![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
SGP15N120 SGW15N120 Fast IGBT in NPT-technology * 40% lower Eoff compared to previous generation * Short circuit withstand time - 10 s * Designed for: - Motor controls - Inverter - SMPS * NPT-Technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability 1 C G E PG-TO-220-3-1 PG-TO-247-3 * Qualified according to JEDEC for target applications * Pb-free lead plating; RoHS compliant * Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SGP15N120 SGW15N120 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25C TC = 100C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE 1200V, Tj 150C Gate-emitter voltage Avalanche energy, single pulse IC = 15A, VCC = 50V, RGE = 25, start at Tj = 25C Short circuit withstand time2 VGE = 15V, 100V VCC 1200V, Tj 150C Power dissipation TC = 25C Operating junction and storage temperature Soldering temperature, 1.6mm (0.063 in.) from case for 10s Tj , Tstg -55...+150 260 C Ptot 198 W tSC 10 s VGE EAS 20 85 V mJ ICpuls Symbol VCE IC 30 15 52 52 Value 1200 Unit V A VCE 1200V 1200V IC 15A 15A Eoff 1.5mJ 1.5mJ Tj 150C 150C Marking GP15N120 Package PG-TO-220-3-1 SGW15N120 PG-TO-247-3 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Rev. 2.6 Nov. 09 Power Semiconductors SGP15N120 SGW15N120 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction - case Thermal resistance, junction - ambient RthJA PG-TO-220-3-1 PG-TO-247-3 62 40 RthJC 0.63 K/W Symbol Conditions Max. Value Unit Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V, I C = 10 00 A VCE(sat) V G E = 15V, I C = 15A T j = 25 C T j = 15 0 C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 60 0A, V C E =V G E V C E =1200V,V G E =0V T j = 25 C T j = 15 0 C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) Symbol Conditions Value min. 1200 typ. max. - Unit V 2.5 3 - 3.1 3.7 4 11 3.6 4.3 5 A 200 800 100 1500 120 80 175 nC nH A nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E =0V,V GE =20V V C E = 20V, I C = 15A V C E = 25V, V G E = 0V, f= 1 M Hz V C C = 9 60V, I C = 15A V G E = 1 5V PG -TO -220-3-1 PG -TO -247-3 V G E = 1 5V,t S C 5s 100V V C C 1200V, T j 150 C - 1250 100 65 130 7 13 145 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Rev. 2.6 Nov. 09 Power Semiconductors SGP15N120 SGW15N120 Switching Characteristic, Inductive Load, at Tj=25 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j = 25 C, V C C = 8 00V, I C = 15A, V G E = 1 5V/ 0 V, R G = 3 3 , L 1 ) = 180nH, 1) C = 4 0 pF Energy losses include "tail" and diode reverse recovery. 18 23 580 22 1.1 0.8 1.9 24 30 750 29 1.5 1.1 2.6 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j = 15 0 C V C C = 8 00V, I C = 15A, V G E = 1 5V/ 0 V, R G = 3 3 , L 1 ) = 180nH, 1) C = 4 0 pF Energy losses include "tail" and diode reverse recovery. 38 30 652 31 1.9 1.5 3.4 46 36 780 37 2.3 2.0 4.3 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L and stray capacity C due to dynamic test circuit in figure E. Power Semiconductors 3 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 70A 60A 50A 40A 30A 20A 10A 0A 10Hz TC=110C Ic 100A tp=2s 15s IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 10A 50s TC=80C 200s 1A 1ms Ic DC 0.1A 100Hz 1kHz 10kHz 100kHz 1V 10V 100V 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 33) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C) 35A 200W 30A 175W 150W 125W 100W 75W 50W 25W 0W 25C 25A 20A 15A 10A 5A 0A 25C 50C 75C 100C 125C IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 50C 75C 100C 125C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C) Power Semiconductors 4 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 50A 50A 40A 40A IC, COLLECTOR CURRENT 30A 15V 13V 11V 9V 7V IC, COLLECTOR CURRENT V G E =17V V G E =17V 30A 15V 13V 11V 20A 9V 7V 10A 20A 10A 0A 0V 1V 2V 3V 4V 5V 6V 7V 0A 0V 1V 2V 3V 4V 5V 6V 7V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 50A 6V 40A 5V IC=30A IC, COLLECTOR CURRENT 4V IC=15A 30A TJ=+150C 20A TJ=+25C TJ=-40C 10A 3V 2V IC=7.5A 1V 0A 3V 5V 7V 9V 11V 0V -50C 0C 50C 100C 150C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) Power Semiconductors 5 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 1000ns td(off) 1000ns td(off) t, SWITCHING TIMES t, SWITCHING TIMES 100ns td(on) 100ns td(on) tf tf tr 10ns 0A 10A 20A 30A 40A 10ns 0 tr 25 50 IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 33, dynamic test circuit in Fig.E ) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 15A, dynamic test circuit in Fig.E ) 1000ns 6V VGE(th), GATE-EMITTER THRESHOLD VOLTAGE td(off) 5V max. t, SWITCHING TIMES 4V typ. 3V min. 100ns td(on) tr tf 10ns -50C 2V 1V 0C 50C 100C 150C 0V -50C 0C 50C 100C 150C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 15A, RG = 33, dynamic test circuit in Fig.E ) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA) Power Semiconductors 6 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 14mJ 12mJ *) Eon and Ets include losses due to diode recovery. 5mJ *) Eon and Ets include losses due to diode recovery. E, SWITCHING ENERGY LOSSES 10mJ 8mJ Eon* 6mJ 4mJ 2mJ 0mJ 0A E, SWITCHING ENERGY LOSSES Ets* 4mJ Ets* 3mJ Eon* 2mJ Eoff Eoff 1mJ 10A 20A 30A 40A 50A 0mJ 0 25 50 75 IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 33, dynamic test circuit in Fig.E ) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 15A, dynamic test circuit in Fig.E ) 4mJ *) Eon and Ets include losses due to diode recovery. Ets* D=0.5 ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES 3mJ 0.2 10 K/W -1 0.1 0.05 0.02 R,(K/W) 0.09751 0.29508 0.13241 0.10485 R1 2mJ Eon* 10 K/W 0.01 -2 Eoff 1mJ , (s) 0.67774 0.11191 0.00656 0.00069 R2 10 K/W 1s -3 single pulse 10s 100s 0mJ -50C C 1 = 1 /R 1 C 2 = 2 /R 2 0C 50C 100C 150C 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 15A, RG = 33, dynamic test circuit in Fig.E ) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) Power Semiconductors 7 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 20V Ciss 1nF VGE, GATE-EMITTER VOLTAGE 15V UCE=960V 10V 5V 100pF Coss Crss 50nC 100nC 150nC 0V 10V 20V 30V 0V 0nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A) C, CAPACITANCE VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 300A 250A 200A 150A 100A 50A 15V 0A 10V 30s tsc, SHORT CIRCUIT WITHSTAND TIME 20s 10s 0s 10V 11V 12V 13V 14V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 1200V, start at Tj = 25C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (100VVCE 1200V, TC = 25C, Tj 150C) Power Semiconductors 8 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 PG-TO220-3-1 Power Semiconductors 9 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 Power Semiconductors 10 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 i,v diF /dt tr r =tS +tF Qr r =QS +QF IF tS QS tr r tF 10% Ir r m t VR Ir r m QF dir r /dt 90% Ir r m Figure C. Definition of diodes switching characteristics 1 Tj (t) p(t) r1 r2 2 n rn r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance L =180nH, and stray capacity C =40pF. Power Semiconductors 11 Rev. 2.6 Nov. 09 SGP15N120 SGW15N120 Edition 2006-01 Published by Infineon Technologies AG 81726 Munchen, Germany (c) Infineon Technologies AG 11/19/09. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 12 Rev. 2.6 Nov. 09 |
Price & Availability of SGW15N120
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |