![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
19-5002; Rev 0; 10/09 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer General Description The MAX2044 single, high-linearity upconversion/downconversion mixer provides +32.5dBm input IP3, 8.5dB noise figure, and 7.7dB conversion loss for 2300MHz to 4000MHz LTE, WiMAXK, and MMDS wireless infrastructure applications. With an ultra-wide 2600MHz to 4300MHz LO frequency range, the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. In addition to offering excellent linearity and noise performance, the MAX2044 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2044 requires a nominal LO drive of 0dBm, and supply current is typically 138mA at VCC = 5.0V or 121mA at VCC = 3.3V. The MAX2044 is pin similar with the MAX2029/MAX2031 650MHz to 1000MHz mixers and the MAX2039/MAX2041/ MAX2042 1700MHz to 3000MHz mixers, making this entire family of up/downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX2044 is available in a compact 20-pin thin QFN (5mm x 5mm) package with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range. Features S 2300MHz to 4000MHz RF Frequency Range S 2600MHz to 4300MHz LO Frequency Range S 50MHz to 500MHz IF Frequency Range S 7.7dB Conversion Loss S 8.5dB Noise Figure S +32.5dBm Typical Input IP3 S 21dBm Typical Input 1dB Compression Point S 68dBc Typical 2RF - 2LO Spurious Rejection at PRF = -10dBm S Integrated LO Buffer S Integrated RF and LO Baluns for Single-Ended Inputs S Low -3dBm to +3dBm LO Drive S Pin Similar with the MAX2029/MAX2031 Series of 650MHz to 1000MHz Mixers and the MAX2039/ MAX2041/MAX2042 Series of 1700MHz to 3000MHz Mixers S Single 5.0V or 3.3V Supply S External Current-Setting Resistor Provides Option for Operating Device in Reduced-Power/ReducedPerformance Mode MAX2044 Applications 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems PART MAX2044ETP+ MAX2044ETP+T Ordering Information TEMP RANGE -40NC to +85NC -40NC to +85NC PIN-PACKAGE 20 Thin QFN-EP* 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. WiMAX is a trademark of WiMAX Forum. _______________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 ABSOLUTE MAXIMUM RATINGS VCC to GND..........................................................-0.3V to +5.5V IF+, IF-, LOBIAS to GND .......................... -0.3V to (VCC + 0.3V) RF, LO Input Power ....................................................... +20dBm RF, LO Current (RF and LO is DC shorted to GND through a balun)................................... .............50mA Continuous Power Dissipation (Note 1) .................................5W BJA (Notes 2, 3) ............................................................ +38NC/W BJC (Notes 1, 3) ............................................................ +13NC/W Operating Case Temperature Range (Note 4) ..................................... TC = -40NC to +85NC Junction Temperature .....................................................+150NC Storage Temperature Range............................ -65NC to +150NC Lead Temperature (soldering, 10s) ................................+300NC Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC CONDITIONS MIN 4.75 TYP 5.0 138 MAX 5.25 155 UNITS V mA 3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current, VCC = 3.3V CONDITIONS MIN 3.0 TYP 3.3 121 MAX 3.6 135 UNITS V mA RECOMMENDED AC OPERATING CONDITIONS PARAMETER SYMBOL CONDITIONS Typical Application Circuit with C1 = 3.3nH and C12 = 0.3pF, see Table 1 for details (Note 5) Typical Application Circuit with C1 = 8.2pF and C12 not installed, see Table 1 for details (Note 5) (Note 5) Using an M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5) (Note 5) MIN 2300 TYP MAX 3000 MHz 3000 2600 4000 4300 MHz UNITS RF Frequency Range fRF LO Frequency fLO IF Frequency fIF 50 500 MHz LO Drive 2 PLO -3 0 +3 dBm ______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6) PARAMETER Conversion Loss SYMBOL LC CONDITIONS TC = +25NC (Notes 7, 8) fRF = 3100MHz to 3900MHz, over any 100MHz band fRF = 3100MHz to 3900MHz, over any 200MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC (Note 9) fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone (Note 7, 8) IIP3 fRF = 3500MHz, fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone. TC = +25NC (Notes 7, 8) fRF = 3100MHz to 3900MHz, fIF = 300MHz, fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone, TC = -40NC to +85NC Single sideband, no blockers present (Notes 7, 10) Single sideband, no blockers present, TC = +25NC (Notes 7, 10) Single sideband, no blockers present, TC = -40NC to +85NC +8dBm blocker tone applied to RF port, fBLOCKER = 3750MHz, fRF = 3500MHz, fLO = 3200MHz, PLO = 0dBm, VCC = 5.0V, TC = +25NC (Notes 7, 10, 11) fSPUR = fLO + 150MHz, TC = +25NC fSPUR = fLO + 150MHz PRF = -10dBm (Notes 7, 10) PRF = 0dBm (Notes 7, 8) PRF = -10dBm (Notes 7, 10) PRF = 0dBm (Notes 7, 8) 62 52 60 50 28.3 30.0 MIN 7.2 TYP 7.7 0.15 dB 0.25 0.01 21 32.5 dBm 32.5 dB/NC dBm MAX 8.5 UNITS dB MAX2044 Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient Input Compression Point TCCL IP1dB Third-Order Input Intercept Point Third-Order Input Intercept Point Variation Over Temperature 0.5 dBm 8.5 8.5 0.018 10 dB 9.2 dB/NC Noise Figure NFSSB Noise Figure Temperature Coefficient Noise Figure Under Blocking Conditions TCNF NFB 17.5 20 dB 68 58 68 58 dBc 2RF - 2LO Spurious Rejection 2x2 _______________________________________________________________________________________ 3 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6) PARAMETER SYMBOL fSPUR = fLO + 100MHz, TC = +25NC fSPUR = fLO + 100MHz RF Input Return Loss LO Input Return Loss IF Output Impedance RLRF RLLO ZIF CONDITIONS PRF = -10dBm (Notes 7, 10) PRF = 0dBm (Notes 7, 8) PRF = -10dBm (Notes 7, 10) PRF = 0dBm (Notes 7, 8) MIN 82 62 81 61 TYP 89 69 89 69 16 14 50 dB dB I dBc MAX UNITS 3RF - 3LO Spurious Rejection 3x3 LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit fRF = 3500MHz, PLO = +3dBm (Note 8) fLO = 2500MHz to 4000MHz, PLO = +3dBm (Notes 7, 8) PLO = +3dBm PLO = +3dBm (Note 8) 33 IF Output Return Loss RLIF 16 dB RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port 42 -31 -35 -28 dB dBm dBm dBm 4 ______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6) PARAMETER Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Input Compression Point Third-Order Input Intercept Point Third-Order Input Intercept Variation Over Temperature Noise Figure Noise Figure Temperature Coefficient 2RF - 2LO Spurious Rejection 3RF - 3LO Spurious Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance NFSSB TCNF 2x2 3x3 RLRF RLLO ZIF SYMBOL LC DLC TCCL IP1dB IIP3 fRF = 3100MHz to 3900MHz, over any 100MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC (Note 9) fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone, TC = -40NC to +85NC Single sideband, no blockers present Single sideband, no blockers present, TC = -40NC to +85NC fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm PRF = 0dBm PRF = -10dBm PRF = 0dBm CONDITIONS MIN TYP 7.7 0.1 0.009 19.5 29.5 0.2 8.5 0.018 69 64 73.3 63.3 18 19 50 MAX UNITS dB dB dB/NC dBm dBm dB dB dB/NC dBc dBc dB dB I MAX2044 LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit fRF = 3100MHz to 3900MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm IF Output Return Loss RLIF 14.5 dB RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port 41 -30 -25.6 -27 dB dBm dBm dBm _______________________________________________________________________________________ 5 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6) PARAMETER Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Third-Order Input Intercept Point Third-Order Input Intercept Variation Over Temperature 2LO - 2RF Spurious Rejection 3LO - 3RF Spurious Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance 2x2 3x3 RLRF RLLO ZIF SYMBOL LC DLC TCCL IIP3 fRF = 2300MHz to 2900MHz, over any 100MHz band fRF = 2300MHz to 2900MHz, TC = -40NC to +85NC fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone, TC = -40NC to +85NC fSPUR = fLO - 150MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = 0dBm PRF = -10dBm PRF = 0dBm CONDITIONS MIN TYP 8.1 0.15 0.008 34 0.2 67 62 79 69 23 17 50 MAX UNITS dB dB dB/NC dBm dB dBc dBc dB dB I LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit fRF = 2300MHz to 2900MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm IF Output Return Loss RLIF 13.6 dB RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port 39 -29.5 -43 -28.6 dB dBm dBm dBm 6 ______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6) PARAMETER Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Third-Order Input Intercept Point Third-Order Input Intercept Variation Over Temperature 2LO - 2RF Spurious Rejection 3LO - 3RF Spurious Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance 2x2 3x3 RLRF RLLO ZIF SYMBOL LC DLC TCCL IIP3 fRF = 3100MHz to 3900MHz, over any 100MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone, TC = -40NC to +85NC fSPUR = fLO - 150MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = 0dBm PRF = -10dBm PRF = 0dBm CONDITIONS MIN TYP 7.8 0.15 0.008 31.5 0.2 67 62 76.7 66.7 17.7 16.3 50 MAX UNITS dB dB dB/NC dBm dB dBc dBc dB dB I MAX2044 LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit fRF = 3100MHz to 3900MHz, PLO = +3dBm fLO = 3400MHz to 4200MHz, PLO = +3dBm fLO = 3400MHz to 4200MHz, PLO = +3dBm fLO = 3400MHz to 4200MHz, PLO = +3dBm IF Output Return Loss RLIF 15 dB RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port 41 -30 -21 -27.2 dB dBm dBm dBm _______________________________________________________________________________________ 7 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3300MHz, fIF = 200MHz, unless otherwise noted.) PARAMETER Conversion Loss Conversion Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Input Third-Order Intercept Point IIP3 Variation with TC LO 2IF Spur LO 3IF Spur Output Noise Floor 1x2 1x3 SYMBOL LC fRF = 3100MHz to 3900MHz, over any 100MHz band fRF = 3100MHz to 3900MHz, over any 200MHz band TC = -40NC to +85NC fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone, TC = -40NC to +85NC LO - 2IF LO + 2IF LO - 3IF LO + 3IF POUT = 0dBm (Note 11) CONDITIONS MIN TYP 7.7 0.2 dB 0.25 0.01 33.5 0.2 61.6 60.2 78.2 80.3 -165 dB/NC dBm dB dBc dBc dBm/Hz MAX UNITS dB DLC TCCL IIP3 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.) PARAMETER Conversion Loss Conversion Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Input Third-Order Intercept Point IIP3 Variation with TC SYMBOL LC fRF = 3100MHz to 3900MHz, over any 100MHz band fRF = 3100MHz to 3900MHz, over any 200MHz band TC = -40NC to +85NC fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone, TC = -40NC to +85NC CONDITIONS MIN TYP 8 0.2 dB 0.25 0.01 29.5 0.2 dB/NC dBm dB MAX UNITS dB DLC TCCL IIP3 8 ______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued) (Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.) PARAMETER LO 2IF Spur LO 3IF Spur Output Noise Floor Note 5: SYMBOL 1x2 1x3 LO - 2IF LO + 2IF LO - 3IF LO + 3IF POUT = 0dBm (Note 11) CONDITIONS MIN TYP 58.9 57.8 69.4 69.5 -165 MAX UNITS dBc dBc dBm/Hz MAX2044 Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 6: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 7: Guaranteed by design and characterization. Note 8: 100% production tested for functional performance. Note 9: Maximum reliable continuous input power applied to the RF or IF port of this device is +20dBm from a 50I source. Note 10: Not production tested. Note 11: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc01 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc02 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc03 10 10 10 CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85C TC = +25C 8 8 CONVERSION LOSS (dB) 9 9 9 8 7 TC = -40C 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 7 PLO = -3dBm, 0dBm, +3dBm 7 VCC = 4.75V, 5.0V, 5.25V 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) _______________________________________________________________________________________ 9 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) INPUT IP3 vs. RF FREQUENCY MAX2044 toc04 INPUT IP3 vs. RF FREQUENCY MAX2044 toc05 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 35 INPUT IP3 (dBm) MAX2044 toc06 MAX2044 toc12 MAX2044 toc09 37 PRF = 0dBm/TONE 35 INPUT IP3 (dBm) 33 31 29 27 3000 3200 3400 3600 3800 TC = -40C 37 PRF = 0dBm/TONE 35 INPUT IP3 (dBm) 33 31 PLO = 0dBm 29 27 PLO = -3dBm PLO = +3dBm 37 VCC = 5.25V 33 31 29 27 TC = +25C TC = +85C VCC = 5.0V VCC = 4.75V 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2RF - 2LO RESPONSE vs. RF FREQUENCY MAX2044 toc07 2RF - 2LO RESPONSE vs. RF FREQUENCY PRF = 0dBm 2RF - 2LO RESPONSE (dBc) 70 PLO = +3dBm 65 60 55 MAX2044 toc08 2RF - 2LO RESPONSE vs. RF FREQUENCY 75 PRF = 0dBm 2RF - 2LO RESPONSE (dBc) 70 65 60 55 VCC = 4.75V VCC = 5.25V 75 PRF = 0dBm 2RF - 2LO RESPONSE (dBc) 70 TC = +85C 65 TC = -40C 60 55 TC = +25C 50 3000 3200 3400 3600 3800 75 PLO = 0dBm PLO = -3dBm 50 4000 3000 3200 3400 3600 3800 4000 50 3000 3200 VCC = 5.0V 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX2044 toc10 3RF - 3LO RESPONSE vs. RF FREQUENCY PRF = 0dBm 3RF - 3LO RESPONSE (dBc) MAX2044 toc11 3RF - 3LO RESPONSE vs. RF FREQUENCY 85 PRF = 0dBm 3RF - 3LO RESPONSE (dBc) 85 PRF = 0dBm 3RF - 3LO RESPONSE (dBc) 85 75 TC = -40C TC = +25C 75 PLO = +3dBm 75 VCC = 5.25V 65 TC = +85C 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 65 PLO = 0dBm PLO = -3dBm 65 VCC = 5.0V VCC = 4.75V 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 10 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2044 NOISE FIGURE vs. RF FREQUENCY MAX2044 toc13 NOISE FIGURE vs. RF FREQUENCY MAX2044 toc14 NOISE FIGURE vs. RF FREQUENCY MAX2044 toc15 11 10 NOISE FIGURE (dB) 9 8 7 6 5 3000 3200 3400 3600 3800 TC = -40C TC = +85C TC = +25C 11 10 NOISE FIGURE (dB) 9 8 7 6 5 PLO = -3dBm, 0dBm, +3dBm 11 10 NOISE FIGURE (dB) 9 8 7 6 5 VCC = 5.0V VCC = 4.75V VCC = 5.25V 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX2044 toc16 INPUT P1dB vs. RF FREQUENCY MAX2044 toc17 INPUT P1dB vs. RF FREQUENCY MAX2044 toc18 25 25 25 23 INPUT P1dB (dBm) TC = -40C TC = +25C 23 INPUT P1dB (dBm) 21 TC = +85C 21 PLO = -3dBm 19 PLO = 0dBm INPUT P1dB (dBm) PLO = +3dBm 23 VCC = 5.25V 21 VCC = 5.0V 19 VCC = 4.75V 19 17 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 17 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 17 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc19 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc21 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -20 TC = -40C -20 LO LEAKAGE AT IF PORT (dBm) -20 -30 TC = +25C TC = +85C -30 PLO = -3dBm, 0dBm, +3dBm -30 VCC = 4.75V, 5.0V, 5.25V -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) ______________________________________________________________________________________ 11 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc22 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc23 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc24 60 60 60 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = +85C 40 TC = -40C TC = +25C 40 PLO = -3dBm, 0dBm, +3dBm 30 RF-TO-IF ISOLATION (dB) 50 50 50 40 VCC = 4.75V, 5.0V, 5.25V 30 30 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc25 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc26 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc27 -20 LO LEAKAGE AT RF PORT (dBm) TC = +85C -30 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -30 PLO = -3dBm, 0dBm, +3dBm -40 -30 VCC = 4.75V, 5.0V, 5.25V -40 TC = +25C -40 TC = -40C -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc28 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc29 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc30 -20 2LO LEAKAGE AT RF PORT (dBm) TC = -40C -30 TC = +25C TC = +85C -40 -20 2LO LEAKAGE AT RF PORT (dBm) PLO = +3dBm -20 2LO LEAKAGE AT RF PORT (dBm) VCC = 4.75V -30 -30 PLO = 0dBm PLO = -3dBm -40 VCC = 5.0V -40 VCC = 5.25V -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 LO FREQUENCY (MHz) 12 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) RF PORT RETURN LOSS vs. RF FREQUENCY MAX2044 toc31 MAX2044 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 3200MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 VCC = 4.75V, 5.0V, 5.25V 25 30 MAX2044 toc32 0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 3000 3200 3400 3600 3800 PLO = -3dBm, 0dBm, +3dBm 0 4000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX2044 toc33 SUPPLY CURRENT vs. TEMPERATURE (TC) VCC = 5.25V 145 SUPPLY CURRENT (mA) 140 135 130 125 VCC = 4.75V VCC = 5.0V MAX2044 toc34 0 150 LO PORT RETURN LOSS (dB) 10 PLO = -3dBm 20 PLO = 0dBm PLO = +3dBm 30 2500 3000 3500 4000 LO FREQUENCY (MHz) 120 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 13 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc35 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc36 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc37 10 VCC = 3.3V CONVERSION LOSS (dB) 9 10 VCC = 3.3V CONVERSION LOSS (dB) 9 10 TC = +85C TC = +25C 8 8 CONVERSION LOSS (dB) 9 8 7 TC = -40C 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 7 PLO = -3dBm, 0dBm, +3dBm 7 VCC = 3.0V, 3.3V, 3.6V 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2044 toc38 INPUT IP3 vs. RF FREQUENCY MAX2044 toc39 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 32 INPUT IP3 (dBm) 30 28 VCC = 3.3V 26 24 VCC = 3.0V VCC = 3.6V MAX2044 toc40 MAX2044 toc43 34 32 INPUT IP3 (dBm) 30 28 26 24 3000 3200 3400 TC = +25C VCC = 3.3V PRF = 0dBm/TONE TC = +85C 34 32 INPUT IP3 (dBm) 30 28 26 24 VCC = 3.3V PRF = 0dBm/TONE 34 TC = -40C PLO = -3dBm, 0dBm, +3dBm 3600 3800 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2RF - 2LO RESPONSE vs. RF FREQUENCY MAX2044 toc41 2RF - 2LO RESPONSE vs. RF FREQUENCY VCC = 3.3V PRF = 0dBm PLO = +3dBm MAX2044 toc42 2RF - 2LO RESPONSE vs. RF FREQUENCY 80 PRF = 0dBm 80 VCC = 3.3V PRF = 0dBm 80 2RF - 2LO RESPONSE (dBc) 2RF - 2LO RESPONSE (dBc) 70 TC = +85C 60 TC = +25C TC = -40C 70 2RF - 2LO RESPONSE (dBc) 70 VCC = 3.3V VCC = 3.6V 60 PLO = 0dBm PLO = -3dBm 60 VCC = 3.0V 50 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 14 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2044 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX2044 toc44 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX2044 toc45 3RF - 3LO RESPONSE vs. RF FREQUENCY PRF = 0dBm VCC = 3.6V 3RF - 3LO RESPONSE (dBc) 65 MAX2044 toc46 75 TC = +25C 65 VCC = 3.3V PRF = 0dBm 75 VCC = 3.3V PRF = 0dBm 75 3RF - 3LO RESPONSE (dBc) 3RF - 3LO RESPONSE (dBc) 65 TC = -40C 55 TC = +85C PLO = -3dBm, 0dBm, +3dBm 55 VCC = 3.0V 55 VCC = 3.3V 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX2044 toc47 NOISE FIGURE vs. RF FREQUENCY MAX2044 toc48 NOISE FIGURE vs. RF FREQUENCY MAX2044 toc49 11 TC = +85C 10 NOISE FIGURE (dB) 9 8 7 6 5 3000 3200 3400 3600 VCC = 3.3V TC = +25C 11 10 NOISE FIGURE (dB) 9 8 7 6 5 PLO = +3dBm VCC = 3.3V PLO = -3dBm PLO = 0dBm 11 10 NOISE FIGURE (dB) 9 8 VCC = 3.6V 7 6 5 VCC = 3.0V VCC = 3.3V TC = -40C 3800 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX2044 toc50 INPUT P1dB vs. RF FREQUENCY MAX2044 toc51 INPUT P1dB vs. RF FREQUENCY MAX2044 toc52 23 TC = -40C 21 INPUT P1dB (dBm) TC = +25C VCC = 3.3V 23 VCC = 3.3V 21 INPUT P1dB (dBm) 23 21 INPUT P1dB (dBm) VCC = 3.6V 19 TC = +85C 17 19 PLO = -3dBm, 0dBm, +3dBm 17 19 VCC = 3.3V 17 VCC = 3.0V 15 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 15 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 15 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc53 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc54 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc55 -10 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) -10 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) -10 -20 TC = -40C -20 PLO = -3dBm, 0dBm, +3dBm LO LEAKAGE AT IF PORT (dBm) -20 TC = +25C -30 TC = +85C -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) -30 -30 VCC = 3.0V, 3.3V, 3.6V -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc56 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc57 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc58 60 VCC = 3.3V RF-TO-IF ISOLATION (dB) 50 60 VCC = 3.3V RF-TO-IF ISOLATION (dB) 50 60 TC = +85C 40 TC = -40C TC = +25C 40 PLO = -3dBm, 0dBm, +3dBm 30 RF-TO-IF ISOLATION (dB) 50 40 VCC = 3.0V, 3.3V, 3.6V 30 30 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc59 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc60 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc61 -20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -30 TC = -40C, +25C, +85C -40 -30 PLO = -3dBm, 0dBm, +3dBm -40 -30 VCC = 3.0V, 3.3V, 3.6V -40 -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 LO FREQUENCY (MHz) 16 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc62 MAX2044 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc63 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY VCC = 3.0V 2LO LEAKAGE AT RF PORT (dBm) -25 MAX2044 toc64 -15 TC = -40C 2LO LEAKAGE AT RF PORT (dBm) -25 TC = +25C VCC = 3.3V -15 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -25 -15 VCC = 3.3V VCC = 3.6V -35 TC = +85C -35 PLO = -3dBm, 0dBm, +3dBm -45 -35 -45 -45 -55 2500 3000 3500 4000 LO FREQUENCY (MHz) -55 2500 3000 3500 4000 LO FREQUENCY (MHz) -55 2500 3000 3500 4000 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX2044 toc65 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 3200MHz MAX2044 toc66 0 5 10 15 20 25 VCC = 3.3V fIF = 300MHz 0 5 IF PORT RETURN LOSS (dB) 10 15 20 25 RF PORT RETURN LOSS (dB) VCC = 3.0V, 3.3V, 3.6V PLO = -3dBm, 0dBm, +3dBm 30 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 30 50 140 230 320 410 500 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX2044 toc67 VCC = 3.3V LO PORT RETURN LOSS (dB) 130 SUPPLY CURRENT (mA) VCC = 3.6V 10 PLO = -3dBm 125 120 115 110 105 -40 -15 10 35 60 85 TEMPERATURE (C) VCC = 3.0V VCC = 3.3V 20 PLO = 0dBm PLO = +3dBm 30 2500 3000 3500 4000 LO FREQUENCY (MHz) ______________________________________________________________________________________ MAX2044 toc68 0 SUPPLY CURRENT vs.TEMPERATURE (TC) 135 17 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc69 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc70 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc71 10 TC = +85C CONVERSION LOSS (dB) 9 TC = +25C 10 10 CONVERSION LOSS (dB) 8 8 PLO = -3dBm, 0dBm, +3dBm 7 CONVERSION LOSS (dB) 9 9 8 VCC = 4.75V, 5.0V, 5.25V 7 7 TC = -40C 6 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 6 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 6 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2044 toc72 INPUT IP3 vs. RF FREQUENCY MAX2044 toc73 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE VCC = 5.25V MAX2044 toc74 37 35 INPUT IP3 (dBm) 33 PRF = 0dBm/TONE 37 35 INPUT IP3 (dBm) 33 TC = -40C PRF = 0dBm/TONE 37 35 INPUT IP3 (dBm) 33 31 29 27 PLO = +3dBm TC = +25C 31 29 27 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) TC = +85C PLO = 0dBm 31 29 27 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) PLO = -3dBm VCC = 5.0V VCC = 4.75V 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX2044 toc75 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX2044 toc76 2LO - 2RF RESPONSE vs. RF FREQUENCY PRF = 0dBm MAX2044 toc77 80 PRF = 0dBm TC = +85C 80 PRF = 0dBm PLO = +3dBm 80 2LO - 2RF RESPONSE (dBc) 2LO - 2RF RESPONSE (dBc) 2LO - 2RF RESPONSE (dBc) 70 70 70 VCC = 4.75V 60 TC = -40C 50 2300 2450 TC = +25C 60 PLO = -3dBm PLO = 0dBm 60 VCC = 5.25V 50 VCC = 5.0V 50 2600 2750 2900 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 18 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX2044 toc78 MAX2044 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX2044 toc79 3LO - 3RF RESPONSE vs. RF FREQUENCY PRF = 0dBm MAX2044 toc80 85 PRF = 0dBm TC = +85C 85 PRF = 0dBm PLO = +3dBm 85 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) 75 TC = +25C 75 3LO - 3RF RESPONSE (dBc) 75 VCC = 5.25V 65 TC = -40C 65 PLO = 0dBm PLO = -3dBm 65 VCC = 5.0V VCC = 4.75V 55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc81 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc82 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc83 -20 TC = +25C TC = +85C -30 -20 -20 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -25 -25 LO LEAKAGE AT IF PORT (dBm) -25 VCC = 4.75V -30 PLO = -3dBm, 0dBm, +3dBm -35 -30 VCC = 5.0V -35 VCC = 5.25V -35 TC = -40C -40 2600 2750 2900 3050 3200 LO FREQUENCY (MHz) -40 2600 2750 2900 3050 3200 LO FREQUENCY (MHz) -40 2600 2750 2900 3050 3200 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc84 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc85 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc86 60 TC = -40C RF-TO-IF ISOLATION (dB) 50 60 60 RF-TO-IF ISOLATION (dB) 40 TC = +25C 40 PLO = -3dBm, 0dBm, +3dBm 30 RF-TO-IF ISOLATION (dB) 50 50 40 VCC = 4.75V, 5.0V, 5.25V 30 TC = +85C 30 20 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 20 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 20 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) ______________________________________________________________________________________ 19 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc87 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc88 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc89 -20 TC = +85C LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -30 TC = +25C -30 PLO = -3dBm, 0dBm, +3dBm -40 -30 VCC = 4.75V, 5.0V, 5.25V -40 TC = -40C -40 -50 2300 2725 3150 3575 4000 LO FREQUENCY (MHz) -50 2300 2725 3150 3575 4000 LO FREQUENCY (MHz) -50 2300 2725 3150 3575 4000 LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc90 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc91 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc92 -20 2LO LEAKAGE AT RF PORT (dBm) -20 2LO LEAKAGE AT RF PORT (dBm) -20 2LO LEAKAGE AT RF PORT (dBm) -30 TC = -40C -40 TC = +25C -30 PLO = +3dBm -40 PLO = 0dBm -30 VCC = 5.25V -40 VCC = 5.0V -50 TC = +85C -60 2300 2725 3150 3575 4000 LO FREQUENCY (MHz) -50 PLO = -3dBm -50 VCC = 4.75V -60 -60 2300 2725 3150 3575 4000 LO FREQUENCY (MHz) 2300 2725 3150 3575 4000 LO FREQUENCY (MHz) 20 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) RF PORT RETURN LOSS vs. RF FREQUENCY MAX2044 toc93 MAX2044 IF PORT RETURN LOSS vs. IF FREQUENCY VCC = 4.75V, 5.0V, 5.25V 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30 fLO = 2900MHz fLO = 3200MHz MAX2044 toc94 MAX2044 toc96 0 5 10 15 20 25 30 fIF = 300MHz 0 RF PORT RETURN LOSS (dB) PLO = -3dBm, 0dBm, +3dBm fLO = 2600MHz 2300 2450 2600 2750 2900 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX2044 toc95 SUPPLY CURRENT vs. TEMPERATURE (TC) 150 145 SUPPLY CURRENT (mA) 140 135 130 125 VCC = 4.75V VCC = 5.0V VCC = 5.25V 0 PLO = -3dBm 10 LO PORT RETURN LOSS (dB) 20 PLO = 0dBm 30 PLO = +3dBm 40 2500 3000 3500 4000 LO FREQUENCY (MHz) 120 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 21 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc97 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc98 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc99 10 10 10 CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85C 8 8 CONVERSION LOSS (dB) 9 TC = +25C 9 9 8 7 TC = -40C 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 7 PLO = -3dBm, 0dBm, +3dBm 7 VCC = 4.75V, 5.0V, 5.25V 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2044 toc100 INPUT IP3 vs. RF FREQUENCY MAX2044 toc101 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE MAX2044 toc102 37 35 INPUT IP3 (dBm) 33 31 PRF = 0dBm/TONE 37 35 INPUT IP3 (dBm) 33 31 PRF = 0dBm/TONE 37 35 INPUT IP3 (dBm) TC = -40C PLO = +3dBm VCC = 5.0V 33 31 29 27 VCC = 4.75V VCC = 5.25V TC = +25C 29 27 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) TC = +85C PLO = -3dBm 29 27 3000 3200 PLO = 0dBm 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX2044 toc103 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX2044 toc104 2LO - 2RF RESPONSE vs. RF FREQUENCY PRF = 0dBm VCC = 5.25V 70 VCC = 5.0V MAX2044 toc105 80 PRF = 0dBm 80 PRF = 0dBm 80 2LO - 2RF RESPONSE (dBc) 2LO - 2RF RESPONSE (dBc) 70 TC = +85C 70 PLO = +3dBm 60 TC = -40C TC = +25C 60 PLO = -3dBm PLO = 0dBm 2LO - 2RF RESPONSE (dBc) 60 VCC = 4.75V 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 22 _____________________________________________________________________________________ SiGe, High-Linearity, 3000MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX2044 toc106 MAX2044 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX2044 toc107 3LO - 3RF RESPONSE vs. RF FREQUENCY PRF = 0dBm MAX2044 toc108 85 PRF = 0dBm 85 PRF = 0dBm 85 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) 75 TC = -40C 75 3LO - 3RF RESPONSE (dBc) PLO = +3dBm 75 PLO = 0dBm VCC = 5.25V VCC = 5.0V 65 TC = +25C TC = +85C 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 65 PLO = -3dBm 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 65 VCC = 4.75V 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc109 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc110 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2044 toc111 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -20 TC = -40C -20 LO LEAKAGE AT IF PORT (dBm) -20 PLO = -3dBm, 0dBm, +3dBm -30 VCC = 4.75V, 5.0V, 5.25V -30 -30 TC = +25C -40 3300 3500 3700 3900 4100 4300 LO FREQUENCY (MHz) TC = +85C -40 3300 3500 3700 3900 4100 4300 LO FREQUENCY (MHz) -40 3300 3500 3700 3900 4100 4300 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc112 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc113 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2044 toc114 60 60 60 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = +25C, +85C 40 TC = -40C 40 PLO = -3dBm, 0dBm, +3dBm 30 RF-TO-IF ISOLATION (dB) 50 50 50 40 VCC = 4.75V, 5.0V, 5.25V 30 30 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 20 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 23 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc115 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc116 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc117 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -30 TC = +85C -30 -30 -40 TC = +25C -40 -40 TC = -40C -50 3000 3500 PLO = -3dBm, 0dBm, +3dBm -50 -50 3000 3500 4000 4500 3000 4500 VCC = 4.75V, 5.0V, 5.25V 3500 4000 4500 4000 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc118 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc119 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc120 -10 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT (dBm) PLO = +3dBm -20 PLO = 0dBm -10 2LO LEAKAGE AT RF PORT (dBm) -20 TC = -40C -20 VCC = 4.75V -30 -30 TC = +25C TC = +85C -30 PLO = -3dBm -40 -40 -40 VCC = 5.0V VCC = 5.25V -50 3000 3400 3800 4200 LO FREQUENCY (MHz) -50 3000 3400 3800 4200 LO FREQUENCY (MHz) -50 3000 3400 3800 4200 LO FREQUENCY (MHz) 24 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) RF PORT RETURN LOSS vs. RF FREQUENCY MAX2044 toc121 MAX2044 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 3800MHz MAX2044 toc122 0 5 10 15 20 25 30 fIF = 300MHz 0 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30 RF PORT RETURN LOSS (dB) VCC = 4.75V, 5.0V, 5.25V PLO = -3dBm, 0dBm, +3dBm 3000 3200 3400 3600 3800 4000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY PLO = -3dBm LO PORT RETURN LOSS (dB) 10 20 PLO = 0dBm 30 40 50 3000 3500 4000 4500 LO FREQUENCY (MHz) PLO = +3dBm MAX2044 toc123 SUPPLY CURRENT vs. TEMPERATURE (TC) VCC = 5.25V MAX2044 toc124 0 150 145 SUPPLY CURRENT (mA) 140 135 130 125 120 -40 -15 10 35 60 VCC = 4.75V VCC = 5.0V 85 TEMPERATURE (C) ______________________________________________________________________________________ 25 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc125 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc126 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc127 10 10 10 CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85C TC = +25C 8 8 CONVERSION LOSS (dB) 9 9 9 8 7 TC = -40C 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 7 PLO = -3dBm, 0dBm, +3dBm 7 VCC = 4.75V, 5.0V, 5.25V 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2044 toc128 INPUT IP3 vs. RF FREQUENCY MAX2044 toc129 INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE VCC = 5.25V 34 INPUT IP3 (dBm) MAX2044 toc130 MAX2044 toc133 36 PIF = 0dBm/TONE TC = -40C 34 INPUT IP3 (dBm) 36 PIF = 0dBm/TONE PLO = +3dBm 34 INPUT IP3 (dBm) 36 32 TC = +25C TC = +85C 32 PLO = 0dBm 32 PLO = -3dBm VCC = 5.0V VCC = 4.75V 30 30 30 28 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 28 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 28 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO - 2IF RESPONSE vs. RF FREQUENCY MAX2044 toc131 LO - 2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO - 2IF RESPONSE (dBc) 75 PLO = +3dBm 65 PLO = 0dBm 55 PLO = -3dBm MAX2044 toc132 LO - 2IF RESPONSE vs. RF FREQUENCY 85 PIF = 0dBm VCC = 5.0V LO - 2IF RESPONSE (dBc) 75 VCC = 5.25V 65 VCC = 4.75V 55 85 PIF = 0dBm LO - 2IF RESPONSE (dBc) 75 85 TC = +85C TC = +25C 65 55 TC = -40C 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 26 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2044 LO + 2IF RESPONSE vs. RF FREQUENCY MAX2044 toc134 LO + 2IF RESPONSE vs. RF FREQUENCY MAX2044 toc135 LO + 2IF RESPONSE vs. RF FREQUENCY VCC = 5.0V VCC = 5.25V PIF = 0dBm MAX2044 toc136 85 PIF = 0dBm LO + 2IF RESPONSE (dBc) 75 85 PIF = 0dBm LO + 2IF RESPONSE (dBc) 75 85 65 TC = +85C 55 TC = -40C 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) TC = +25C 65 PLO = 0dBm 55 PLO = +3dBm LO + 2IF RESPONSE (dBc) 75 65 VCC = 4.75V 55 PLO = -3dBm 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO - 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc137 LO - 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc138 LO - 3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO - 3IF RESPONSE (dBc) 90 VCC = 4.75V, 5.0V, 5.25V 80 MAX2044 toc139 100 PIF = 0dBm LO - 3IF RESPONSE (dBc) 90 TC = -40C TC = +25C 80 100 PIF = 0dBm LO - 3IF RESPONSE (dBc) 90 100 80 70 TC = +85C 70 PLO = -3dBm, 0dBm, +3dBm 70 60 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 60 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 60 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc140 LO + 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc141 LO + 3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO + 3IF RESPONSE (dBc) 90 VCC = 5.25V MAX2044 toc142 100 PIF = 0dBm LO + 3IF RESPONSE (dBc) 90 TC = -40C 100 PIF = 0dBm LO + 3IF RESPONSE (dBc) 90 100 80 TC = +85C TC = +25C 80 PLO = -3dBm, 0dBm, +3dBm 70 80 VCC = 5.0V 70 VCC = 4.75V 70 60 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 60 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 60 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 27 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc143 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc144 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc145 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -25 TC = +85C TC = +25C -25 -25 -30 TC = -40C -30 PLO = -3dBm, 0dBm, +3dBm -35 -30 VCC = 4.75V, 5.0V, 5.25V -35 -35 -40 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) -40 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) -40 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc146 IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc147 IF LEAKAGE AT RF PORT vs. LO FREQUENCY VCC = 5.25V MAX2044 toc148 -50 TC = -40C IF LEAKAGE AT RF PORT (dBm) -60 -70 -80 TC = +85C -90 -100 2800 3000 3200 3400 3600 -50 -60 -70 -80 -90 -100 -50 -60 -70 -80 -90 -100 VCC = 5.0V VCC = 4.75V IF LEAKAGE AT RF PORT (dBm) PLO = +3dBm TC = +25C PLO = 0dBm PLO = -3dBm 3800 2800 3000 3200 3400 3600 3800 IF LEAKAGE AT RF PORT (dBm) 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) 28 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) RF PORT RETURN LOSS vs. RF FREQUENCY MAX2044 toc149 MAX2044 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 3200MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30 VCC = 4.75V, 5.0V, 5.25V MAX2044 toc150 0 fIF = 200MHz RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 3000 3200 3400 3600 3800 PLO = -3dBm, 0dBm, +3dBm 0 4000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX2044 toc151 SUPPLY CURRENT vs. TEMPERATURE (TC) VCC = 5.25V MAX2044 toc152 0 5 PLO = -3dBm 10 PLO = 0dBm 15 20 25 30 2500 3000 3500 150 145 SUPPLY CURRENT (mA) 140 135 130 125 120 VCC = 4.75V VCC = 5.0V LO PORT RETURN LOSS (dB) PLO = +3dBm 4000 -40 -15 10 35 60 85 LO FREQUENCY (MHz) TEMPERATURE (C) ______________________________________________________________________________________ 29 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc153 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc154 CONVERSION LOSS vs. RF FREQUENCY MAX2044 toc155 10 VCC = 3.3V CONVERSION LOSS (dB) 9 TC = +85C 10 VCC = 3.3V CONVERSION LOSS (dB) 9 10 TC = +25C 8 8 PLO = -3dBm, 0dBm, +3dBm 7 CONVERSION LOSS (dB) 9 8 VCC = 3.0V, 3.3V, 3.6V 7 7 TC = -40C 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2044 toc156 INPUT IP3 vs. RF FREQUENCY MAX2044 toc157 INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE 32 INPUT IP3 (dBm) 30 28 26 24 VCC = 3.6V MAX2044 toc158 34 32 TC = -40C INPUT IP3 (dBm) 30 28 26 24 3000 3200 3400 3600 3800 TC = +25C VCC = 3.3V PIF = 0dBm/TONE 34 32 INPUT IP3 (dBm) 30 28 PLO = -3dBm, 0dBm, +3dBm 26 24 VCC = 3.3V PIF = 0dBm/TONE 34 TC = +85C VCC = 3.0V VCC = 3.3V 3000 3200 3400 3600 3800 4000 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO - 2IF RESPONSE vs. RF FREQUENCY MAX2044 toc159 LO - 2IF RESPONSE vs. RF FREQUENCY MAX2044 toc160 LO - 2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO - 2IF RESPONSE (dBc) 75 VCC = 3.6V 65 MAX2044 toc161 85 VCC = 3.3V PIF = 0dBm LO - 2IF RESPONSE (dBc) 75 TC = +85C 65 85 VCC = 3.3V PIF = 0dBm LO - 2IF RESPONSE (dBc) 75 PLO = +3dBm 65 85 55 TC = -40C 45 3000 3200 3400 3600 TC = +25C 55 PLO = -3dBm PLO = 0dBm 55 VCC = 3.3V VCC = 3.0V 45 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 45 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 30 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) MAX2044 LO + 2IF RESPONSE vs. RF FREQUENCY MAX2044 toc162 LO + 2IF RESPONSE vs. RF FREQUENCY MAX2044 toc163 LO + 2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO + 2IF RESPONSE (dBc) 75 MAX2044 toc164 85 VCC = 3.3V PIF = 0dBm LO + 2IF RESPONSE (dBc) 75 TC = +85C 65 85 VCC = 3.3V PIF = 0dBm LO + 2IF RESPONSE (dBc) 75 PLO = +3dBm 65 85 65 VCC = 3.6V 55 TC = -40C 45 3000 3200 3400 3600 TC = +25C 55 PLO = 0dBm PLO = -3dBm 55 VCC = 3.0V 45 VCC = 3.3V 45 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO - 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc165 LO - 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc166 LO - 3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm VCC = 3.6V LO - 3IF RESPONSE (dBc) 70 MAX2044 toc167 80 VCC = 3.3V PIF = 0dBm LO - 3IF RESPONSE (dBc) TC = +25C 70 80 VCC = 3.3V PIF = 0dBm LO - 3IF RESPONSE (dBc) 70 PLO = -3dBm, 0dBm, +3dBm 60 80 TC = +85C 60 TC = -40C VCC = 3.0V 60 VCC = 3.3V 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc168 LO + 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc169 LO + 3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO + 3IF RESPONSE (dBc) 80 VCC = 3.6V 70 VCC = 3.3V 60 VCC = 3.0V MAX2044 toc170 90 VCC = 3.3V PIF = 0dBm LO + 3IF RESPONSE (dBc) 80 90 VCC = 3.3V PIF = 0dBm LO + 3IF RESPONSE (dBc) 80 90 70 TC = +25C 60 TC = -40C 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) TC = +85C 70 60 PLO = -3dBm, 0dBm, +3dBm 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 31 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc171 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc172 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc173 -20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -25 TC = +85C -30 TC = +25C -35 TC = -40C -20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -25 -20 LO LEAKAGE AT RF PORT (dBm) -25 -30 PLO = -3dBm, 0dBm, +3dBm -35 -30 VCC = 3.0V, 3.3V, 3.6V -35 -40 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) -40 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) -40 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc174 IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc175 IF LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc176 -60 VCC = 3.3V IF LEAKAGE AT RF PORT (dBm) -70 TC = -40C -80 -60 VCC = 3.3V IF LEAKAGE AT RF PORT (dBm) -70 PLO = 0dBm -80 PLO = -3dBm -60 VCC = 3.0V -70 IF LEAKAGE AT RF PORT (dBm) -80 -90 TC = +25C -100 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) TC = +85C -90 PLO = +3dBm -90 VCC = 3.6V VCC = 3.3V -100 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) -100 2800 3000 3200 3400 3600 3800 LO FREQUENCY (MHz) 32 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) RF PORT RETURN LOSS vs. RF FREQUENCY MAX2044 toc177 MAX2044 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 3200MHz 5 IF PORT RETURN LOSS (dB) VCC = 3.0V, 3.3V, 3.6V 10 15 20 25 30 MAX2044 toc178 0 5 10 15 20 25 30 3000 3200 3400 3600 3800 VCC = 3.3V fIF = 200MHz PLO = -3dBm, 0dBm, +3dBm 0 RF PORT RETURN LOSS (dB) 4000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY VCC = 3.3V LO PORT RETURN LOSS (dB) 5 10 PLO = -3dBm 15 20 25 30 2500 3000 3500 4000 LO FREQUENCY (MHz) PLO = +3dBm PLO = 0dBm MAX2044 toc179 SUPPLY CURRENT vs. TEMPERATURE (TC) MAX2044 toc180 0 135 130 SUPPLY CURRENT (mA) VCC = 3.6V 125 120 115 110 105 -40 -15 10 35 60 VCC = 3.0V VCC = 3.3V 85 TEMPERATURE (C) ______________________________________________________________________________________ 33 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Pin Configuration/Functional Diagram TOP VIEW GND GND 20 GND 16 15 GND IF+ IF18 19 17 VCC + 1 MAX2044 RF 2 14 VCC GND 3 13 GND GND 4 EP* 12 GND GND 5 6 VCC 7 LOBIAS 8 VCC 9 GND 10 GND 11 LO *EXPOSED PAD Pin Description PIN 1, 6, 8, 14 2 3, 9, 13, 15 4, 5, 10, 12, 17 7 11 16, 20 18, 19 NAME VCC RF GND GND LOBIAS LO GND IF-, IF+ FUNCTION Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Single-Ended 50I RF Input/Output. Internally matched and DC shorted to GND through a balun. Provide an input DC-blocking capacitor if required. Ground. Not internally connected. Pins can be grounded. Ground. Internally connected to the exposed pad (EP). Connect all ground pins and the exposed pad together. LO Output Bias Resistor for LO Buffer. Connect a 698I 1% resistor (138mA bias condition) from LOBIAS to ground. Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. Ground. Connect pins to ground. Mixer Differential IF Output/Input. Provide DC-blocking capacitors if required. These ports are internally biased to VCC/2. Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance. -- EP 34 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Detailed Description The MAX2044 is a high-linearity passive mixer targeting 2.5GHz and 3.5GHz wireless infrastructure applications. With an ultra-wide 2600MHz to 4300MHz LO frequency range, the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all WiMAX, LTE, and MMDS receive and transmit applications. When used as a low-side LO injection downconverting mixer in the 3000MHz to 4000MHz band, the MAX2044 provides +32.5dBm of input IP3, with typical conversion loss and noise figure values of only 7.7dB and 8.5dB, respectively. The integrated baluns and matching circuitry allow for 50I single-ended interfaces to the RF and the LO port. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2044's input to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO or 2LO - 2RF performance. Specifications are guaranteed over broad frequency ranges to allow for use in WiMAX, LTE, and MMDS base stations. The MAX2044 is specified to operate over a 2300MHz to 4000MHz RF input range, a 2600MHz to 4300MHz LO range, and a 50MHz to 500MHz IF range. Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). The MAX2044 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically better than 13dB over the 3300MHz to 3900MHz RF frequency range. A return loss of 15dB over the 2400MHz to 2700MHz range is achievable by changing the input matching components per Tables 1 and 2. Other combinations of C1 and C12 can be used to optimize RF return loss in the 2300MHz to 4000MHz band. With a broadband LO drive circuit spanning 2600MHz to 4300MHz, the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. The core of the MAX2044 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. IIP3, 2RF - 2LO rejection, and noise figure performance are typically +32.5dBm, 68dBc, and 8.5dB, respectively. The MAX2044 has a 50MHz to 500MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. The MAX2044's differential ports are ideal for providing enhanced 2RF - 2LO and 2LO - 2RF performance. Single-ended IF applications require a 1:1 (impedance ratio) balun to transform the 50I differential IF impedance to a 50I single-ended system. An MABAES0029 1:1 transformer is used to characterize the part and its loss is included in the data presented in this data sheet. The user can connect a differential IF amplifier or SAW filter to the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. Capacitors C4 and C7 are required DC blocks since the IF+ and IF- terminals are internally biased to VCC/2. MAX2044 High-Linearity Mixer Differential IF Output RF Input and Balun Applications Information The RF input provides a 50I match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 3000MHz to 4000MHz. See Tables 1 and 2 for alternative components that provide an excellent match over the 2300MHz to 3000MHz band. The LO input is internally matched to 50I; use a 2pF DC-blocking capacitor to cover operations spanning the 2600MHz to 4300MHz range. The IF output impedance is 50I (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). Input and Output Matching LO Inputs, Buffer, and Balun ______________________________________________________________________________________ 35 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 The MAX2044 has one pin (LOBIAS) that allows an external resistor to set the internal bias current. Nominal values for this resistor are shown in Tables 1 and 2. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer at a supply voltage of 3.3V. Doing so reduces the overall power consumption by typically 42%. See the 3.3V Supply AC Electrical Characteristics table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance trade-offs. Reduced-Power Mode A properly designed PCB is an essential part of any RF/ microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Table 1. Layout Considerations Power-Supply Bypassing Table 1. Downconverter Mode Component Values DESIGNATION QTY DESCRIPTION 3.3nH microwave inductor (0402). Use for RF frequencies ranging from 2300MHz to 3000MHz. 8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 3000MHz to 4000MHz. 0.01FF microwave capacitors (0402) Not installed, microwave capacitors (0402) 470pF microwave capacitors (0402) Not installed, microwave capacitor (0402) 2pF microwave capacitor (0402) 0.3pF microwave capacitor (0402). Use for RF frequencies ranging from 2300MHz to 3000MHz. Microwave capacitor (0402) not installed for RF frequencies ranging from 3000MHz to 4000MHz. 698I 1% resistor (0402). Use for VCC = +5.0V applications. 698I 1% resistor (0402). Use for VCC = +3.3V applications. 1:1 IF balun MABAES0029 MAX2044 IC (20 TQFN) COMPONENT SUPPLIER Coilcraft, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- Murata Electronics North America, Inc. -- Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- Digi-Key Corp. Digi-Key Corp. M/A-Com Maxim Integrated Products, Inc. C1 1 C2, C6, C8, C11 C3, C9 C4, C7 C5 C10 4 0 2 0 1 1 C12 0 R1 1 T1 U1 1 1 36 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer The exposed pad (EP) of the MAX2044's 20-pin thin QFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2044 is mounted be designed to conduct heat from Exposed Pad RF/Thermal Considerations the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. MAX2044 Table 2. Upconverter Mode Component Values DESIGNATION QTY DESCRIPTION 3.3nH microwave inductor (0402). Use for RF frequencies ranging from 2300MHz to 3000MHz. 8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 3000MHz to 4000MHz. 0.01FF microwave capacitors (0402) Not installed, microwave capacitors (0402) 470pF microwave capacitors (0402) Not installed, microwave capacitor (0402) 2pF microwave capacitor (0402) 0.3pF microwave capacitor (0402). Use for RF frequencies ranging from 2300MHz to 3000MHz. Microwave capacitor (0402) not installed for RF frequencies ranging from 3000MHz to 4000MHz. 698I 1% resistor (0402). Use for VCC = +5.0V applications. 698I 1% resistor (0402). Use for VCC = +3.3V applications. 1:1 IF balun MABAES0029 MAX2044 IC (20 TQFN) COMPONENT SUPPLIER Coilcraft, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- Murata Electronics North America, Inc. -- Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- Digi-Key Corp. Digi-Key Corp. M/A-Com Maxim Integrated Products, Inc. C1 1 C2, C6, C8, C11 C3, C9 C4, C7 C5 C10 4 0 2 0 1 1 C12 0 R1 1 T1 U1 1 1 ______________________________________________________________________________________ 37 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Application Circuit 3 N.C. 2 1 C7 C5 GND GND VCC GND IF+ IF4 5 T1 IF C4 1:1 20 C3 C2 VCC 1 19 18 17 16 15 GND U1 C1 RF C12* RF 2 MAX2044 14 C11 GND VCC GND 3 13 GND 4 EP 12 GND C10 LO INPUT GND 5 6 LOBIAS VCC 7 VCC 8 9 GND 10 GND 11 LO VCC C6 R1 NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. VCC C9 PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. *C12 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS. C8 38 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Chip Information PROCESS: SiGe BiCMOS Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE 20 TQFN-EP PACKAGE CODE T2055+3 DOCUMENT NO. 21-0140 MAX2044 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 39 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. |
Price & Availability of MAX2044ETP
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |