![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Data Sheet No. PD60207 Rev.A IR2302(S) & (PbF) HALF-BRIDGE DRIVER Features Packages * Floating channel designed for bootstrap operation * * * * * * * * * * * Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 5 to 20V Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Cross-conduction prevention logic Matched propagation delay for both channels High side output in phase with IN input Logic and power ground +/- 5V offset. Internal 540ns dead-time Lower di/dt gate driver for better noise immunity Shut down input turns off both channels 8-Lead SOIC also available LEAD-FREE (PbF). 8-Lead SOIC IR2302(S) (Also available LEAD-FREE (PbF)) 8-Lead PDIP IR2302 2106/2301//2108//2109/2302/2304 Feature Comparison Part 2106/2301 21064 2108 21084 2109/2302 21094 Input logic HIN/LIN HIN/LIN Crossconduction prevention logic no yes Dead-Time Ground Pins COM VSS/COM COM VSS/COM COM VSS/COM none Internal 540ns Programmable 0.54~5 s Description IN/SD yes The IR2302(S) are high voltage, high speed Programmable 0.54~5 s power MOSFET and IGBT drivers with depenyes HIN/LIN Internal 100ns 2304 COM dent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Internal 540ns Typical Connection up to 600V VCC VCC IN SD VB HO VS LO IR2302 TO LOAD IN SD COM (Refer to Lead Assignments for correct configuration). This/ These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2302(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO VIN dVS/dt PD RthJA TJ TS TL Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (IN & SD) Allowable offset supply voltage transient Package power dissipation @ TA +25C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead PDIP) (8 Lead SOIC) (8 Lead PDIP) (8 Lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 COM - 0.3 -- -- -- -- -- -- -50 -- Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300 Units V V/ns W C/W C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (IN & SD) Ambient temperature Min. VS + 5 Note 1 VS 5 0 COM -40 Max. VS + 20 600 VB 20 VCC VCC 150 Units V C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2302(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF, and TA = 25C unless otherwise specified. Symbol ton toff tsd MT tr tf DT MDT Definition Turn-on propagation delay Turn-off propagation delay Shut-down propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = DTLO - HO - DTHO-LO Min. 550 -- -- -- -- -- 400 -- Typ. 750 200 200 0 130 50 540 0 Max. Units Test Conditions 950 280 280 50 220 80 680 60 nsec VS = 0V VS = 0V VS = 0V VS = 0V or 600V Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VSD,TH+ VSD,THVOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic "1" input voltage for HO & logic "0" for LO Logic "0" input voltage for HO & logic "1" for LO SD input positive going threshold SD input negative going threshold High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic "1" input bias current Logic "0" input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed vurrent Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.9 -- 2.9 -- -- -- -- 20 0.4 -- -- 3.3 3 0.1 120 250 -- -- -- -- 0.8 0.3 -- 60 1.0 5 -- 4.1 3.8 0.3 200 350 -- 0.8 -- 0.8 1.4 0.6 50 100 1.6 20 2 5 4.7 -- -- -- VO = 0V, PW 10 s VO = 15V,PW 10 s A mA A V VCC = 10V to 20V VCC = 10V to 20V VCC = 10V to 20V VCC = 10V to 20V IO = 20 mA IO = 20 mA VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V IN = 5V, SD = 0V IN = 0V, SD = 5V V mA www.irf.com 3 IR2302(S) & (PbF) Functional Block Diagrams VB UV DETECT R HV LEVEL SHIFTER PULSE GENERATOR PULSE FILTER R S Q HO IN VSS/COM LEVEL SHIFT VS DEADTIME UV DETECT VCC +5V LO SD VSS/COM LEVEL SHIFT DELAY COM 4 www.irf.com IR2302(S) & (PbF) Lead Definitions Symbol Description IN SD VB HO VS VCC LO COM Logic input for high and low side gate driver outputs (HO and LO), in phase with HO Logic input for shutdown High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return Lead Assignments 1 2 3 4 VCC IN SD COM VB HO VS LO 8 7 6 5 1 2 3 4 VCC IN SD COM VB HO VS LO 8 7 6 5 8 Lead PDIP 8 Lead SOIC (Also available LEAD-FREE (PbF) IR2302 IR2302S www.irf.com 5 IR2302(S) & (PbF) IN IN(LO) 50% 50% SD IN(HO) ton HO LO tr 90% toff 90% tf LO HO Figure 1. Input/Output Timing Diagram 10% 10% Figure 2. Switching Time Waveform Definitions 50% 50% IN 90% SD 50% HO LO DT LO-HO 10% DT HO-LO 90% tsd HO LO 90% MDT= DT LO-HO 10% - DTHO-LO Figure 3. Shutdown Waveform Definitions Figure 4. Deadtime Waveform Definitions 6 www.irf.com IR2302(S) & (PbF) IN (LO) 50% 50% IN (HO) LO HO 10% MT 90% MT LO HO Figure 5. Delay Matching Waveform Definitions Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 1300 1100 900 700 500 M ax. 1500 1300 M ax. 1100 Typ. 900 700 500 300 5 10 15 20 Supply Voltage (V) Figure 6B. Turn-on Propagation Delay vs. Supply Voltage Mi n. Typ. Mi n. 300 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 6A. Turn-on Propagation Delay vs. Tem perature www.irf.com 7 IR2302(S) & (PbF) Turn-on Propagation Delay (ns) Turn-off Propagation Delay (ns) 1300 1100 M ax. 500 400 300 M ax. 900 Typ. 700 Mi n. 200 Typ. 500 300 3 6 9 Input Voltage (V) Figure 6C. Turn-on Propagation Delay vs. Input Voltage 12 15 100 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 7A. Turn-off Propagation Delay vs. Tem perature Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 700 600 500 400 Typ. M ax. 400 350 300 250 Typ. M ax. 300 200 100 5 10 15 20 Supply Voltage (V) Figure 7B. Turn-off Propagation Delay vs. Supply Voltage 200 150 100 3 6 9 Input Voltage (V) Figure 7C. Turn-off Propagation Delay vs. Input Voltage 12 15 8 www.irf.com IR2302(S) & (PbF) Shut-down Propagation Delay (ns) 500 400 300 M ax. Shut-down Propagation Delay (ns) 700 600 500 400 300 Typ. M ax. 200 Typ. 100 0 -50 200 100 5 10 15 20 Supply Voltage (V) Figure 8B. Shut-dow n Propagation Delay vs. Supply Voltage -25 0 25 50 75 100 125 Temperature (oC) Figure 8A. Shut-dow n Propagation Delay vs. Tem perature Shut-down Propagation Delay (ns) 400 350 300 250 200 150 100 3 6 9 Input Voltage (V) Figure 8C. Shut-dow n Propagation Delay vs. Input Voltage 12 15 Typ. M ax. 500 Turn-on Rise Time (ns) 400 300 200 100 Typ. M ax. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 9A. Turn-on Rise Tim e vs. Tem perature www.irf.com 9 IR2302(S) & (PbF) 700 Turn-on Rise Time (ns) Turn-off Fall Time (ns) 600 500 400 300 200 100 0 5 10 15 20 Supply Voltage (V) Figure 9B. Turn-on Rise Tim e vs. Supply Voltage Typ. M ax. 200 150 100 M ax. 50 Typ. 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 10A. Turn-off Fall Time vs. Tem perature 200 Turn-off Fall Time (ns) 1000 800 M ax. M ax. Deadtime (ns) 150 100 Typ. 600 Typ. 50 400 Mi n. 0 5 10 15 20 Supply Voltage (V) Figure 10B. Turn-off Fall Tim e vs. Supply Voltage 200 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 11A. Deadtim e vs. Tem perature 10 www.irf.com IR2302(S) & (PbF) 1000 800 Deadtime (ns) 600 Mi n. M ax. 7 6 Deadtime ( s) 5 4 3 2 1 0 5 10 15 20 M ax. Typ. Mi n. Typ. 400 200 0 Supply Voltage (V) Figure 11B. Deadtim e vs. Supply Voltage 0 50 100 RDT (K) 150 200 Figure 11C. Deadtime vs. RDT 6 Logic "1" Input Voltage (V) 5 4 M ax. 6 Logic "1" Input Voltage (V) 0 25 50 75 100 125 5 4 M ax. 3 2 1 0 -50 3 2 1 0 -25 5 10 15 20 Temperature ( oC) Figure 12A. Logic "1" Input Voltage vs. Tem perature Supply Voltage (V) Figure 12B. Logic "1" Input Voltage vs. Supply Voltage www.irf.com 11 IR2302(S) & (PbF) 6 Logic "0" Input Voltage (V) Logic "0" Input Voltage (V) 6 5 4 3 2 1 0 Mi n. 5 4 3 2 1 0 -50 Mi n. -25 0 25 50 75 100 125 5 10 15 20 Temperature (oC) Figure 13A. Logic "0" Input Voltage vs. Temperature Supply Voltage (V) Figure 13B. Logic "0" Input Voltage vs. Supply Voltage SD Input Positive Going Threshold (V 6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) M ax. SD Input Positive Going Threshold (V 6 5 4 3 2 1 0 5 10 15 20 Supply Voltage (V) M ax. Figure 14A. SD Input Positive Going Threshold vs. Tem perature Figure 14B. SD Input Positive Going Threshold vs. Supply Voltage 12 www.irf.com IR2302(S) & (PbF) SD Input Negative Going Threshold (V) 6 5 4 3 2 1 0 -50 Mi n. SD Input Negative Going Threshold (V 6 5 4 3 2 1 0 5 10 15 20 Supply Voltage (V) Mi n. -25 0 25 50 75 100 125 Temperature (oC) Figure 15A. SD Input Negative Going Threshold vs. Tem perature Figure 15B. SD Input Negative Going Threshold vs. Supply Voltage High Level Output Voltage (V) High Level Output Voltage (V) 4 3 2 M ax. 6 5 4 3 2 Typ. M ax. 1 Typ. 1 0 5 10 15 20 Supply Voltage (V) Figure 16B. High Level Output Voltage vs. Supply Voltage 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 16A. High Level Output Voltage vs. Tem perature www.irf.com 13 IR2302(S) & (PbF) Low Level Output Voltage (V) Low Level Output Voltage (V) 2.0 1.5 1.0 0.5 M ax. 2.0 1.5 M ax. 1.0 0.5 Typ. Typ. 0.0 -50 0.0 5 10 15 20 Supply Voltage (V) Figure 17B. Low Level Output Voltage vs. Supply Voltage -25 0 25 50 o 75 100 125 Temperature ( C) Figure 17A. Low Level Output Voltage vs. Tem perature 500 400 300 200 100 M ax. Offset Supply Leakage Current (mA) Offset Supply Leakage Current ( A) 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 0 100 200 300 400 500 600 Temperature (oC) Figure 18A. Offset Supply Leakage Current vs. Tem perature Offset Supply Voltage (V) Figure 18B. Offset Supply Leakage Current vs. Offset Supply Voltage 14 www.irf.com IR2302(S) & (PbF) Quiescent VBS Supply Current ( A) Quiescent V BS Supply Current ( A) 200 150 100 M ax. Typ. 200 150 100 50 0 5 10 15 20 V BS Supply Voltage (V) Figure 19B. Quiescent V BS Supply Current vs. V BS Supply Voltage M ax. Typ. Mi n. 50 Mi n. 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 19A. Quiescent V BS Supply Current vs. Tem perature Quiescent VCC Supply Current (mA) Quiescent VCC Supply Current (mA) 3.0 2.5 2.0 M ax 3 2.5 2 1.5 1 0.5 0 5 10 15 V CC Supply Voltage (V) 20 M ax. Typ. Mi n. 1.5 Typ. 1.0 0.5 0.0 -50 Mi n. -25 0 25 50 75 100 125 Temperature (oC) Figure 20A. Quiescent V CC Supply Current vs. Tem perature Figure 20B. Quiescent V CC Supply Current vs. V CC Supply Voltage www.irf.com 15 IR2302(S) & (PbF) Logic "1" Input Bias Current ( A) 60 50 40 30 20 10 M ax. Typ. Logic "1" Input Bias Current (mA) 50 40 30 20 10 0 5 10 15 20 Supply Voltage (V) Figure 21B. Logic "1" Input Bias Current vs. Supply Voltage M ax. Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 21A. Logic "1" Input Bias Current vs. Tem perature Logic "0" Input Bias Current ( A) 5 4 3 M ax. Logic "0" Input Bias Current (mA) 5 4 3 2 1 0 5 10 15 Supply Voltage (V) 20 M ax. 2 1 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 22A. Logic "0" Input Bias Current vs. Tem perature Figure 22B. Logic "0" Input Bias Current vs. Supply Voltage 16 www.irf.com IR2302(S) & (PbF) V CC and VBS Undervoltage Threshold (+) (V) 6 5 4 Mi n. M ax. V CC and VBS Undervoltage Threshold (-) (V) 6 5 4 3 2 -50 M ax. Typ. Typ. Mi n. 3 2 -50 -25 0 25 50 o 75 100 125 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 23. V CC and V BS Undervoltage Threshold (+) vs. Tem perature Temperature ( C) Figure 24. V CC and V BS Undervoltage Threshold (-) vs. Tem perature Output Source Current (mA) Output Source Current (mA) 400 300 Typ. 400 300 200 Mi n. 200 100 0 100 0 -50 Typ. Mi n. -25 0 25 50 75 100 125 5 10 15 20 Temperature (oC) Figure 25A. Output Source Current vs. Tem perature Supply Voltage (V) Figure 25B. Output Source Current vs. Supply Voltage www.irf.com 17 IR2302(S) & (PbF) 600 Output Sink Current (mA) 600 Output Sink Current (mA) 500 400 300 200 Typ. 500 Typ. 400 300 200 100 0 -50 Mi n. 100 Mi n. 0 -25 0 25 50 75 ( oC) 100 125 5 10 15 20 Temperature Supply Voltage (V) Figure 26B. Output Sink Current vs. Supply Voltage Figure 26A. Output Sink Current vs. Tem perature Maximum V Negative Offset (V) S 0 -2 Typ. 140 120 Temprature (oC) 100 80 60 40 5 10 15 20 140V 70V 0V -4 -6 -8 -10 -12 V BS Floating Supply Voltage (V) Figure 27. Maxim um V S Negative Offset vs. V BS Floating Supply Voltage 20 1 10 100 1000 Frequency (KHz) Figure 28. IR2302 vs. Frequency (IRFBC20), Rgate=33 , VCC=15V 18 www.irf.com IR2302(S) & (PbF) 140 120 Temperature (oC) 100 140V 140 120 Temperature (oC) 100 140V 80 70V 80 60 40 20 70V 0V 60 40 20 1 10 100 0V 1000 1 10 100 1000 Frequency (KHz) Figure 29. IR2302 vs. Frequency (IRFBC30), Rgate=22, VCC=15V Frequency (KHz) Figure 30. IR2302 vs. Frequency (IRFBC40), Rgate=15 , VCC=15V 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 140V 70V 140 0V 120 Temperature (oC) 100 80 60 40 20 140V 70V 0V 1000 1 10 100 1000 Frequency (KHz) Figure 31. IR2302 vs. Frequency (IRFPE50), Rgate=10 , V CC=15V Frequency (KHz) Figure 32. IR2302S vs. Frequency (IRFBC20), Rgate=33 , VCC=15V www.irf.com 19 IR2302(S) & (PbF) 140 140 120 140V 140V 70V Temperature (oC) 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 33. IR2302S vs. Frequency (IRFBC30), Rgate=22 , V CC=15V 70V 0V 0V 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 34. IR2302S vs. Frequency (IRFBC40), Rgate=15 , VCC=15V 140 120 Tempreture (oC) 100 80 60 40 20 1 10 140V 70V 0V 100 1000 Frequency (KHz) Figure 35. IR2302S vs. Frequency (IRFPE50), Rgate=10 , V CC=15V 20 www.irf.com IR2302(S) & (PbF) Case Outlines 8 Lead PDIP D A 5 B FOOTPRINT 8X 0.72 [.028] 01-6014 01-3003 01 (MS-001AB) DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45 8X b 0.25 [.010] NOTES: A1 CAB 8X L 7 8X c 1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8 Lead SOIC www.irf.com 01-6027 01-0021 11 (MS-012AA) 21 IR2302(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2302 order IR2302 8-Lead SOIC IR2302S order IR2302S Leadfree Part 8-Lead PDIP R2302 not available 8-Lead SOIC IR2302S order IR2302SPbF Thisproduct has been designed and qualified for the Automotive market. Qualification Standards can be found on IR's Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 8/16/2004 22 www.irf.com |
Price & Availability of IR2302
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |