![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
19-3577; Rev 2; 8/07 10/100/1000 Base-T Ethernet LAN Switch General Description The MAX4890/MAX4891/MAX4892 high-speed analog switches meet the needs of 10/100/1000 Base-T applications. These devices switch the signals from two interface transformers and connect the signals to a single 10/100/1000 Base-T Ethernet PHY, simplifying docking station design and reducing manufacturing costs. The MAX4890/MAX4891/MAX4892 can also route signals from a common interface transformer to two different boards in board-redundancy applications. The MAX4890/MAX4891/MAX4892 switches provide an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4891/MAX4892 feature one and three built-in LED switches, respectively. The MAX4890/MAX4891/MAX4892 are available in space-saving 32- and 36-lead TQFN packages, significantly reducing the required PC board area. These devices operate over the -40C to +85C temperature range. Features Single +3.0V to +3.6V Power-Supply Voltage Low On-Resistance (RON): 4 (typ), 6.5 (max) Ultra-Low On-Capacitance (CON): 6.5pF (typ) Low < 200ps Bit-to-Bit Skew -3dB Bandwidth: 1GHz Optimized Pin-Out for Easy Transformer and PHY Interface Built-In LED Switches for Switching Indicators to Docking Station Low 450A (max) Quiescent Current Bidirectional 8 to 16 Multiplexer/Demultiplexer Space-Saving Packages 32-Pin, 5mm x 5mm, TQFN Package 36-Pin, 6mm x 6mm, TQFN Package MAX4890/MAX4891/MAX4892 Applications Notebooks and Docking Stations Servers and Routers with Ethernet Interfaces Board-Level Redundancy Protection SONET/SDH Signal Routing T3/E3 Redundancy Protection Video Switching PART MAX4890ETJ MAX4891ETJ MAX4892ETX Ordering Information PIN-PACKAGE 32 TQFN-EP* 32 TQFN-EP* 36 TQFN-EP* LED SWITCHES -- 1 3 Note: All devices are specified for operation in the -40C to +85C temperature range. *EP = Exposed pad. Pin Configurations 1B1 SEL 0B1 0B2 1B2 A1 A0 V+ TOP VIEW 32 A2 A3 N.C. N.C. N.C. N.C. A4 A5 31 30 29 28 27 26 25 24 23 22 21 2B1 3B1 2B2 3B2 4B1 5B1 4B2 5B2 1 2 3 4 5 6 7 8 9 A6 *EP MAX4890 20 19 18 17 10 A7 11 GND 12 N.C. 13 7B2 14 6B2 15 7B1 16 6B1 Functional Diagrams and Typical Operating Circuit appear at end of data sheet. TQFN *EP = EXPOSED PAD. CONNECT EP TO GND OR LEAVE UNCONNECTED Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 ABSOLUTE MAXIMUM RATINGS V+ .............................................................................-0.3V to +4V SEL (Note 1) ..................................................-0.3V to (V+ +0.3V) A_, _B_, LED_, _LED_ ...................................-0.3V to (V+ +0.3V) Continuous Current (A_ to _B_) ......................................120mA Continuous Current (LED_ to _LED_) ...............................30mA Peak Current (A_ to _B_) (pulsed at 1ms, 10% duty cycle)................................240mA Continuous Power Dissipation (TA = +70C) 32-Pin TQFN (derate 34.5mW/C above +70C) ...........2.76W 36-Pin TQFN (derate 26.3mW/C above +70C) ...........2.11W Operating Temperature Range ...........................-40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C Note 1: Signals on SEL, exceeding V+ or GND, are clamped by internal diodes. Limit forward-diode current to maximum current rating. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (V+ = +3V to +3.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at V+ = 3.3V, TA = +25C.) (Note 2) PARAMETER ANALOG SWITCH On-Resistance On-Resistance LED Switches On-Resistance Match Between Channels On-Resistance Flatness Off-Leakage Current On-Leakage Current ESD PROTECTION ESD Protection SWITCH AC PERFORMANCE Insertion Loss ILOS Insertion loss with typical transformer, RL = 100, 1MHz < f < 100MHz, Figure 1 (Note 3) Return loss with typical transformer, RL = 100, return loss, f in MHz, Figure 2 (Note 3) 1MHz < f < 40MHz 0.6 dB Human Body Model 2 kV RON V+ = 3V, IA_ = -40mA, 1.5V VA_ V+ TA = +25C TMIN to TMAX 4 5.5 6.5 40 0.5 1.5 TMIN to TMAX 0.01 -1 -1 +1 A ILA_(ON) V+ = 3.6V, VA_= 0.3V, 3.3V V_B1 or V_B2 = 0.3V, 3.3V or floating +1 2 SYMBOL CONDITIONS MIN TYP MAX UNITS RONLED V+ = 3V, I_LED_ = -40mA, 1.5V VA_ V+, MAX4891/MAX4892 V+ = 3V, IA_= -40mA, 1.5V VA_ V+ (Note 3) TA = +25C RON RFLAT(ON) ILA_(OFF) V+ = 3V, IA_ = -40mA, VA_ = 1.5V, 2.7V V+ = 3.6V, VA_ = 0.3V, 3.3V V_B1 or V_B2 = 3.3V, 0.3V RLOS1 Return Loss RLOS2 -19 -13 +20log (f/80) dB 40MHz < f < 100MHz 2 _______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch ELECTRICAL CHARACTERISTICS (continued) (V+ = +3V to +3.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at V+ = 3.3V, TA = +25C.) (Note 2) PARAMETER Crosstalk SYMBOL VCT1 VCT2 VCT3 VDCT1 Differential Crosstalk SWITCH DYNAMICS On-Channel -3dB Bandwidth Off-Capacitance On-Capacitance Off-Capacitance, LED Switches On-Capacitance, LED Switches Turn-On Time Turn-Off Time Propagation Delay Output Skew Between Ports Output Skew Same Port SWITCH LOGIC Input-Voltage Low Input-Voltage High Input-Logic Hysteresis Input Leakage Current Operating Supply-Voltage Range Quiescent Supply Current VIL VIH VHYST ISEL V+ I+ V+ = 3.6V, VSEL = 0 or V+ V+ = 3.6V, VSEL = 0 or V+ -5 3 280 2.0 100 +5 3.6 450 0.8 V mV uA V A BW COFF CON COFFLED CONLED tON tOFF tPLH, tPHL tSK(o) tSK(p) RL = 100, Differential pair f = 1MHz, _B_ inputs f = 1MHz, _B_ inputs f = 1MHz, _LED inputs f = 1MHz, _LED inputs VA_ = 1V, Figure 5 VA_ = 1V, Figure 5 CL = 10pF, Figure 6 Skew between A4 and A5 and any other port, Figure 7 Skew between opposite transitions in same port 1000 3.5 6.5 20 22 25 20 0.15 0.01 0.07 50 40 MHz pF pF pF pF ns ns ns ns ns VDCT2 VDCT3 CONDITIONS Any switch to any switch RL = 100, Figure 3 RL = 100, Figure 4 1MHz < f < 30MHz 30MHz < f < 60MHz 60MHz < f < 100MHz 1MHz < f < 30MHz 30MHz < f < 60MHz 60MHz < f < 100MHz MIN TYP -45 -40 -35 -60 -55 -50 dB dB MAX UNITS MAX4890/MAX4891/MAX4892 Note 2: Specifications at -40C are guaranteed by design. Note 3: Guaranteed by design. _______________________________________________________________________________________ 3 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 Typical Operating Characteristics (V+ = 3.3V, TA = +25C, unless otherwise noted.) ON-RESISTANCE vs. VA_ MAX4890 toc01 ON-RESISTANCE vs. VA_ MAX4890 toc02 LED_ ON-RESISTANCE vs. VA_ 18 16 14 RONLED () V+ = 3.0V MAX4890 toc03 4.0 5 20 3.8 V+ = 3.0V, 3.3V, 3.6V RON () 4 RON () 3.6 3 TA = +85C TA = +25C TA = -40C 12 10 8 6 V+ = 3.3V V+ = 3.6V 3.4 2 3.2 1 4 2 3.0 0 0.9 1.8 VA_ (V) 2.7 3.6 0 0 1.1 VA_ (V) 2.2 3.3 0 0 0.9 1.8 VA_ (V) 2.7 3.6 LED_ ON-RESISTANCE vs. TEMPERATURE 18 16 14 RONLED () 12 10 8 6 4 2 0 0 1.1 VA_ (V) 2.2 3.3 TA = -40C TA = +25C TA = +85C MAX4890 toc04 LEAKAGE CURRENT vs. TEMPERATURE MAX4890 toc05 CHARGE INJECTION vs. VA_ MAX4890 toc06 20 1800 1600 LEAKAGE CURRENT (pA) 1400 1200 1000 800 600 400 200 0 -40 -15 10 35 60 ILA_(OFF) ILA_(ON) 30 25 CHARGE INJECTION (pC) 20 15 100 5 0 85 0 1.1 VA_ (V) 2.2 3.3 TEMPERATURE (C) QUIESCENT SUPPLY CURRENT vs. TEMPERATURE MAX4890 toc07 QUIESCENT SUPPLY CURRENT vs. LOGIC LEVEL MAX4890 toc08 LOGIC THRESHOLD vs. SUPPLY VOLTAGE 1.6 LOGIC THRESHOLD (V) 1.4 1.2 1.0 0.8 0.6 0.4 VTHVTH+ MAX4890 toc09 350 QUIESCENT SUPPLY CURRENT (A) 330 310 290 270 250 230 210 190 170 150 -40 -15 10 35 60 1200 QUIESCENT SUPPLY CURRENT (A) 1000 800 600 400 200 1.8 0.2 0 85 0 1.1 2.2 3.3 TEMPERATURE (C) LOGIC LEVEL (V) 0 3.0 3.1 3.2 3.3 3.4 3.5 3.6 SUPPLY VOLTAGE (V) 4 _______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch Typical Operating Characteristics (continued) (V+ = 3.3V, TA = +25C, unless otherwise noted.) TURN-ON/-OFF TIME vs. SUPPLY VOLTAGE MAX4890 toc10 MAX4890/MAX4891/MAX4892 TURN-ON/-OFF TIME vs. TEMPERATURE OUTPUT RISE/FALL-TIME DELAY (ps) tON 25 20 15 tOFF 10 MAX4890 toc11 RISE-/FALL-TIME PROPAGATION DELAY vs. SUPPLY VOLTAGE MAX4890 toc12 25 30 250 tPLH 200 20 tON tON/tOFF (ns) 15 tOFF 10 tON/tOFF (ns) 150 100 tPHL 50 5 5 0 3.0 3.2 3.4 3.6 -40 -15 10 35 60 85 SUPPLY VOLTAGE (V) TEMPERATURE (C) 0 3.0 3.3 SUPPLY VOLTAGE (V) 3.6 RISE-/FALL-TIME PROPAGATION DELAY vs. TEMPERATURE MAX4890 toc13 PULSE SKEW vs. SUPPLY VOLTAGE MAX4890 toc14 PULSE SKEW vs. TEMPERATURE tSK(p) 80 PULSE SKEW (ps) MAX4890 toc15 250 OUTPUT RISE-/FALL-TIME DELAY (ps) tPLH 200 100 tSK(p) 80 PULSE SKEW (ps) 100 60 60 150 40 40 100 tPHL 50 -40 -15 10 35 60 85 TEMPERATURE (C) 20 20 0 3.0 3.3 SUPPLY VOLTAGE (V) 3.6 0 -40 -15 10 35 60 85 TEMPERATURE (C) OUTPUT SKEW vs. SUPPLY VOLTAGE MAX4890 toc16 OUTPUT SKEW vs. TEMPERATURE MAX4890 toc17 DIFFERENTIAL INSERTION LOSS vs. FREQUENCY MAX4890 toc18 20 20 tSK(o)_FALL 10 OUTPUT SKEW (ps) 1 DIFFERENTIAL INSERTION LOSS (dB) 0 -1 -2 -3 -4 -5 OUTPUT SKEW (ps) 10 tSK(o)_FALL 0 tSK(o)_RISE -10 0 tSK(o)_RISE -10 -20 3.0 3.3 SUPPLY VOLTAGE (V) 3.6 -20 -40 -15 10 35 60 85 TEMPERATURE (C) 1 10 FREQUENCY (MHz) 100 _______________________________________________________________________________________ 5 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 Typical Operating Characteristics (continued) (V+ = 3.3V, TA = +25C, unless otherwise noted.) DIFFERENTIAL RETURN LOSS vs. FREQUENCY MAX4890 toc19 DIFFERENTIAL CROSSTALK vs. FREQUENCY MAX4890 toc20 SINGLE-ENDED OFF-ISOLATION vs. FREQUENCY -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 MAX4890 toc21 0 DIFFERENTIAL RETURN LOSS (dB) 0 -10 DIFFERENTIAL CROSSTALK (dB) -20 -30 -40 -50 -60 -70 -80 -90 0 SINGLE-ENDED OFF-ISOLATION (dB) -10 -20 -30 -40 1 10 FREQUENCY (MHz) 100 -100 1 10 FREQUENCY (MHz) 100 1 10 FREQUENCY (MHz) 100 SINGLE-ENDED CROSSTALK vs. FREQUENCY MAX4890 toc22 SINGLE-ENDED INSERTION LOSS vs. FREQUENCY SINGLE-ENDED INSERTION LOSS (dB) MAX4890 toc23 0 -10 SINGLE-ENDED CROSSTALK (dB) -20 -30 -40 -50 -60 -70 -80 -90 -100 1 10 FREQUENCY (MHz) 0 -1 -2 -3 -4 -5 100 1 10 100 1000 FREQUENCY (MHz) 6 _______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch Pin Description PIN MAX4890 MAX4891 MAX4892 36, 1, 2, 3, 7-10 4 5 6 -- 11 12 13 14 15, 16, 19, 20, 23, 24, 28, 29 17, 18, 21, 22, 25, 26, 30, 31 27 32 33 34 35 -- 31, 32, 1, 2, 31, 32, 1, 2, 7-10 7-10 -- -- -- 3-6, 12 11 -- -- -- 13, 14, 17, 18, 21, 22, 25, 26 15, 16, 19, 20, 23, 24, 27, 28 29 -- -- -- 30 -- 3 4 5 6, 12 11 -- -- -- 13, 14, 17, 18, 21, 22, 25, 26 15, 16, 19, 20, 23, 24, 27, 28 29 -- -- -- 30 -- NAME A0-A7 LED0 0LED1 0LED2 N.C. GND LED1 1LED1 1LED2 7B2-0B2 FUNCTION Differential PHY Interface Pair. Connects to the Ethernet PHY. LED0 Input 0LED1 Output. Connects LED0 to 0LED1 when SEL = 0. 0LED2 Output. Connects LED0 to 0LED2 when SEL = 1. No Connection. Not internally connected. Ground LED1 Input 1LED1 Output. Connects LED1 to 1LED1 when SEL = 0. 1LED2 Output. Connects LED1 to 1LED2 when SEL = 1. B2 Differential Transformer Pair MAX4890/MAX4891/MAX4892 7B1-0B1 SEL 2LED2 2LED1 LED2 V+ EP B1 Differential Transformer Pair Select Input. Selects switch connection. See the Truth Table (Table 1). 2LED2 Output. Connects LED2 to 2LED2 when SEL = 1. 2LED1 Output. Connects LED2 to 2LED1 when SEL = 0. LED2 Input Positive Supply-Voltage Input Exposed Paddle. Not internally connected. Leave EP unconnected or connect to ground. _______________________________________________________________________________________ 7 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 Test Circuits INSERTION LOSS MINI CKT BALUN MAX4892 36 TQFN 1 6 5 4 50:100 CB1 C2 0.01F 50 TRACE A1 1 50 TRACE 50 0B1 TRACE A0 36 31 50 3B1 TRACE 30 5 4 6 PULSE H5007 24-PIN PACKAGE 50 TRACE MINI CKT BALUN 20 21 19 4 5 3 NETWORK ANALYZER 50 TRACE 3 50 TRACE R1 75 C3 1000pF 6 100:50 CB3 50 1 TRACE NETWORK ANALYZER Figure 1. Differential Insertion Loss RETURN LOSS MAX4892 36 TQFN A2 2 A3 3 3B1 25 50 TRACE 5 50 TRACE 4 6 PULSE H5007 24-PIN PACKAGE 20 21 19 50 TRACE 4 5 MINI CKT BALUN 3 R16 49.9 50 TRACE R1 75 C3 1000pF 6 100:50 CB3 50 1 TRACE R17 49.9 NETWORK ANALYZER C2 0.01F Figure 2. Differential Return Loss 8 _______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch Test Circuits (continued) MAX4890/MAX4891/MAX4892 MAX4892 SINGLE-ENDED BANDWIDTH NETWORK ANALYZER 50 TRACE 36 TQFN 0B1 31 50 TRACE NETWORK ANALYZER A0 36 SINGLE-ENDED CROSSTALK NETWORK ANALYZER 50 TRACE A2 2 2B1 26 R13 49.9 NETWORK ANALYZER 50 TRACE A3 3 3B1 25 R14 49.9 SINGLE-ENDED OFF-ISOLATION NETWORK ANALYZER 50 TRACE R15 49.9 A4 7 4B1 22 50 TRACE NETWORK ANALYZER Figure 3. Single-Ended Bandwidth, Crosstalk and Off-Isolation Detailed Description The MAX4890/MAX4891/MAX4892 are high-speed analog switches targeted for 10/100/1000 Base-T applications. In a typical application, the MAX4890/MAX4891/ MAX4892 switch the signals from two separate interface transformers and connect the signals to a single 10/100/1000 Base-T Ethernet PHY (see the Typical Operating Circuit). This configuration simplifies docking station design by avoiding signal reflections associated with unterminated transmission lines in a T configuration. The MAX4891 and MAX4892 also include LED switches that allow the LED output signals to be routed to a docking station along with the Ethernet signals. See the Functional Diagrams. The MAX4890/MAX4891/MAX4892 switches provide an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4891/MAX4892 feature one and three built-in LED switches, respectively. The MAX4890/MAX4891/MAX4892 incorporate a unique architecture design utilizing only n-channel switches within the main Ethernet switch, reducing I/O capacitance and channel resistance. An internal two-stage charge pump with a nominal output of 7.5V provides the high voltage needed to drive the gates of the n-channel switches, while maintaining a consistently low R ON throughout the input signal range. An internal bandgap reference set to 1.23V and an internal oscillator running at 2.5MHz provide proper charge-pump operation. Unlike other charge-pump circuits, the MAX4890/ MAX4891/MAX4892 include internal flyback capacitors, reducing design time, board space, and cost. Digital Control Inputs The MAX4890/MAX4891/MAX4892 provide a single digital control SEL. SEL controls the switches as well as the LED switches as shown in Table 1. Table 1. Truth Table SEL 0 1 CONNECTION A_ to _B1, LED_ to _LED1 A_ to _B2, LED_ to _LED2 _______________________________________________________________________________________ 9 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 DIFFERENTIAL CROSSTALK TRANSMIT CKT 1 MINI CKT BALUN 6 MAX4892 36-TQFN AB1 22 A4 7 5B1 21 R3 49.9 R4 49.9 NETWORK ANALYZER 50 TRACE 3 50:100 4 A5 8 CB4 DIFFERENTIAL CROSSTALK RECEIVE CKT 50 TRACE MINI CKT BALUN 50 TRACE 6B1 18 A6 9 50 TRACE A7 10 CB5 7B1 17 R3 49.9 R4 49.9 NETWORK ANALYZER 1 6 5 3 50:100 4 Figure 4. Differential Crosstalk Analog Signal Levels The on-resistance of the MAX4890/MAX4891/MAX4892 is very low and stable as the analog input signals are swept from ground to V+ (see the Typical Operating Characteristics). The switches are bidirectional, allowing A_ and _B_ to be configured as either inputs or outputs. Line-Card Redundancy (Ethernet T3/E3) Figure 10 shows the MAX4890/MAX4891/MAX4892 in a line-card redundancy configuration. Power-Supply Sequencing and Overvoltage Protection Caution: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. ESD Protection The MAX4890/MAX4891/MAX4892 are characterized using the Human Body Model for 2kV of ESD protection. Figure 8 shows the Human Body Model, and Figure 9 shows the current waveform the Human Body Model generates when discharged into a low-impedance load. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5k resistor. Layout High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled-impedance printed circuit board traces as short as possible. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible. Applications Information Typical Operating Circuit The Typical Operating Circuit depicts the MAX4890/ MAX4891/MAX4892 in a 10/100/1000 Base-T docking station application. 10 ______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 SEL 2.5V 1.25V 1.25V 0V tON A_ 90% tOFF 90% 0V tON A_ 90% tOFF 10% 0V PULSE SKEW = tSK(p) = |tPHL - tPLH| THE MAX4890/MAX4891/MAX4892 SWITCHES ARE FULLY BIDIRECTIONAL. tPLH tPHL A_ 3.0V 2.0V 1.0V VOH 2.0V _B_ VOL Figure 5. ENABLE and DISABLE Times Figure 6. Propagation Delay Times 3.0V 2.0V A_ 1.0V tPLHX tPHLX RC 1M CHARGE-CURRENT LIMIT RESISTOR HIGHVOLTAGE DC SOURCE RD 1500 DISCHARGE RESISTANCE DEVICE UNDER TEST VOH 2.0V _B_ VOL tPHLY VOH 2.0V _B_ VOL Cs 100pF STORAGE CAPACITOR tPLHY PULSE SKEW = tSK(p) = |tPHLY - tPLHX| OR |tPHLy - tPHLx| THE MAX4890/MAX4891/MAX4892 SWITCHES ARE FULLY BIDIRECTIONAL. Figure 7. Output Skew Figure 8. Human Body ESD Test Model ______________________________________________________________________________________ 11 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 IP 100% 90% AMPERES 36.8% 10% 0 0 tRL TIME Ir PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) ETHERNET PHYs OR T3/E3 LIUs PRIMARY CARD MAX4890 MAX4891 MAX4892 PROTECTION SWITCH ETHERNET PHYs OR T3/E3 LIUs PROTECTION CARD TRANSFORMER SWITCHING CARD tDL CURRENT WAVEFORM Figure 9. Human Body Model Current Waveform Figure 10. Typical Application for Line-Card Redundancy 12 ______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch Typical Operating Circuit MAX4890/MAX4891/MAX4892 DOCKING STATION TRANSFORMER RJ-45 LED CONNECTOR NOTEBOOK 0B2 1B2 2B2 3B2 TRD0_P TRD0_N A0 A1 4B2 5B2 MAX4890/MAX4891/MAX4892 6B2 7B2 _LED2 TRD1_P TRD1_N ETHERNET PHY/MAC TRD2_P TRD2_N A2 A3 A4 A5 0B1 1B1 TRANSFORMER TRD3_P TRD3_N A6 A7 2B1 3B1 4B1 5B1 6B1 7B1 RJ-45 LED_OUT LED_ SEL SEL_DOCK _LED1 LED ______________________________________________________________________________________ 13 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 Functional Diagrams A0 A1 0B1 1B1 0B2 1B2 A0 A1 0B1 1B1 0B2 1B2 A2 A3 2B1 3B1 2B2 3B2 A2 A3 2B1 3B1 2B2 3B2 A4 A5 4B1 5B1 4B2 5B2 A4 A5 4B1 5B1 4B2 5B2 A6 A7 6B1 7B1 6B2 7B2 A6 A7 6B1 7B1 6B2 7B2 LED0 SEL MAX4890 SEL MAX4891 0LED1 0LED2 14 ______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch Functional Diagrams (continued) MAX4890/MAX4891/MAX4892 A0 A1 0B1 1B1 0B2 1B2 A2 A3 2B1 3B1 2B2 3B2 A4 A5 4B1 5B1 4B2 5B2 A6 A7 6B1 7B1 6B2 7B2 LED0 LED1 LED2 0LED1 0LED2 1LED1 1LED2 2LED1 2LED2 SEL MAX4892 ______________________________________________________________________________________ 15 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 Pin Configurations (continued) 2LED1 LED2 SEL 0B1 1B1 0B2 1B2 0B1 0B2 29 TOP VIEW 2LED2 36 35 34 33 32 31 30 A2 A3 LED0 0LED1 0LED2 N.C. A4 A5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 *EP MAX4891 24 23 22 21 20 19 18 17 2B1 A1 3B1 2B2 3B2 4B1 5B1 4B2 5B2 A2 A3 LED0 0LED1 0LED2 A4 A5 A6 1 2 3 4 5 6 7 8 9 *EP MAX4892 27 26 25 24 23 22 21 20 19 SEL 2B1 3B1 2B2 3B2 4B1 5B1 4B2 5B2 10 11 12 13 14 15 16 17 7B1 A7 7B2 6B2 GND LED1 1LED1 TQFN *EP = EXPOSED PAD. CONNECT EP TO GND OR LEAVE UNCONNECTED TQFN *EP = EXPOSED PAD. CONNECT EP TO GND OR LEAVE UNCONNECTED Chip Information PROCESS: BiCMOS Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE TYPE 32 TQFN-EP 36 TQFN-EP PACKAGE CODE T-3255-4 T-3666-3 DOCUMENT NO. 21-0140 21-0141 16 ______________________________________________________________________________________ 1LED2 7B2 7B1 GND N.C. 6B2 6B1 6B1 A6 A7 18 28 32 31 30 29 28 27 26 25 1B1 1B2 A1 A0 V+ A0 V+ 10/100/1000 Base-T Ethernet LAN Switch Revision History REVISION NUMBER 1 2 REVISION DATE 8/05 8/07 DESCRIPTION Removed future product part number Added exposed pad information PAGES CHANGED -- 1, 7, 14, 15, 16 MAX4890/MAX4891/MAX4892 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17 (c) 2007 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. |
Price & Availability of MAX4892ETX
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |