5, 6) Using M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) (Notes 5, 6) MIN 2000 1800 50 -3 0 TYP MAX 3000 2800 500 +3 UNITS MHz MHz MHz dBm 2 ______________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss SYMBOL LC CONDITIONS fRF = 2300MHz to 2900MHz, TC = +25NC (Note 8) fRF = 2305MHz to 2360MHz fRF = 2500MHz to 2570MHz Loss Variation vs. Frequency DLC fRF = 2570MHz to 2620MHz fRF = 2500MHz to 2690MHz fRF = 2700MHz to 2900MHz Conversion Loss Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient TCCL NFSSB TCNF TC = -40NC to +85NC No blockers present fRF = 2300MHz to 2900MHz, single sideband, no blockers present, TC = -40NC to +85NC +8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2300MHz, fBLOCKER = 2795MHz, PLO = 0dBm, VCC = 5.0V, TC = +25NC (Notes 5, 9) TC = +25NC (Notes 5, 10) fRF = 2300MHz fRF = 2600MHz fRF = 2900MHz fRF1 = 2300MHz, fRF2 = 2301MHz, fLO = 2000MHz (Note 5) fRF1 = 2600MHz, fRF2 = 2601MHz, fLO = 2300MHz (Note 8) fRF1 = 2900MHz, fRF2 = 2901MHz, fLO = 2600MHz (Note 5) 22.5 20.6 17.6 34 MIN 6.7 TYP 7.2 0.15 0.15 0.15 0.15 0.20 0.0071 7.3 0.019 dB/NC dB dB/NC dB MAX 8.1 UNITS dB MAX2042 Noise Figure Under Blocking NFB 20.8 23.4 22.1 20.7 36 25 dB Input 1dB Compression Point IP1dB dBm Third-Order Input Intercept Point IIP3 PRF1 = PRF2 = 0dBm/tone, PLO = 0dBm, TC = +25NC 31 34 dBm 28 30 IIP3 Variation with TC 2RF - 2LO Spur Rejection 3RF - 3LO Spur Rejection RF Input Return Loss LO Input Return Loss 2x2 3x3 RLRF RLLO fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm/ tone, TC = -40NC to +85NC fSPUR = fLO + 150MHz (Note 5) fSPUR = fLO + 100MHz (Note 5) PRF = -10dBm PRF = 0dBm PRF = -10dBm 64 54 80 60 Q0.5 70 60 92 72 17 15 dB dBc dBc dB dB PRF = 0dBm LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance _______________________________________________________________________________________ 3 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER IF Output Impedance SYMBOL ZIF CONDITIONS Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit PLO = +3dBm (Note 8) fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8) PLO = +3dBm fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8) 30 MIN TYP 50 MAX UNITS I IF Output Return Loss RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port RLIF 18 37 -28 -36 -24.2 -16 -22 dB dB dBm dBm dBm +3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC 2RF - 2LO Spur Rejection 3RF - 3LO Spur Rejection 2x2 3x3 SYMBOL LC DLC TCCL NFSSB TCNF IP1dB IIP3 (Note 8) fRF = 2300MHz to 2900MHz, any 100MHz band TC = -40NC to +85NC No blockers present Single sideband, no blockers present, TC = -40NC to +85NC (Note 10) fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone, TC = -40NC to +85NC PRF = -10dBm, fSPUR = fLO + 150MHz PRF = 0dBm, fSPUR = fLO + 150MHz PRF = -10dBm, fSPUR = fLO + 100MHz PRF = 0dBm, fSPUR = fLO + 100MHz CONDITIONS MIN TYP 7.2 0.2 0.008 7.5 0.019 20 31 MAX UNITS dB dB dB/NC dB dB/NC dBm dBm dB dBc dBc Q0.25 72 62 87 67 4 ______________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued) (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER RF Input Return Loss LO Input Return Loss IF Output Impedance SYMBOL RLRF RLLO ZIF CONDITIONS LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit fRF = 2300MHz to 2900MHz, PLO = +3dBm fLO = 1800MHz to 2800MHz, PLO = +3dBm fLO = 1800MHz to 2800MHz, PLO = +3dBm fLO = 1800MHz to 2800MHz, PLO = +3dBm MIN TYP 15 12 50 MAX UNITS dB dB I MAX2042 IF Output Return Loss Minimum RF-to-IF Isolation Maximum LO Leakage at RF Port Maximum 2LO Leakage at RF Port Maximum LO Leakage at IF Port RLIF 18 36 -24.5 -24 -20 dB dB dBm dBm dBm +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 2300MHz to 2900MHz, fIF =200MHz, fLO = 2100MHz to 2700MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point SYMBOL LC DLC TCCL IP1dB IIP3 CONDITIONS (Note 8) fRF = 2300MHz to 2960MHz, any 100MHz band TC = -40NC to +85NC (Note 10) fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = +25NC (Note 8) fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC LO - 2IF LO + 2IF LO - 3IF LO + 3IF POUT = 0dBm (Note 9) 30 MIN TYP 6.8 0.2 0.007 22.7 32.4 MAX UNITS dB dB dB/NC dBm dBm IIP3 Variation with TC LO Q 2IF Spur Rejection LO Q 3IF Spur Rejection Output Noise Floor 1x2 1x3 Q0.5 70 67 82 77 -163 dB dBc dBc dBm/Hz 5 _______________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 +3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC LO Q 2IF Spur Rejection LO Q 3IF Spur Rejection Output Noise Floor 1x2 1x3 SYMBOL LC DLC TCCL IP1dB IIP3 fRF = 2300MHz to 2900MHz, any 100MHz band TC = -40NC to +85NC (Note 10) fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC LO - 2IF LO + 2IF LO - 3IF LO + 3IF POUT = 0dBm (Note 9) CONDITIONS MIN TYP 6.8 0.15 0.008 19 29.5 MAX UNITS dB dB dB/NC dBm dBm dB dBc dBc dBm/Hz Q0.75 72 70 73 70 -160 Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 8: 100% production tested for functional performance. Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 10: Maximum reliable continuous input power applied to the RF port of this device is +20dBm from a 50I source. 6 ______________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2042 +5.0V Downconverter Curves CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc01 CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc02 CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc03 9 TC = +85NC CONVERSION LOSS (dB) 8 TC = +25NC 9 9 CONVERSION LOSS (dB) 7 7 PLO = -3dBm, 0dBm, +3dBm 6 CONVERSION LOSS (dB) 8 8 7 VCC = 4.75V, 5.0V, 5.25V 6 6 TC = -40NC 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2042 toc04 INPUT IP3 vs. RF FREQUENCY MAX2042 toc05 INPUT IP3 vs. RF FREQUENCY VCC = 5.25V PRF = 0dBm/TONE MAX2042 toc06 40 PRF = 0dBm/TONE TC = -40NC INPUT IP3 (dBm) 35 TC = +85NC 30 TC = +25NC 40 PRF = 0dBm/TONE 40 INPUT IP3 (dBm) INPUT IP3 (dBm) 35 35 VCC = 4.75V 30 VCC = 5.0V 30 PLO = -3dBm, 0dBm, +3dBm 25 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 25 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 25 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 2RF-2LO RESPONSE vs. RF FREQUENCY MAX2042 toc07 2RF-2LO RESPONSE vs. RF FREQUENCY MAX2042 toc08 2RF-2LO RESPONSE vs. RF FREQUENCY PRF = 0dBm 2RF-2LO RESPONSE (dBc) 70 65 60 55 50 VCC = 4.75V, 5.0V, 5.25V MAX2042 toc09 75 TC = +85NC 2RF-2LO RESPONSE (dBc) 70 65 60 55 50 2000 2200 2400 2600 2800 TC = +25NC TC = -40NC PRF = 0dBm 75 PRF = 0dBm 2RF-2LO RESPONSE (dBc) 70 65 60 55 50 PLO = 0dBm PLO = -3dBm 2000 2200 2400 2600 2800 PLO = +3dBm 75 3000 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) _______________________________________________________________________________________ 7 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +5.0V Downconverter Curves 3RF-3LO RESPONSE vs. RF FREQUENCY MAX2042 toc10 3RF-3LO RESPONSE vs. RF FREQUENCY MAX2042 toc11 3RF-3LO RESPONSE vs. RF FREQUENCY PRF = 0dBm 3RF-3LO RESPONSE (dBc) MAX2042 toc12 85 PRF = 0dBm 3RF-3LO RESPONSE (dBc) 85 PRF = 0dBm 3RF-3LO RESPONSE (dBc) 85 75 75 75 TC = -40NC, +25NC, +85NC 65 65 PLO = -3dBm, 0dBm, +3dBm 65 VCC = 4.75V, 5.0V, 5.25V 55 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 55 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 55 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX2042 toc13 NOISE FIGURE vs. RF FREQUENCY MAX2042 toc14 NOISE FIGURE vs. RF FREQUENCY MAX2042 toc15 10 9 NOISE FIGURE (dB) 8 7 6 5 4 2000 2200 2400 2600 2800 TC = +25NC TC = -40NC TC = +85NC 10 9 NOISE FIGURE (dB) 8 7 6 PLO = -3dBm, 0dBm, +3dBm 5 4 10 9 NOISE FIGURE (dB) 8 7 6 VCC = 4.75V, 5.0V, 5.25V 5 4 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX2042 toc16 INPUT P1dB vs. RF FREQUENCY MAX2042 toc17 INPUT P1dB vs. RF FREQUENCY VCC = 5.25V MAX2042 toc18 25 TC = -40NC 23 INPUT P1dB (dBm) 25 25 23 INPUT P1dB (dBm) TC = +25NC PLO = -3dBm, 0dBm, +3dBm 21 INPUT P1dB (dBm) 23 VCC = 4.75V 21 21 VCC = 5.0V 19 TC = +85NC 17 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 19 19 17 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 17 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 8 ______________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2042 +5.0V Downconverter Curves LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc19 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc21 -10 TC = -40NC LO LEAKAGE AT IF PORT (dBm) -10 -10 LO LEAKAGE AT IF PORT (dBm) -20 TC = +85NC -30 -20 PLO = -3dBm, 0dBm, +3dBm -30 LO LEAKAGE AT IF PORT (dBm) -20 TC = +25NC VCC = 4.75V, 5.0V, 5.25V -30 -40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) -40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) -40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2042 toc22 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2042 toc23 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2042 toc24 60 60 60 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = +85NC 40 40 RF-TO-IF ISOLATION (dB) 50 50 50 40 30 TC = -40NC 20 2000 2200 TC = +25NC 30 PLO = -3dBm, 0dBm, +3dBm 30 VCC = 4.75V, 5.0V, 5.25V 20 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQENCY (MHz) RF FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc25 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc26 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc27 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -25 -25 -25 -30 TC = -40NC, +25NC, +85NC -35 -30 PLO = -3dBm, 0dBm, +3dBm -35 -30 VCC = 4.75V, 5.0V, 5.25V -35 -40 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) -40 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) -40 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) _______________________________________________________________________________________ 9 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +5.0V Downconverter Curves 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc28 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc29 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc30 -20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 TC = +25NC -50 1800 2000 2200 2400 2600 TC = +85NC TC = -40NC -20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 -50 PLO = -3dBm, 0dBm, +3dBm 1800 2000 2200 2400 2600 -20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 -50 VCC = 4.75V, 5.0V, 5.25V 2800 2800 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX2042 toc31 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) 10 VCC = 4.75V, 5.0V, 5.25V 15 20 25 30 MAX2042 toc32 0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 2000 2200 2400 2600 2800 0 PLO = -3dBm, 0dBm, +3dBm 3000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX2042 toc33 SUPPLY CURRENT vs. TEMPERATURE (TC) VCC = 5.25V VCC = 5.0V MAX2042 toc34 0 150 145 SUPPLY CURRENT (mA) 140 135 130 125 VCC = 4.75V LO PORT RETURN LOSS (dB) 10 PLO = -3dBm 20 PLO = +3dBm PLO = 0dBm 30 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 120 -40 -15 10 35 60 85 TEMPERATURE (C) 10 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2042 +3.3V Downconverter Curves CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc35 CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc36 CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc37 9 TC = +85NC CONVERSION LOSS (dB) 8 TC = +25NC 9 9 CONVERSION LOSS (dB) 7 7 PLO = -3dBm, 0dBm, +3dBm 6 CONVERSION LOSS (dB) 8 8 7 VCC = 3.0V, 3.3V, 3.6V 6 6 TC = -40NC 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2042 toc38 INPUT IP3 vs. RF FREQUENCY MAX2042 toc39 INPUT IP3 vs. RF FREQUENCY VCC = 3.3V, 3.6V PRF = 0dBm/TONE MAX2042 toc40 35 TC = -40NC PRF = 0dBm/TONE 35 PRF = 0dBm/TONE 35 INPUT IP3 (dBm) INPUT IP3 (dBm) INPUT IP3 (dBm) 30 30 PLO = -3dBm, 0dBm, +3dBm 25 30 VCC = 3.0V 25 TC = +25NC 25 TC = +85NC 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 2RF-2LO RESPONSE vs. RF FREQUENCY MAX2042 toc41 2RF-2LO RESPONSE vs. RF FREQUENCY MAX2042 toc42 2RF-2LO RESPONSE vs. RF FREQUENCY VCC = 3.6V 2RF-2LO RESPONSE (dBc) 70 65 60 VCC = 3.0V 55 50 PRF = 0dBm VCC = 3.3V MAX2042 toc43 75 PRF = 0dBm 2RF-2LO RESPONSE (dBc) 70 65 60 55 TC = -40NC 50 2000 2200 2400 2600 2800 TC = +25NC 75 PRF = 0dBm 2RF-2LO RESPONSE (dBc) 70 PLO = +3dBm 65 60 PLO = 0dBm 55 50 PLO = -3dBm 75 TC = +85NC 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) ______________________________________________________________________________________ 11 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +3.3V Downconverter Curves 3RF-3LO RESPONSE vs. RF FREQUENCY MAX2042 toc44 3RF-3LO RESPONSE vs. RF FREQUENCY MAX2042 toc45 3RF-3LO RESPONSE vs. RF FREQUENCY PRF = 0dBm VCC = 3.6V 3RF-3LO RESPONSE (dBc) 70 MAX2042 toc46 MAX2042 toc52 MAX2042 toc49 80 PRF = 0dBm 3RF-3LO RESPONSE (dBc) 80 PRF = 0dBm 3RF-3LO RESPONSE (dBc) 80 70 70 60 TC = -40NC, +25NC, +85NC 60 PLO = -3dBm, 0dBm, +3dBm 60 VCC = 3.3V VCC = 3.0V 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX2042 toc47 NOISE FIGURE vs. RF FREQUENCY MAX2042 toc48 NOISE FIGURE vs. RF FREQUENCY 10 9 NOISE FIGURE (dB) 8 7 6 5 4 VCC = 3.6V VCC = 3.3V VCC = 3.0V 10 9 NOISE FIGURE (dB) 8 7 6 5 4 2000 2200 2400 2600 2800 TC = -40C TC = +85C 10 9 NOISE FIGURE (dB) 8 7 6 5 4 PLO = -3dBm, 0dBm, +3dBm TC = +25C 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX2042 toc50 INPUT P1dB vs. FREQUENCY MAX2042 toc51 INPUT P1dB vs. FREQUENCY 24 VCC = 3.6V 22 INPUT P1dB (dBm) VCC = 3.3V 24 24 22 INPUT P1dB (dBm) TC = -40C 22 INPUT P1dB (dBm) 20 TC = +25C 18 TC = +85C 20 PLO = -3dBm, 0dBm, +3dBm 18 20 18 VCC = 3.0V 16 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 16 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 16 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 12 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2042 +3.3V Downconverter Curves LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc53 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc54 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc55 -10 TC = -40NC LO LEAKAGE AT IF PORT (dBm) -20 TC = +85NC -30 -10 LO LEAKAGE AT IF PORT (dBm) -10 LO LEAKAGE AT IF PORT (dBm) -20 PLO = -3dBm, 0dBm, +3dBm -30 -20 VCC = 3.0V, 3.3V, 3.6V -30 TC = +25NC -40 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700 -40 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700 -40 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2042 toc56 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2042 toc57 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2042 toc58 60 60 60 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = +25NC 40 TC = -40NC 30 40 RF-TO-IF ISOLATION (dB) 50 TC = +85NC 50 50 40 30 PLO = -3dBm, 0dBm, +3dBm 30 VCC = 3.0V, 3.3V, 3.6V 20 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 20 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 20 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc59 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc60 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc61 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -25 -25 -25 VCC = 3.6V -30 -30 -30 -35 TC = -40NC, +25NC, +85NC -35 PLO = -3dBm, 0dBm, +3dBm -35 VCC = 3.0V VCC = 3.3V -40 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800 -40 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800 -40 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800 ______________________________________________________________________________________ 13 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +3.3V Downconverter Curves 2LO LEAKAGE AT RF PORT vs. FREQUENCY MAX2042 toc62 2LO LEAKAGE AT RF PORT vs. FREQUENCY MAX2042 toc63 2LO LEAKAGE AT RF PORT vs. FREQUENCY MAX2042 toc64 -20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 TC = +85NC -45 -50 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) TC = -40NC TC = +25NC -20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 -50 PLO = -3dBm, 0dBm, +3dBm -20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 -50 VCC = 3.0V, 3.3V, 3.6V 2800 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800 RF PORT RETURN LOSS vs. RF FREQUENCY MAX2042 toc65 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30 MAX2042 toc66 0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) PLO = -3dBm, 0dBm, +3dBm 0 VCC = 3.0V, 3.3V, 3.6V 3000 50 140 230 320 410 IF FREQUENCY (MHz) 500 LO PORT RETURN LOSS vs. LO FREQUENCY MAX2042 toc67 SUPPLY CURRENT vs. TEMPERATURE VCC = 3.6V SUPPLY CURRENT (mA) 125 VCC = 3.3V MAX2042 toc68 0 130 LO PORT RETURN LOSS (dB) PLO = -3dBm 10 120 20 PLO = 0dBm PLO = +3dBm 115 VCC = 3.0V 30 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700 110 -40 -15 10 35 TEMPERATURE (NC) 60 85 14 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2042 +5.0V Upconverter Curves CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc69 CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc70 CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc71 9 TC = +85C CONVERSION LOSS (dB) 8 TC = +25C 7 9 9 CONVERSION LOSS (dB) 7 CONVERSION LOSS (dB) 8 8 7 6 TC = -40C 6 PLO = -3dBm, 0dBm, +3dBm 6 VCC = 4.75V, 5.0V, 5.25V 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2042 toc72 INPUT IP3 vs. RF FREQUENCY MAX2042 toc73 INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE 38 INPUT IP3 (dBm) 36 VCC = 5.0V 34 32 VCC = 4.75V 30 28 VCC = 5.25V MAX2042 toc74 MAX2042 toc77 40 PIF = 0dBm/TONE 38 INPUT IP3 (dBm) 36 34 TC = +25C 32 30 TC = +85C 28 2000 2200 2400 2600 2800 TC = -40C 40 PIF = 0dBm/TONE 38 INPUT IP3 (dBm) 36 34 32 30 28 PLO = -3dBm, 0dBm, +3dBm 40 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO-2IF RESPONSE vs. RF FREQUENCY MAX2042 toc75 LO-2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm PLO = +3dBm LO-2IF RESPONSE (dBc) 75 MAX2042 toc76 LO-2IF RESPONSE vs. RF FREQUENCY 85 PIF = 0dBm 85 TC = +85C LO-2IF RESPONSE (dBc) 75 PIF = 0dBm 85 TC = +25C 65 65 PLO = 0dBm 55 PLO = -3dBm 45 LO-2IF RESPONSE (dBc) 75 65 55 TC = -40C 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 55 VCC = 4.75V, 5.0V, 5.25V 45 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +5.0V Upconverter Curves LO+2IF RESPONSE vs. RF FREQUENCY MAX2042 toc78 LO+2IF RESPONSE vs. RF FREQUENCY MAX2042 toc79 LO+2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm MAX2042 toc80 MAX2042 toc86 MAX2042 toc83 85 PIF = 0dBm 85 PLO = +3dBm LO+2IF RESPONSE (dBc) 75 PIF = 0dBm 85 LO+2IF RESPONSE (dBc) LO+2IF RESPONSE (dBc) 75 TC = +85C 65 TC = +25C 55 TC = -40C 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 75 VCC = 4.75V, 5.0V, 5.25V 65 65 PLO = 0dBm 55 PLO = -3dBm 45 2000 2200 2400 55 45 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO-3IF RESPONSE vs. RF FREQUENCY MAX2042 toc81 LO-3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm MAX2042 toc82 LO-3IF RESPONSE vs. RF FREQUENCY 100 PIF = 0dBm VCC = 5.25V VCC = 5.0V 100 TC = -40C PIF = 0dBm 100 LO-3IF RESPONSE (dBc) LO-3IF RESPONSE (dBc) TC = +25C 80 80 PLO = -3dBm, 0dBm, +3dBm 70 LO-3IF RESPONSE (dBc) 90 90 90 80 VCC = 4.75V 70 TC = +85C 70 60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) LO+3IF RESPONSE vs. RF FREQUENCY MAX2042 toc84 LO+3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm MAX2042 toc85 LO+3IF RESPONSE vs. RF FREQUENCY 100 PIF = 0dBm 100 PIF = 0dBm 100 LO+3IF RESPONSE (dBc) LO+3IF RESPONSE (dBc) LO+3IF RESPONSE (dBc) 90 TC = -40C 90 90 VCC = 5.25V 80 80 PLO = -3dBm, 0dBm, +3dBm 80 VCC = 4.75V VCC = 5.0V 70 TC = +85C TC = +25C 70 70 60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 16 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2042 +5.0V Upconverter Curves LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc87 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc88 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) TC = -40C, +25C, +85C -25 -25 -30 -30 PLO = -3dBm, 0dBm, +3dBm -35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) -35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc89 IF LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40C IF LEAKAGE AT RF PORT (dBm) -50 -60 -70 -80 -90 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) TC = +25C MAX2042 toc90 -20 LO LEAKAGE AT RF PORT (dBm) -40 -25 -30 VCC = 4.75V, 5.0V, 5.25V TC = +85C -35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc91 IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc92 -40 -50 -60 -70 -80 -90 1800 2000 2200 2400 2600 PLO = -3dBm, 0dBm, +3dBm -40 -50 VCC = 5.0V, 5.25V -60 -70 -80 VCC = 4.75V -90 IF LEAKAGE AT RF PORT (dBm) 2800 IF LEAKAGE AT RF PORT (dBm) 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) LO FREQUENCY (MHz) ______________________________________________________________________________________ 17 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +5.0V Upconverter Curves RF PORT RETURN LOSS vs. RF FREQUENCY MAX2042 toc93 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30 MAX2042 toc94 0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 2000 2200 2400 2600 2800 PLO = -3dBm, 0dBm, +3dBm 0 VCC = 4.75V, 5.0V, 5.25V 3000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX2042 toc95 SUPPLY CURRENT vs. TEMPERATURE (TC) VCC = 5.25V VCC = 5.0V MAX2042 toc96 0 5 10 15 20 25 30 1700 1900 2100 2300 2500 PLO = 0dBm PLO = -3dBm PLO = +3dBm 150 145 SUPPLY CURRENT (mA) 140 135 130 125 120 VCC = 4.75V LO PORT RETURN LOSS (dB) 2700 -40 -15 10 35 60 85 LO FREQUENCY (MHz) TEMPERATURE (C) 18 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2042 +3.3V Upconverter Curves CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc97 CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc98 CONVERSION LOSS vs. RF FREQUENCY MAX2042 toc99 9 TC = +85C CONVERSION LOSS (dB) 8 TC = +25C 7 9 9 CONVERSION LOSS (dB) 7 CONVERSION LOSS (dB) 8 8 7 6 TC = -40C 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 6 PLO = -3dBm, 0dBm, +3dBm 6 VCC = 3.0V, 3.3V, 3.6V 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2042 toc100 INPUT IP3 vs. RF FREQUENCY MAX2042 toc101 INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE 32 INPUT IP3 (dBm) 30 28 26 24 22 VCC = 3.6V MAX2042 toc102 34 PIF = 0dBm/TONE 32 INPUT IP3 (dBm) 30 28 26 24 22 2000 2200 2400 2600 2800 TC = +85C TC = +25C TC = -40C 34 PIF = 0dBm/TONE 32 INPUT IP3 (dBm) 30 28 26 24 22 PLO = +3dBm PLO = 0dBm PLO = -3dBm 34 VCC = 3.3V VCC = 3.0V 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO-2IF RESPONSE vs. RF FREQUENCY MAX2042 toc103 LO-2IF RESPONSE vs. RF FREQUENCY MAX2042 toc104 LO-2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO-2IF RESPONSE (dBc) 75 MAX2042 toc105 85 PIF = 0dBm TC = +85C LO-2IF RESPONSE (dBc) 75 85 PIF = 0dBm PLO = +3dBm LO-2IF RESPONSE (dBc) 75 85 65 TC = +25C 55 TC = -40C 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 65 PLO = 0dBm 55 PLO = -3dBm 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 65 55 VCC = 3.0V, 3.3V, 3.6V 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 19 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +3.3V Upconverter Curves LO+2IF RESPONSE vs. RF FREQUENCY MAX2042 toc106 LO+2IF RESPONSE vs. RF FREQUENCY MAX2042 toc107 LO+2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO+2IF RESPONSE (dBc) 75 VCC = 3.0V, 3.3V, 3.6V MAX2042 toc108 85 PIF = 0dBm LO+2IF RESPONSE (dBc) 75 TC = +85C 85 PIF = 0dBm LO+2IF RESPONSE (dBc) 75 PLO = +3dBm 85 65 TC = +25C 65 PLO = 0dBm PLO = -3dBm 45 65 55 TC = -40C 45 2000 2200 2400 55 55 45 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2600 2800 3000 RF FREQUENCY (MHz) LO-3IF RESPONSE vs. RF FREQUENCY MAX2042 toc109 LO-3IF RESPONSE vs. RF FREQUENCY MAX2042 toc110 LO-3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm VCC = 3.3V LO-3IF RESPONSE (dBc) 80 VCC = 3.6V MAX2042 toc111 90 TC = +85C LO-3IF RESPONSE (dBc) 80 PIF = 0dBm 90 PIF = 0dBm LO-3IF RESPONSE (dBc) 80 90 70 TC = -40C 60 TC = +25C 70 PLO = -3dBm, 0dBm, +3dBm 60 70 VCC = 3.0V 60 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) LO+3IF RESPONSE vs. RF FREQUENCY MAX2042 toc112 LO+3IF RESPONSE vs. RF FREQUENCY MAX2042 toc113 LO+3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm 80 LO+3IF RESPONSE (dBc) VCC = 3.6V 70 60 50 40 VCC = 3.0V MAX2042 toc114 90 PIF = 0dBm 80 LO+3IF RESPONSE (dBc) 70 60 TC = +85C 50 40 2000 2200 2400 2600 2800 TC = +25C TC = -40C 90 PIF = 0dBm 80 LO+3IF RESPONSE (dBc) 70 60 50 40 90 PLO = -3dBm, 0dBm, +3dBm VCC = 3.3V 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 20 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2042 +3.3V Upconverter Curves LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc115 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc116 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -25 TC = -40C, +25C, +85C -25 PLO = -3dBm, 0dBm, +3dBm -30 -30 -35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) -35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc117 IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc118 -20 LO LEAKAGE AT RF PORT (dBm) -40 -50 -60 -70 -80 -90 TC = -40C TC = +25C TC = +85C -25 VCC = 3.6V VCC = 3.3V -30 VCC = 3.0V -35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT (dBm) 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc119 IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc120 -40 -50 -60 -70 -80 -90 1800 2000 2200 2400 2600 PLO = -3dBm, 0dBm, +3dBm -40 -50 -60 -70 -80 -90 IF LEAKAGE AT RF PORT (dBm) IF LEAKAGE AT RF PORT (dBm) VCC = 3.0V VCC = 3.6V VCC = 3.3V 1800 2000 2200 2400 2600 2800 2800 LO FREQUENCY (MHz) LO FREQUENCY (MHz) ______________________________________________________________________________________ 21 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +3.3V Upconverter Curves RF PORT RETURN LOSS vs. RF FREQUENCY MAX2042 toc121 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) MAX2042 toc122 MAX2042 toc124 0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 PLO = -3dBm, 0dBm, +3dBm 10 15 20 25 30 2000 2200 2400 2600 2800 0 10 VCC = 3.0V, 3.3V, 3.6V 15 20 25 30 3000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX2042 toc123 SUPPLY CURRENT vs. TEMPERATURE (TC) 130 VCC = 3.6V SUPPLY CURRENT (mA) 125 VCC = 3.3V 0 5 10 15 20 25 30 1700 1900 2100 2300 2500 PLO = 0dBm PLO = +3dBm LO PORT RETURN LOSS (dB) PLO = -3dBm 120 115 VCC = 3.0V 110 2700 -40 -15 10 35 60 85 LO FREQUENCY (MHz) TEMPERATURE (C) 22 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Pin Description PIN 1, 6, 8, 14 2 3, 4, 5, 10, 12, 13, 17 7 9, 15 11 16, 20 18, 19 -- NAME VCC RF GND LOBIAS GND LO GND IF-, IF+ EP FUNCTION Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide a DC-blocking capacitor if required. Capacitor also provides some RF match tuning. Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q1% resistor (nominal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA. Ground. Not internally connected. Ground these pins or leave unconnected. Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. Capacitor also provides some LO match tuning. Ground. Connect all ground pins and the exposed pad (EP) together. Mixer Differential IF Output/Input Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance. MAX2042 ______________________________________________________________________________________ 23 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Detailed Description When used as a low-side LO injection mixer in the 2300MHz to 2900MHz band, the MAX2042 provides +36dBm of IIP3, with typical noise figure and conversion loss values of only 7.3dB and 7.2dB, respectively. The integrated baluns and matching circuitry allow for 50I single-ended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2042's input to a -3dBm to +3dBm range. The IF port incorporates a differential interface, which is ideal for providing enhanced 2RF-2LO performance. Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX2042 is specified to operate over an RF input range of 2000MHz to 3000MHz, an LO range of 1800MHz to 2800MHz, and an IF range of 50MHz to 500MHz. The external IF transformer sets the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). The MAX2042 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 15dB over the RF frequency range of 2500MHz to 2900MHz. The MAX2042 is optimized for low-side LO injection applications with an 1800MHz to 2800MHz LO frequency range. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. The core of the MAX2042 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. IIP3, 2RF-2LO rejection, and noise-figure performance are typically +36dBm, 70dBc, and 7.3dB, respectively. The MAX2042 has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components. Differential IF Interface The MAX2042's differential ports are ideal for providing enhanced 2RF-2LO performance. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. Typical applications typically use a 1:1 transformer such as the MABAES0029 to transform the 50I differential interface to a 50I single-ended interface. The loss of this transformer is included in the data presented in this data sheet. In addition, the IF interface directly supports single-ended AC-coupled signals into or out of IF+ by shorting IF- to ground, and a 1kI resistor from IF+ to ground. Applications Information The RF input provides a 50I match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to 3000MHz. The LO input is internally matched to 50I; use a 2pF DC-blocking capacitor to cover operations spanning the 1800MHz to 2800MHz range. The IF output impedance is 50I (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). The MAX2042 has one pin (LOBIAS) that allows an external resistor to set the internal bias current. A nominal value for this resistor is shown in Tables 1 and 2. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. See the Typical Operating Characteristics to evaluate the power vs. performance tradeoff. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 43%. See the +3.3V Supply AC Electrical Characteristics table and the relevant +3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs. Input and Output Matching RF Interface and Balun LO Inputs, Buffer, and Balun Reduced-Power Mode High-Linearity Mixer 24 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX2042 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. Layout Considerations Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Tables 1 and 2. Power-Supply Bypassing MAX2042 The exposed pad (EP) of the MAX2042's 20-pin thin QFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2042 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. Exposed Pad RF/Thermal Considerations Table 1. Downconverter Mode Component Values DESIGNATION C1 C2, C6, C8, C11 C3, C9 C5 C10 R1 T1 U1 QTY 1 4 0 0 1 1 1 1 DESCRIPTION 8.2pF microwave capacitor (0402) 0.01FF microwave capacitors (0402) Not installed, capacitors Not installed, capacitor 2pF microwave capacitor (0402) 698I Q1% resistor (0402) 1:1 IF balun MABAES0029 MAX2042 IC (20 TQFN) COMPONENT SUPPLIER Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- -- Murata Electronics North America, Inc. Digi-Key Corp. M/A-Com, Inc. Maxim Integrated Products, Inc. Table 2. Upconverter Mode Component Values DESIGNATION C1 C2, C6, C8, C11 C3, C9 C5 C10 R1 T1 U1 QTY 1 4 0 0 1 1 1 1 DESCRIPTION 8.2pF microwave capacitor (0402) 0.01FF microwave capacitors (0402) Not installed, capacitors Not installed, capacitor 2pF microwave capacitor (0402) 698I Q1% resistor (0402) 1:1 IF balun MABAES0029 MAX2042 IC (20 TQFN) COMPONENT SUPPLIER Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- -- Murata Electronics North America, Inc. Digi-Key Corp. M/A-Com, Inc. Maxim Integrated Products, Inc. ______________________________________________________________________________________ 25 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042 Typical Application Circuit 3 N.C. 2 1 4 5 T1 IF 1:1 C5 GND GND VCC GND 16 15 GND IF+ IF18 20 C3 C2 VCC C1 RF 1 19 17 RF 2 MAX2042 14 C11 GND VCC GND 3 13 GND 4 EP 12 GND C10 LO INPUT GND 5 6 LOBIAS VCC 7 VCC 8 9 GND 10 GND 11 LO VCC C6 R1 NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. VCC C9 PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. C8 26 _____________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Chip Information PROCESS: SiGe BiCMOS PACKAGE TYPE 20 TQFN-EP Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE CODE T2055+3 DOCUMENT NO. 21-0140 MAX2042 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 27 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. |
Price & Availability of MAX2042ETP
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |