Part Number Hot Search : 
C3680 TSHG8400 MBRP300 XT36C10 HP4410DY 0805E 02144 XT36C10
Product Description
Full Text Search
 

To Download MAX2042AETP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer ????????????????????????????????????????????????????????????????? maxim integrated products 1 19-5902; rev 0; 6/11 ordering information appears at end of data sheet. for related parts and recommended products to use with this part, refer to www.maxim-ic.com/max2042a.related . wimax is a trademark of wimax forum. e v a l u a t i o n k i t a v a i l a b l e general description the max2042a single, high-linearity upconversion/ downconversion mixer provides up to +33dbm input ip3, 7.25db noise figure, and 7.2db conversion loss for 1600mhz to 3900mhz gsm/edge, cdma, td-scdma, wcdma, lte, td-lte, wimax k , and mmds wireless infrastructure applications. with an ultra-wide 1300mhz to 4000mhz lo frequency range, the ic can be used in either low-side or high-side lo injection architectures for virtually all 1.7ghz to 3.5ghz applications (for a 2.5ghz variant tuned specifically for low-side lo injection, refer to the max2042). in addition to offering excellent linearity and noise performance, the ic also yields a high level of component integration. this device includes a double-balanced passive mixer core, an lo buffer, and on-chip baluns that allow for single-ended rf and lo inputs. the ic requires a nominal lo drive of 0dbm, and supply current is typically 140ma at v cc = 5.0v or 122ma at v cc = 3.3v. the max2042a is pin compatible with the max2042 2000mhz to 3000mhz mixer. the max2042a is also pin similar with the max2029/max2031/max2033 650mhz to 1550mhz mixers, the max2039/max2041 1700mhz to 3000mhz mixers, and the max2044 2300mhz to 4000mhz mixer, making the entire family of upconverters/ downconverters ideal for applications where a common pcb layout is used for multiple frequency bands. the max2042a is available in a compact, 20-pin tqfn package (5mm x 5mm) with an exposed pad. electrical performance is guaranteed over the extended t c = -40 n c to +85 n c temperature range. applications 1.8ghz/1.9ghz gsm/edge/cdma base stations 2.1ghz wcdma/lte base stations 2.3ghz td-scdma/td-lte base stations 2.5ghz wimax and lte base stations 2.7ghz mmds base stations 3.5ghz wimax and lte base stations fixed broadband wireless access wireless local loop private mobile radios military systems benefits and features s wide-band coverage ? 1600mhz to 3900mhz rf frequency range ? 1300mhz to 4000mhz lo frequency range ? 50mhz to 500mhz if frequency range s 7.2db conversion loss s 7.25db noise figure s high linearity ? +33dbm input ip3 ? +21.7dbm input 1db compression point ? 72dbc typical 2lo - 2rf spurious rejection at p rf = -10dbm s simple pcb layout ? integrated lo buffer ? integrated lo and rf baluns for single-ended inputs s low -6dbm to +3dbm lo drive s pin compatible with the max2042 2000mhz to 3000mhz mixer s pin-similar with the max2029/max2031/max2033 650mhz to 1550mhz mixers, max2039/max2041 1700mhz to 3000mhz mixers, and max2044 2300mhz to 4000mhz mixer s single +5.0v or +3.3v supply s external current-setting resistor provides option for operating device in reduced-power/reduced- performance mode for pricing, delivery, and ordering information, please contact maxim direct at 1-888-629-4642, or visit maxims website at www.maxim-ic.com.
????????????????????????????????????????????????????????????????? maxim integrated products 2 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer table of contents absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5.0v supply dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3v supply dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 recommended ac operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.0v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (downconverter operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (downconverter operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.0v supply, rf = 3100mhz to 3900mhz, low-side lo injection ac electrical characteristics (downconverter operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.0v supply, rf = 3100mhz to 3900mhz, high-side lo injection ac electrical characteristics (downconverter operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.0v supply, rf = 1650mhz to 2250mhz, high-side lo injection ac electrical characteristics (downconverter operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.0v supply, rf = 1650mhz to 2250mhz, low-side lo injection ac electrical characteristics (downconverter operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.0v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (upconverter operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (upconverter operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 rf input and balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 lo inputs, buffer, and balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 high-linearity mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 differential if ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 input and output matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 reduced-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 power-supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 exposed pad rf/thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
????????????????????????????????????????????????????????????????? maxim integrated products 3 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer table of contents (continued) typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 chip information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 table 1. downconverter mode component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 2. upconverter mode component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 list of tables
????????????????????????????????????????????????????????????????? maxim integrated products 4 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer v cc to gnd .......................................................... -0.3v to +5.5v if+, if-, lobias to gnd ......................... -0.3v to (v cc + 0.3v) rf, lo input power ....................................................... +20dbm if input power (50 source) ......................................... +18dbm rf, lo current (rf and lo are dc shorted to gnd through a balun) .................................................... 50ma operating case temperature range (note 1) ....... -40 n c to +85 n c continuous power dissipation (note 2) .............................. 5.0w junction temperature ..................................................... +150 n c storage temperature range ............................ -65 n c to +150 n c lead temperature (soldering 10s) ................................. +300 n c soldering temperature (reflow) ...................................... +260 n c absolute maximum ratings note 1: t c is the temperature on the exposed pad of the package. t a is the ambient temperature of the device and pcb. note 2: based on junction temperature t j = t c + ( b jc x v cc x i cc ). this formula can be used when the temperature of the exposed pad is known while the device is soldered down to a pcb. see the applications information section for details. the junction temperature must not exceed +150 n c. note 3: junction temperature t j = t a + ( b ja x v cc x i cc ). this formula can be used when the ambient temperature of the pcb is known. the junction temperature must not exceed +150 n c. note 4: package thermal resistances were obtained using the method described in jedec specification jesd51-7, using a four- layer board. for detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial . stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. these are stress ratings only, and functional opera - tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. tqfn junction-to-ambient thermal resistance b ja (notes 3, 4) ....................... +38c/w junction-to-case thermal resistance b jc (notes 2, 4) ....................... +13c/w package thermal characteristics 5.0v supply dc electrical characteristics ( typical application circuit , v cc = 4.75v to 5.25v, no input ac signals. t c = -40 n c to +85 n c, unless otherwise noted. typical values are at v cc = 5.0v, t c = +25 n c.) 3.3v supply dc electrical characteristics ( typical application circuit , v cc = 3.0v to 3.6v, no input ac applied. t c = -40 n c to +85 n c, unless otherwise noted. typical values are at v cc = 3.3v, t c = +25 n c.) parameter symbol conditions min typ max units supply voltage v cc 4.75 5 5.25 v supply current i cc 140 162 ma parameter symbol conditions min typ max units supply voltage v cc 3.0 3.3 3.6 v supply current i cc 122 ma
????????????????????????????????????????????????????????????????? maxim integrated products 5 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 5.0v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (downconverter operation) ( typical application circuit with tuning elements outlined in table 1 , v cc = 4.75v to 5.25v, rf and lo ports are driven from 50 i sources, p lo = -6dbm to +3dbm, p rf = 0dbm, f rf = 2000mhz to 2900mhz, f lo = 2300mhz to 3200mhz, f if = 300mhz, f rf < f lo , t c = -40 n c to +85 n c. typical values are for t c = +25 n c, v cc = 5.0v, p lo = 0dbm, f rf = 2600mhz, f lo = 2900mhz, f if = 300mhz.) (note 7) recommended ac operating conditions parameter symbol conditions min typ max units rf frequency range without tuning f rf1 typical application circuit with c1 = 8.2pf (table 1) (notes 5, 6) 2000 2900 mhz rf frequency range with low-band tuning f rf2 typical application circuit with c1 = 1.8pf, l1 = 12nh (table 1) (notes 5, 6) 1600 2000 mhz rf frequency range with high-band tuning f rf3 typical application circuit with c1 = 1.5pf (table 1) (notes 5, 6) 3000 3900 mhz lo frequency f lo (note 5, 6) 1300 4000 mhz if frequency f if using m/a-com mabact0069 1:1 transformer as defined in the typical application circuit , if matching components affect the if frequency range (notes 5, 6) 50 500 mhz lo drive p lo -6 0 +3 dbm parameter symbol conditions min typ max units small-signal conversion loss l c f rf = 2600mhz, f lo = 2900mhz 7.2 f rf = 2900mhz, f lo = 3200mhz (note 8) 7.8 loss variation vs. frequency d l c f rf = 2010mhz to 2025mhz q 0.05 db f rf = 2305mhz to 2360mhz q 0.05 db f rf = 2500mhz to 2570mhz q 0.05 db f rf = 2570mhz to 2620mhz q 0.05 db f rf = 2500mhz to 2690mhz q 0.13 db f rf = 2700mhz to 2900mhz q 0.02 db conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.007 db/ n c single sideband noise figure nf ssb no blockers present 7.25 db noise figure temperature coefficient tc nf f rf = 2600mhz, single sideband, no blockers present, t c = -40 n c to +85 n c 0.022 db/ n c noise figure under blocking nf blocking +8dbm blocker tone applied to rf port, f rf = 2600mhz, f lo = 2900mhz, f blocker = 2400mhz (note 9) 18 db
????????????????????????????????????????????????????????????????? maxim integrated products 6 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 5.0v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (downconverter operation) (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 4.75v to 5.25v, rf and lo ports are driven from 50 i sources, p lo = -6dbm to +3dbm, p rf = 0dbm, f rf = 2000mhz to 2900mhz, f lo = 2300mhz to 3200mhz, f if = 300mhz, f rf < f lo , t c = -40 n c to +85 n c. typical values are for t c = +25 n c, v cc = 5.0v, p lo = 0dbm, f rf = 2600mhz, f lo = 2900mhz, f if = 300mhz.) (note 7) parameter symbol conditions min typ max units input 1db compression point ip 1db (note 10) 21.7 dbm third-order input intercept point iip3 f rf1 - f rf2 = 1mhz, p rf1 = p rf2 = 0dbm (note 8) 33 dbm iip3 variation with t c f rf1 - f rf2 = 1mhz, p rf1 = p rf2 = 0dbm, t c = -40 n c to +85 n c q 0.3 db 2lo - 2rf spur rejection 2 x 2 f rf = 2600mhz, f lo = 2900mhz, f spur = 2750mhz p rf = -10dbm 72 dbc p rf = 0dbm 62 3lo - 3rf spur rejection 3 x 3 f rf = 2600mhz, f lo = 2900mhz, f spur = 2800mhz p rf = -10dbm 91 dbc p rf = 0dbm 71 rf input return loss rl rf lo on and if terminated into a matched impedance 20 db lo input return loss rl lo rf and if terminated into a matched impedance 19 db if output impedance z if nominal differential impedance at the ics if outputs 50 i if return loss rl if rf terminated into 50 i , lo driven by 50 i source, if transformed to single-ended 50 i using external components shown in the typical application circuit 17.5 db rf-to-if isolation p lo = +3dbm (note 8) 38 db lo leakage at rf port p lo = +3dbm (note 8) -29 dbm 2lo leakage at rf port p lo = +3dbm -30.1 dbm lo leakage at if port p lo = +3dbm (note 8) -31 dbm
????????????????????????????????????????????????????????????????? maxim integrated products 7 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 3.3v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (downconverter operation) ( typical application circuit with tuning elements outlined in table 1 , rf and lo ports are driven from 50 i sources, typical values are for t c = +25 n c, v cc = 3.3v, p rf = 0dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2900mhz, f if = 300mhz, unless otherwise noted.) parameter symbol conditions min typ max units small-signal conversion loss l c (note 8) 7.4 db loss variation vs. frequency d l c f rf = 2000mhz to 2900mhz, any 100mhz band q 0.25 db conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.0079 db/ n c single sideband noise figure nf ssb no blockers present 7.4 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40 n c to +85 n c 0.022 db/ n c input 1db compression point ip 1db (note 10) 19.7 dbm third-order input intercept point iip3 f rf1 = 2600mhz, f rf2 = 2601mhz, p rf1 = p rf2 = 0dbm 31 dbm iip3 variation with t c f rf1 = 2600mhz, f rf2 = 2601mhz, p rf1 = p rf2 = 0dbm, t c = -40 n c to +85 n c q 0.1 db 2lo - 2rf spur rejection 2 x 2 f rf = 2600mhz, f lo = 2900mhz, f spur = 2750mhz p rf = -10dbm 72 dbc p rf = 0dbm 62 3lo - 3rf spur rejection 3 x 3 f rf = 2600mhz, f lo = 2900mhz, f spur = 2800mhz p rf = -10dbm 85 dbc p rf = 0dbm 65 rf input return loss rl rf lo on and if terminated into a matched impedance 16 db lo input return loss rl lo rf and if terminated into a matched impedance 32 db if output impedance z if nominal differential impedance at the ics if outputs 50 i if return loss rl if rf terminated into 50 i , lo driven by 50 i source, if transformed to single-ended 50 i using external components shown in the typical application circuit 18 db rf-to-if isolation p lo = +3dbm 38 db lo leakage at rf port p lo = +3dbm -31.5 dbm 2lo leakage at rf port p lo = +3dbm -30 dbm lo leakage at if port p lo = +3dbm -31.4 dbm
????????????????????????????????????????????????????????????????? maxim integrated products 8 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 5.0v supply, rf = 3100mhz to 3900mhz, low-side lo injection ac electrical characteristics (downconverter operation) ( typical application circuit with tuning elements outlined in table 1 . typical values are for t c = +25 n c, v cc = 5.0v, p rf = 0dbm, p lo = 0dbm, f rf = 3500mhz, f lo = 3200mhz, f if = 300mhz, unless otherwise noted.) parameter symbol conditions min typ max units small-signal conversion loss l c 8.2 db loss variation vs. frequency d l c f rf = 3450mhz to 3750mhz, any 100mhz band q 0.085 db f rf = 3450mhz to 3750mhz, any 200mhz band q 0.17 db conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.0091 db/ n c single sideband noise figure nf ssb no blockers present 7.6 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40 n c to +85 n c 0.025 db/ n c input 1db compression point ip 1db (note 10) 20.6 dbm third-order input intercept point iip3 f rf1 - f rf2 = 1mhz, p rf1 = p rf2 = 0dbm 31 dbm iip3 variation with t c f rf1 - f rf2 = 1mhz, p rf1 = p rf2 = 0dbm, t c = -40 n c to +85 n c q 0.5 db 2rf - 2lo spur rejection 2 x 2 f rf = 3500mhz, f lo = 3200mhz, f spur = 3350mhz p rf = -10dbm 71 dbc p rf = 0dbm 61 3rf - 3lo spur rejection 3 x 3 f rf = 3500mhz, f lo = 3200mhz, f spur = 3300mhz p rf = -10dbm 87 dbc p rf = 0dbm 67 rf input return loss rl rf lo on and if terminated into a matched impedance 15 db lo input return loss rl lo rf and if terminated into a matched impedance 20 db if output impedance z if nominal differential impedance at the ics if outputs 50 i if return loss rl if rf terminated into 50 i , lo driven by 50 i source, if transformed to single-ended 50 i using external components shown in the typical application circuit 16.5 db rf-to-if isolation p lo = +3dbm 35 db lo leakage at rf port p lo = +3dbm -29.5 dbm 2lo leakage at rf port p lo = +3dbm -23 dbm lo leakage at if port p lo = +3dbm -31.5 dbm
????????????????????????????????????????????????????????????????? maxim integrated products 9 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 5.0v supply, rf = 3100mhz to 3900mhz, high-side lo injection ac electrical characteristics (downconverter operation) ( typical application circuit with tuning elements outlined in table 1 . typical values are for t c = +25 n c, v cc = 5.0v, p rf = 0dbm, p lo = 0dbm, f rf = 3500mhz, f lo = 3800mhz, f if = 300mhz, unless otherwise noted.) parameter symbol conditions min typ max units small-signal conversion loss l c 8.6 db loss variation vs. frequency d l c f rf = 3450mhz to 3750mhz, any 100mhz band q 0.1 db f rf = 3450mhz to 3750mhz, any 200mhz band q 0.2 db conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.01 db/ n c single sideband noise figure nf ssb no blockers present 9 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40 n c to +85 n c 0.025 db/ n c input 1db compression point ip 1db (note 10) 18 dbm third-order input intercept point iip3 f rf1 = 3500mhz, f rf2 = 3501mhz, p rf1 = p rf2 = 0dbm 28.6 dbm iip3 variation with t c f rf1 = 3500mhz, f rf2 = 3501mhz, p rf1 = p rf2 = 0dbm, t c = -40 n c to +85 n c q 0.5 db 2lo - 2rf spur rejection 2 x 2 f rf = 3500mhz, f lo = 3800mhz, f spur = 3650mhz p rf = -10dbm 70 dbc p rf = 0dbm 60 3lo - 3rf spur rejection 3 x 3 f rf = 3500mhz, f lo = 3800mhz, f spur = 3700mhz p rf = -10dbm 83 dbc p rf = 0dbm 63 rf input return loss rl rf lo on and if terminated into a matched impedance 15.5 db lo input return loss rl lo rf and if terminated into a matched impedance 18.5 db if output impedance z if nominal differential impedance at the ics if outputs 50 i if return loss rl if rf terminated into 50 i , lo driven by 50 i source, if transformed to single-ended 50 i using external components shown in the typical application circuit 16 db rf-to-if isolation p lo = +3dbm 35 db lo leakage at rf port p lo = +3dbm -36.4 dbm 2lo leakage at rf port p lo = +3dbm -12.8 dbm lo leakage at if port p lo = +3dbm -31 dbm
???????????????????????????????????????????????????????????????? maxim integrated products 10 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 5.0v supply, rf = 1650mhz to 2250mhz, high-side lo injection ac electrical characteristics (downconverter operation) ( typical application circuit with tuning elements outlined in table 1 . typical values are for t c = +25 n c, v cc = 5.0v, p rf = 0dbm, p lo = 0dbm, f rf = 1850mhz, f lo = 2150mhz, f if = 300mhz, unless otherwise noted.) parameter symbol conditions min typ max units small-signal conversion loss l c 7.5 db loss variation vs. frequency d l c f rf = 1650mhz to 1850mhz, any 100mhz band q 0.18 db f rf = 1850mhz to 2250mhz, any 100mhz band q 0.15 f rf = 1650mhz to 1850mhz, any 200mhz band q 0.36 f rf = 1850mhz to 2250mhz, any 200mhz band q 0.3 conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.0067 db/ n c single sideband noise figure nf ssb no blockers present 7 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40 n c to +85 n c 0.021 db/ n c input 1db compression point ip 1db (note 10) 23 dbm third-order input intercept point iip3 f rf1 = 1850mhz, f rf2 = 1851mhz, p rf1 = p rf2 = 0dbm 34.8 dbm iip3 variation with t c f rf1 = 1850mhz, f rf2 = 1851mhz, p rf1 = p rf2 = 0dbm, t c = -40 n c to +85 n c q 0.5 db 2lo - 2rf spur rejection 2 x 2 f rf = 1850mhz, f lo = 2150mhz, f spur = 2000mhz p rf = -10dbm 83 dbc p rf = 0dbm 73 3lo - 3rf spur rejection 3 x 3 f rf = 1850mhz, f lo = 2150mhz, f spur = 2050mhz p rf = -10dbm 94 dbc p rf = 0dbm 74 rf input return loss rl rf lo on and if terminated into a matched impedance 16.4 db lo input return loss rl lo rf and if terminated into a matched impedance 25.2 db if output impedance z if nominal differential impedance at the ics if outputs 50 i if return loss rl if rf terminated into 50 i , lo driven by 50 i source, if transformed to single-ended 50 i using external components shown in the typical application circuit 17 db rf-to-if isolation p lo = +3dbm 48.7 db lo leakage at rf port p lo = +3dbm -28.8 dbm 2lo leakage at rf port p lo = +3dbm -35.3 dbm lo leakage at if port p lo = +3dbm -20.8 dbm
???????????????????????????????????????????????????????????????? maxim integrated products 11 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 5.0v supply, rf = 1650mhz to 2250mhz, low-side lo injection ac electrical characteristics (downconverter operation) ( typical application circuit with tuning elements outlined in table 1 . typical values are for t c = +25 n c, v cc = 5.0v, p rf = 0dbm, p lo = 0dbm, f rf = 1850mhz, f lo = 1550mhz, f if = 300mhz, unless otherwise noted.) parameter symbol conditions min typ max units small-signal conversion loss l c 8.5 db loss variation vs. frequency d l c f rf = 1650mhz to 1850mhz, any 100mhz band q 0.35 db f rf = 1850mhz to 2250mhz, any 100mhz band q 0.075 f rf = 1650mhz to 1850mhz, any 200mhz band q 0.7 f rf = 1850mhz to 2250mhz, any 200mhz band q 0.15 conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.0095 db/ n c single sideband noise figure nf ssb no blockers present 8.95 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40 n c to +85 n c 0.024 db/ n c input 1db compression point ip 1db (note 10) 17.2 dbm third-order input intercept point iip3 f rf1 = 1850mhz, f rf2 = 1851mhz, p rf1 = p rf2 = 0dbm 26.7 dbm iip3 variation with t c f rf1 = 1850mhz, f rf2 = 1851mhz, p rf1 = p rf2 = 0dbm, t c = -40 n c to +85 n c q 0.5 db 2rf - 2lo spur rejection 2 x 2 f rf = 1850mhz, f lo = 1550mhz, f spur = 1700mhz p rf = -10dbm 71 dbc p rf = 0dbm 61 3rf - 3lo spur rejection 3 x 3 f rf = 1850mhz, f lo = 1550mhz, f spur = 1650mhz p rf = -10dbm 83 dbc p rf = 0dbm 63 rf input return loss rl rf lo on and if terminated into a matched impedance 12.4 db lo input return loss rl lo rf and if terminated into a matched impedance 17.3 db if output impedance z if nominal differential impedance at the ics if outputs 50 i if return loss rl if rf terminated into 50 i , lo driven by 50 i source, if transformed to single-ended 50 i using external components shown in the typical application circuit 19.3 db rf-to-if isolation p lo = +3dbm 44.6 db lo leakage at rf port p lo = +3dbm -29.5 dbm 2lo leakage at rf port p lo = +3dbm -29.5 dbm lo leakage at if port p lo = +3dbm -29.7 dbm
???????????????????????????????????????????????????????????????? maxim integrated products 12 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 5.0v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (upconverter operation) ( typical application circuit with tuning elements outlined in table 2 . typical values are for t c = +25 n c, v cc = 5.0v, p if = 0dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2900mhz, f if = 300mhz, unless otherwise noted.) parameter symbol conditions min typ max units conversion loss l c 7.3 db conversion loss variation vs. frequency d l c f rf = 2010mhz to 2025mhz q 0.05 db f rf = 2305mhz to 2360mhz q 0.05 f rf = 2500mhz to 2570mhz q 0.05 f rf = 2570mhz to 2620mhz q 0.05 f rf = 2500mhz to 2690mhz q 0.15 f rf = 2700mhz to 2900mhz q 0.2 conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.007 db/ n c input 1db compression point ip 1db (note 10) 22 dbm input third-order intercept point iip3 f if1 = 300mhz, f if2 = 301mhz, p if = 0dbm/tone 32.8 dbm iip3 variation with t c iip3 f if1 = 300mhz, f if2 = 301mhz, p if = 0dbm/tone, t c = -40 n c to +85 n c q 0.5 db lo q 2if spur lo - 2if 61 dbc lo + 2if 62 lo q 3if spur lo - 3if 72 dbc lo + 3if 85 output noise floor p out = 0dbm (note 9) -163 dbm/hz
???????????????????????????????????????????????????????????????? maxim integrated products 13 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer 3.3v supply, rf = 2000mhz to 2900mhz, high-side lo injection ac electrical characteristics (upconverter operation) ( typical application circuit with tuning elements outlined in table 2 . typical values are for t c = +25 n c, v cc = 3.3v, p if = 0dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2900mhz, f if = 300mhz, unless otherwise noted.) note 5: not production tested. note 6: operation outside this range is possible, but with degraded performance of some parameters. see the typical operating characteristics. note 7: all limits reflect losses of external components, including a 0.5db loss at f if = 300mhz due to the 1:1 impedance transformer. output measurements were taken at if outputs of the typical application circuit . note 8: 100% production tested for functional performance. note 9: m easured with external lo source noise filtered so that the noise floor is -174dbm/hz at 100mhz offset. this specification reflects the effects of all snr degradations in the mixer including the lo noise, as defined in application note 2021: specifications and measurement of local oscillator noise in integrated circuit base station mixers . note 10: maximum reliable continuous input power applied to the rf or if port of this device is +12dbm from a 50 i source. parameter symbol conditions min typ max units conversion loss l c 7.3 db conversion loss variation vs. frequency dl c f rf = 2000mhz to 2900mhz, any 100mhz band q0.25 db conversion loss temperature coefficient tc cl t c = -40 n c to +85 nc 0.008 db/nc input 1db compression point ip 1db (note 10) 20.5 dbm input third-order intercept point iip3 f if1 = 300mhz, f if2 = 301mhz, p if = 0dbm/tone 30 dbm iip3 variation with t c iip3 f if1 = 300mhz, f if2 = 301mhz, p if = 0dbm/tone, t c = -40 n c to +85 nc q0.6 db lo q 2if spur lo - 2if 60 dbc lo + 2if 64 lo q 3if spur lo - 3if 68 dbc lo + 3if 80 output noise floor p out = 0dbm (note 9) -160 dbm/hz
???????????????????????????????????????????????????????????????? maxim integrated products 14 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 2000mhz to 2900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) conversion loss vs. rf frequency max2042a toc01 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 t c = -40c t c = +85c t c = +25c conversion loss vs. rf frequency max2042a toc02 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 p lo = -6dbm, -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042a toc03 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max2042a toc04 input ip3 (dbm) 30 35 40 25 rf frequency (mhz) 2600 2300 2000 2900 t c = +85c t c = -40c t c = +25c p rf = 0db m/ tone input ip3 vs. rf frequency max2042a toc05 input ip3 (dbm) 30 35 40 25 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0db m/ tone p lo = -6dbm p lo = -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency max2042a toc06 input ip3 (dbm) 30 35 40 25 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0db m/ tone v cc = 5.25v v cc = 5.0v v cc = 4.75v 2lo - 2rf response vs. rf frequency max2042a toc07 2lo - 2rf response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2600 2300 2000 2900 t c = -40c t c = +85c t c = +25c p rf = 0dbm 2lo - 2rf response vs. rf frequency max2042a toc08 2lo - 2rf response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2600 2300 2000 2900 p lo = -6dbm p lo = +3dbm p lo = 0dbm p lo = -3dbm p rf = 0dbm 2lo - 2rf response vs. rf frequency max2042a toc09 2lo - 2rf response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm v cc = 4.75v, 5.0v, 5.25v
???????????????????????????????????????????????????????????????? maxim integrated products 15 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 2000mhz to 2900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 3lo - 3rf response vs. rf frequency max2042a toc10 3lo - 3rf response (dbc) 65 75 85 55 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm t c = -40c, +25c, +85c 3lo - 3rf response vs. rf frequency max2042a toc11 3lo - 3rf response (dbc) 65 75 85 55 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm p lo = -6dbm, -3dbm, 0dbm, +3dbm 3lo - 3rf response vs. rf frequency max2042a toc12 3lo - 3rf response (dbc) 65 75 85 55 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm v cc = 5.25v v cc = 5.0v v cc = 4.75v noise figure vs. rf frequency max2042a toc13 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2600 2300 2000 2900 t c = -40c t c = +85c t c = +25c noise figure vs. rf frequency max2042a toc14 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2600 2300 2000 2900 p lo = -6dbm, -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max2042a toc15 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2600 2300 2000 2900 v cc = 4.75v, 5.0v, 5.25v input p 1db vs. rf frequency max2042a toc16 p 1db (dbm) 19 21 23 25 17 rf frequency (mhz) 2600 2300 2000 2900 t c = -40c t c = +85c t c = +25c input p 1db vs. rf frequency max2042a toc17 p 1db (dbm) 19 21 23 25 17 rf frequency (mhz) 2600 2300 2000 2900 p lo = -6dbm, -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency max2042a toc18 p 1db (dbm) 19 21 23 25 17 rf frequency (mhz) 2600 2300 2000 2900 v cc = 5.25v v cc = 5.0v v cc = 4.75v
???????????????????????????????????????????????????????????????? maxim integrated products 16 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 2000mhz to 2900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) lo leakage at if port vs. lo frequency max2042a toc19 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 2900 2600 2300 3200 t c = +85c t c = -40c t c = +25c lo leakage at rf port vs. lo frequency max2042a toc27 lo leakage at rf port (dbm) -35 -30 -25 -20 -40 lo frequency (mhz) 2900 2600 2300 3200 v cc = 5.25v v cc = 4.75v v cc = 5.0v lo leakage at if port vs. lo frequency max2042a toc20 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm, -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max2042a toc21 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 2900 2600 2300 3200 v cc = 4.75v, 5.0v, 5.25v rf-to-if isolation vs. rf frequency max2042a toc22 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2600 2300 2000 2900 t c = +85c t c = -40c t c = +25c rf-to-if isolation vs. rf frequency max2042a toc23 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2600 2300 2000 2900 p lo = -6dbm, -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max2042a toc24 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2600 2300 2000 2900 v cc = 4.75v, 5.0v, 5.25v lo leakage at rf port vs. lo frequency max2042a toc25 lo leakage at rf port (dbm) -35 -30 -25 -20 -40 lo frequency (mhz) 2900 2600 2300 3200 t c = -40c, +25c, +85c lo leakage at rf port vs. lo frequency max2042a toc26 lo leakage at rf port (dbm) -35 -30 -25 -20 -40 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm, -3dbm, 0dbm, +3dbm
???????????????????????????????????????????????????????????????? maxim integrated products 17 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 2000mhz to 2900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 2lo leakage at rf port vs. lo frequency max2042a toc28 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 2900 2600 2300 3200 t c = -40c t c = +85c t c = +25c 2lo leakage at rf port vs. lo frequency max2042a toc29 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm, -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency max2042a toc30 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 2900 2600 2300 3200 v cc = 5.25v v cc = 5.0v v cc = 4.75v rf port return loss vs. rf frequency max2042a toc31 rf frequency (mhz) rf port return loss (db) 2800 2600 2400 2200 25 20 15 10 5 0 30 2000 3000 p lo = -6dbm, -3dbm, 0dbm, +3dbm if = 300mhz if port return loss vs. if frequency max2042a toc32 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 lo = 2900mhz v cc = 4.75v, 5.0v, 5.25v 40 30 20 10 lo return loss vs. lo frequency max2042a toc33 lo frequency (mhz) lo return loss (db) 0 50 1000 4000 3400 2800 2200 1600 p lo = 0dbm p lo = -3dbm p lo = -6dbm p lo = +3dbm supply current vs. temperature (t c ) max2042a toc34 exposed pad temperature (c) supply current (ma) 60 35 10 -15 130 135 140 145 150 155 125 -40 85 v cc = 5.25v v cc = 5.0v v cc = 4.75v
???????????????????????????????????????????????????????????????? maxim integrated products 18 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 3.3v, f rf = 2000mhz to 2900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) conversion loss vs. rf frequency max2042a toc35 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 t c = -40c t c = +85c t c = +25c conversion loss vs. rf frequency max2042a toc36 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 p lo = -6dbm, -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042a toc37 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 v cc = 3.0v, 3.3v, 3.6v input ip3 vs. rf frequency max2042a toc38 input ip3 (dbm) 27 29 31 33 35 25 rf frequency (mhz) 2600 2300 2000 2900 t c = -40c, +25c, +85c p rf = 0db m/ tone input ip3 vs. rf frequency max2042a toc39 input ip3 (dbm) 27 29 31 33 35 25 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0db m/ tone p lo = -6dbm, -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency max2042a toc40 input ip3 (dbm) 27 29 31 33 35 25 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0db m/ tone v cc = 3.6v v cc = 3.3v v cc = 3.0v 2lo - 2rf response vs. rf frequency max2042a toc41 2lo - 2rf response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm t c = -40c, +25c, +85c 2lo - 2rf response vs. rf frequency max2042a toc42 2lo - 2rf response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm p lo = -3dbm p lo = 0dbm p lo = +3dbm p lo = -6dbm 2lo - 2rf response vs. rf frequency max2042a toc43 2lo - 2rf response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm v cc = 3.6v v cc = 3.0v v cc = 3.3v
???????????????????????????????????????????????????????????????? maxim integrated products 19 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 3.3v, f rf = 2000mhz to 2900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 3lo - 3rf response vs. rf frequency max2042a toc44 3lo - 3rf response (dbc) 60 65 70 75 55 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm t c = -40c, +25c, +85c 3lo - 3rf response vs. rf frequency max2042a toc45 3lo - 3rf response (dbc) 60 65 70 75 55 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm p lo = -6dbm, -3dbm, 0dbm, +3dbm 3lo - 3rf response vs. rf frequency max2042a toc46 3lo - 3rf response (dbc) 60 65 70 75 55 rf frequency (mhz) 2600 2300 2000 2900 p rf = 0dbm v cc = 3.6v v cc = 3.0v v cc = 3.3v noise figure vs. rf frequency max2042a toc47 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2600 2300 2000 2900 t c = -40c t c = +85c t c = +25c noise figure vs. rf frequency max2042a toc48 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2600 2300 2000 2900 p lo = -6dbm, -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max2042a toc49 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2600 2300 2000 2900 v cc = 3.0v v cc = 3.3v v cc = 3.6v input p 1db vs. rf frequency max2042a toc50 p 1db (dbm) 18 20 22 24 16 rf frequency (mhz) 2600 2300 2000 2900 t c = -40c t c = +85c t c = +25c input p 1db vs. rf frequency max2042a toc51 p 1d b (dbm) 18 20 22 24 16 rf frequency (mhz) 2600 2300 2000 2900 p lo = -6dbm, -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency max2042a toc52 p 1d b (dbm) 18 20 22 24 16 rf frequency (mhz) 2600 2300 2000 2900 v cc = 3.6v v cc = 3.0v v cc = 3.3v
???????????????????????????????????????????????????????????????? maxim integrated products 20 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 3.3v, f rf = 2000mhz to 2900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) lo leakage at if port vs. lo frequency max2042a toc53 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 2900 2600 2300 3200 t c = +85c t c = -40c t c = +25c lo leakage at rf port vs. lo frequency max2042a toc61 lo leakage at rf port (dbm) -35 -30 -25 -20 -40 lo frequency (mhz) 2900 2600 2300 3200 v cc = 3.6v v cc = 3.0v v cc = 3.3v lo leakage at if port vs. lo frequency max2042a toc54 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm, -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max2042a toc55 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 2900 2600 2300 3200 v cc = 3.0v, 3.3v, 3.6v rf-to-if isolation vs. rf frequency max2042a toc56 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2600 2300 2000 2900 t c = +85c t c = -40c t c = +25c rf-to-if isolation vs. rf frequency max2042a toc57 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2600 2300 2000 2900 p lo = -6dbm, -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max2042a toc58 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2600 2300 2000 2900 v cc = 3.0v, 3.3v, 3.6v lo leakage at rf port vs. lo frequency max2042a toc59 lo leakage at rf port (dbm) -35 -30 -25 -20 -40 lo frequency (mhz) 2900 2600 2300 3200 t c = -40c, +25c, +85c lo leakage at rf port vs. lo frequency max2042a toc60 lo leakage at rf port (dbm) -35 -30 -25 -20 -40 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm, -3dbm, 0dbm, +3dbm
???????????????????????????????????????????????????????????????? maxim integrated products 21 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 3.3v, f rf = 2000mhz to 2900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 2lo leakage at rf port vs. lo frequency max2042a toc62 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 2900 2600 2300 3200 t c = -40c t c = +85c t c = +25c 2lo leakage at rf port vs. lo frequency max2042a toc63 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm, -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency max2042a toc64 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 2900 2600 2300 3200 v cc = 3.6v v cc = 3.3v v cc = 3.0v rf port return loss vs. rf frequency max2042a toc65 rf frequency (mhz) rf port return loss (db) 2800 2600 2400 2200 25 20 15 10 5 0 30 2000 3000 p lo = -6dbm, -3dbm, 0dbm, +3dbm if = 300mhz if port return loss vs. if frequency max2042a toc66 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 lo = 2900mhz v cc = 3.0v, 3.3v, 3.6v 50 40 30 20 10 lo return loss vs. lo frequency max2042a toc67 lo frequency (mhz) lo return loss (db) 0 60 1000 4000 3400 2800 2200 1600 p lo = -3dbm p lo = +3dbm p lo = 0dbm p lo = -6dbm supply current vs. temperature (t c ) max2042a toc68 exposed pad temperature (c) supply current (ma) 60 35 10 -15 115 120 125 130 135 140 110 -40 85 v cc = 3.6v v cc = 3.3v v cc = 3.0v
???????????????????????????????????????????????????????????????? maxim integrated products 22 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 3100mhz to 3900mhz, lo is low-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) conversion loss vs. rf frequency max2042a toc69 rf frequency (mhz) t c = -40c conversion loss (db) 3700 3500 3300 7 8 9 10 11 6 3100 3900 t c = +25c t c = +85c conversion loss vs. rf frequency max2042a toc70 rf frequency (mhz) conversion loss (db) 3700 3500 3300 7 8 9 10 11 6 3100 3900 p lo = -6dbm, -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042a toc71 rf frequency (mhz) conversion loss (db) 3700 3500 3300 7 8 9 10 11 6 3100 3900 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max2042a toc72 rf frequency (mhz) input ip3 (dbm) 3700 3500 3300 30 35 40 25 3100 3900 t c = +85c t c = +25c t c = -40c p rf = 0db m/ tone input ip3 vs. rf frequency max2042a toc73 rf frequency (mhz) input ip3 (dbm) 3700 3500 3300 30 35 40 25 3100 3900 p rf = 0db m/ tone p lo = -3dbm, 0dbm, +3dbm p lo = -6dbm input ip3 vs. rf frequency max2042a toc74 rf frequency (mhz) input ip3 (dbm) 3700 3500 3300 30 35 40 25 3100 3900 p rf = 0db m/ tone v cc = 4.75v v cc = 5.0v v cc = 5.25v 2rf - 2lo response vs. rf frequency max2042a toc75 rf frequency (mhz) 2rf - 2lo response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 p rf = 0dbm t c = +85c t c = +25c t c = -40c 2rf - 2lo response vs. rf frequency max2042a toc76 rf frequency (mhz) 2rf - 2lo response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 p rf = 0dbm p lo = +3dbm p lo = -6dbm p lo = 0dbm p lo = -3dbm 2rf - 2lo response vs. rf frequency max2042a toc77 rf frequency (mhz) 2rf - 2lo response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 p rf = 0dbm v cc = 4.75v, 5.0v, 5.25v
???????????????????????????????????????????????????????????????? maxim integrated products 23 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 3100mhz to 3900mhz, lo is low-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 3rf - 3lo response vs. rf frequency max2042a toc78 rf frequency (mhz) 3rf - 3lo response (dbc) 3700 3500 3300 65 75 85 55 3100 3900 p rf = 0dbm t c = -40c, +25c, +85c 3rf - 3lo response vs. rf frequency max2042a toc79 rf frequency (mhz) 3rf - 3lo response (dbc) 3700 3500 3300 65 75 85 55 3100 3900 p rf = 0dbm p lo = -6dbm, -3dbm, 0dbm, +3dbm 3rf - 3lo response vs. rf frequency max2042a toc80 rf frequency (mhz) 3rf - 3lo response (dbc) 3700 3500 3300 65 75 85 55 3100 3900 p rf = 0dbm v cc = 4.75v, 5.0v, 5.25v noise figure vs. rf frequency max2042a toc81 rf frequency (mhz) noise figure (db) 3700 3500 3300 6 8 10 12 4 3100 3900 t c = +85c t c = +25c t c = -40c noise figure vs. rf frequency max2042a toc82 rf frequency (mhz) noise figure (db) 3700 3500 3300 6 8 10 12 4 3100 3900 p lo = -6dbm, -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max2042a toc83 rf frequency (mhz) noise figure (db) 3700 3500 3300 6 8 10 12 4 3100 3900 v cc = 4.75v, 5.0v, 5.25v input p 1db vs. rf frequency max2042a toc84 rf frequency (mhz) p 1db (dbm) 3700 3500 3300 19 21 23 25 17 3100 3900 t c = +85c t c = +25c t c = -40c input p 1db vs. rf frequency max2042a toc85 rf frequency (mhz) p 1db (dbm) 3700 3500 3300 19 21 23 25 17 3100 3900 p lo = -6dbm, -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency max2042a toc86 rf frequency (mhz) p 1db (dbm) 3700 3500 3300 19 21 23 25 17 3100 3900 v cc = 4.75v v cc = 5.0v v cc = 5.25v
???????????????????????????????????????????????????????????????? maxim integrated products 24 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 3100mhz to 3900mhz, lo is low-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) lo leakage at if port vs. lo frequency max2042a toc87 lo frequency (mhz) lo leakage at if port (dbm) 3400 3200 3000 -30 -20 -10 -40 2800 3600 t c = +85c t c = -40c t c = +25c lo leakage at rf port vs. lo frequency max2042a toc95 lo frequency (mhz) lo leakage at rf port (dbm) 3400 3200 3000 -35 -30 -25 -20 -40 2800 3600 v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequency max2042a toc88 lo frequency (mhz) lo leakage at if port (dbm) 3400 3200 3000 -30 -20 -10 -40 2800 3600 p lo = -6dbm, -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max2042a toc89 lo frequency (mhz) lo leakage at if port (dbm) 3400 3200 3000 -30 -20 -10 -40 2800 3600 v cc = 4.75v, 5.0v, 5.25v rf-to-if isolation vs. rf frequency max2042a toc90 rf frequency (mhz) rf-to-if isolation (db) 3700 3500 3300 30 40 50 60 20 3100 3900 t c = +85c t c = -40c t c = +25c rf-to-if isolation vs. rf frequency max2042a toc91 rf frequency (mhz) rf-to-if isolation (db) 3700 3500 3300 30 40 50 60 20 3100 3900 p lo = -6dbm, -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max2042a toc92 rf frequency (mhz) rf-to-if isolation (db) 3700 3500 3300 30 40 50 60 20 3100 3900 v cc = 4.75v, 5.0v, 5.25v lo leakage at rf port vs. lo frequency max2042a toc93 lo frequency (mhz) lo leakage at rf port (dbm) 3400 3200 3000 -35 -30 -25 -20 -40 2800 3600 t c = +85c t c = +25c t c = -40c lo leakage at rf port vs. lo frequency max2042a toc94 lo frequency (mhz) lo leakage at rf port (dbm) 3400 3200 3000 -35 -30 -25 -20 -40 2800 3600 p lo = -6dbm, -3dbm, 0dbm, +3dbm
???????????????????????????????????????????????????????????????? maxim integrated products 25 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 3100mhz to 3900mhz, lo is low-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 2lo leakage at rf port vs. lo frequency max2042a toc96 lo frequency (mhz) 2lo leakage at rf port (dbm) 3400 3200 3000 -35 -30 -25 -20 -15 -10 -40 2800 3600 t c = +85c t c = +25c t c = -40c 2lo leakage at rf port vs. lo frequency max2042a toc97 lo frequency (mhz) 2lo leakage at rf port (dbm) 3400 3200 3000 -35 -30 -25 -20 -15 -10 -40 2800 3600 p lo = -6dbm, -3dbm p lo = 3dbm p lo = -0dbm 2lo leakage at rf port vs. lo frequency max2042a toc98 lo frequency (mhz) 2lo leakage at rf port (dbm) 3400 3200 3000 -35 -30 -25 -20 -15 -10 -40 2800 3600 v cc = 4.75v, 5.0v, 5.25v rf port return loss vs. rf frequency max2042a toc99 rf frequency (mhz) rf port return loss (db) 3800 3600 3400 3200 25 20 15 10 5 0 30 3000 4000 if = 300mhz p lo = -6dbm, -3dbm, 0dbm, +3dbm if port return loss vs. if frequency max2042a toc100 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 lo = 3200mhz v cc = 4.75v, 5.0v, 5.25v lo return loss vs. lo frequency max2042a toc101 lo frequency (mhz) lo return loss (db) 3500 3300 3100 2900 30 20 10 0 40 2700 3700 p lo = +3dbm p lo = -3dbm p lo = -6dbm p lo = -0dbm supply current vs. temperature (t c ) max2042a toc102 exposed pad temperature (c) supply current (ma) 60 35 10 -15 130 135 140 145 150 155 125 -40 85 v cc = 4.75v v cc = 5.25v v cc = 5.0v
???????????????????????????????????????????????????????????????? maxim integrated products 26 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 3100mhz to 3900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) conversion loss vs. rf frequency max2042a toc104 rf frequency (mhz) conversion loss (db) 3700 3500 3300 7 8 9 10 11 6 3100 3900 p lo = -6dbm, -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042a toc103 rf frequency (mhz) conversion loss (db) 3700 3500 3300 7 8 9 10 11 6 3100 3900 t c = +85c t c = +25c t c = -40c conversion loss vs. rf frequency max2042a toc105 rf frequency (mhz) conversion loss (db) 3700 3500 3300 7 8 9 10 11 6 3100 3900 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max2042a toc106 rf frequency (mhz) input ip3 (dbm) 3700 3500 3300 25 30 35 20 3100 3900 t c = +85c t c = +25c t c = -40c p rf = 0dbm/ tone 2lo - 2rf response vs. rf frequency max2042a toc109 rf frequency (mhz) 2lo - 2rf response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 t c = +85c t c = +25c p rf = 0dbm t c = -40c input ip3 vs. rf frequency max2042a toc107 rf frequency (mhz) input ip3 (dbm) 3700 3500 3300 25 30 35 20 3100 3900 p rf = 0db m/ tone p lo = -3dbm, 0dbm, +3dbm p lo = -6dbm 2lo - 2rf response vs. rf frequency max2042a toc110 rf frequency (mhz) 2lo - 2rf response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 p lo = -6dbm p lo = -3dbm p lo = +3dbm p lo = 0dbm p rf = 0dbm input ip3 vs. rf frequency max2042a toc108 rf frequency (mhz) input ip3 (dbm) 3700 3500 3300 25 30 35 20 3100 3900 p rf = 0db m/ tone v cc = 4.75v, 5.0v, 5.25v 2lo - 2rf response vs. rf frequency max2042a toc111 rf frequency (mhz) 2lo - 2rf response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 p rf = 0dbm v cc = 4.75v, 5.0v, 5.25v
???????????????????????????????????????????????????????????????? maxim integrated products 27 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, frf = 3100mhz to 3900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 3lo - 3rf response vs. rf frequency max2042a toc112 rf frequency (mhz) 3lo - 3rf response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 t c = -40c, +25c, +85c p rf = 0dbm 3lo - 3rf response vs. rf frequency max2042a toc113 rf frequency (mhz) 3lo - 3rf response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 p lo = -6dbm, -3dbm, 0dbm, +3dbm p rf = 0dbm 3lo - 3rf response vs. rf frequency max2042a toc114 rf frequency (mhz) 3lo - 3rf response (dbc) 3700 3500 3300 55 60 65 70 75 50 3100 3900 v cc = 4.75v, 5.0v, 5.25v p rf = 0dbm noise figure vs. rf frequency max2042a toc115 rf frequency (mhz) noise figure (db) 3550 3400 3250 6 8 10 12 4 3100 3700 t c = -40c t c = +25c t c = +85c input p 1db vs. rf frequency max2042a toc118 rf frequency (mhz) p 1db (dbm) 3700 3500 3300 17 19 21 15 3100 3900 t c = +25c t c = -40c t c = +85c noise figure vs. rf frequency max2042a toc116 rf frequency (mhz) noise figure (db) 3550 3400 3250 6 8 10 12 4 3100 3700 p lo = 0dbm, +3dbm p lo = -6dbm p lo = -3dbm input p 1db vs. rf frequency max2042a toc119 rf frequency (mhz) p 1db (dbm) 3700 3500 3300 17 19 21 15 3100 3900 p lo = -6dbm p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max2042a toc117 rf frequency (mhz) noise figure (db) 3550 3400 3250 6 8 10 12 4 3100 3700 v cc = 4.75v, 5.0v, 5.25v input p 1db vs. rf frequency max2042a toc120 rf frequency (mhz) p 1db (dbm) 3700 3500 3300 17 19 21 15 3100 3900 v cc = 4.75v v cc = 5.0v v cc = 5.25v
???????????????????????????????????????????????????????????????? maxim integrated products 28 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, frf = 3100mhz to 3900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) lo leakage at if port vs. lo frequency max2042a toc121 lo frequency (mhz) lo leakage at if port (dbm) 4000 3800 3600 -40 -30 -20 -10 -50 3400 4200 t c = +85c t c = +25c t c = -40c lo leakage at rf port vs. lo frequency max2042a toc129 lo frequency (mhz) lo leakage at rf port (dbm) 4000 3800 3600 -40 -35 -30 -25 -45 3400 4200 v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequency max2042a toc122 lo frequency (mhz) lo leakage at if port (dbm) 4000 3800 3600 -40 -30 -20 -10 -50 3400 4200 p lo = -6dbm, -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max2042a toc123 lo frequency (mhz) lo leakage at if port (dbm) 4000 3800 3600 -40 -30 -20 -10 -50 3400 4200 v cc = 4.75v, 5.0v, 5.25v rf-to-if isolation vs. rf frequency max2042a toc124 rf frequency (mhz) rf-to-if isolation (db) 3700 3500 3300 30 40 50 60 20 3100 3900 t c = -40c t c = +25c t c = +85c rf-to-if isolation vs. rf frequency max2042a toc125 rf frequency (mhz) rf-to-if isolation (db) 3700 3500 3300 30 40 50 60 20 3100 3900 p lo = -6dbm, -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max2042a toc126 rf frequency (mhz) rf-to-if isolation (db) 3700 3500 3300 30 40 50 60 20 3100 3900 v cc = 4.75v, 5.0v, 5.25v lo leakage at rf port vs. lo frequency max2042a toc127 lo frequency (mhz) lo leakage at rf port (dbm) 4000 3800 3600 -40 -35 -30 -25 -45 3400 4200 t c = +85c t c = +25c t c = -40c lo leakage at rf port vs. lo frequency max2042a toc128 lo frequency (mhz) lo leakage at rf port (dbm) 4000 3800 3600 -40 -35 -30 -25 -45 3400 4200 p lo = -6dbm, -3dbm, 0dbm, +3dbm
???????????????????????????????????????????????????????????????? maxim integrated products 29 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, frf = 3100mhz to 3900mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 2lo leakage at rf port vs. lo frequency max2042a toc130 lo frequency (mhz) 2lo leakage at rf port (dbm) 4000 3800 3600 -25 -20 -15 -10 -5 0 -30 3400 4200 t c = +85c t c = +25c t c = -40c 2lo leakage at rf port vs. lo frequency max2042a toc131 lo frequency (mhz) 2lo leakage at rf port (dbm) 4000 3800 3600 -25 -20 -15 -10 -5 0 -30 3400 4200 p lo = -6dbm, -3dbm p lo = 0dbm p lo = 3dbm 2lo leakage at rf port vs. lo frequency max2042a toc132 lo frequency (mhz) 2lo leakage at rf port (dbm) 4000 3800 3600 -25 -20 -15 -10 -5 0 -30 3400 4200 v cc = 4.75v, 5.0v, 5.25v rf frequency (mhz) rf port return loss (db) 3800 3600 3400 3200 25 20 15 10 5 0 30 3000 4000 rf port return loss vs. rf frequency max2042a toc133 if = 300mhz p lo = -6dbm, -3dbm, 0dbm, +3dbm if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 if port return loss vs. if frequency max2042a toc134 lo = 3800mhz v cc = 4.75v, 5.0v, 5.25v lo return loss vs. lo frequency max2042a toc135 lo frequency (mhz) lo return loss (db) 4100 3900 3700 3500 30 20 10 0 40 3300 4300 p lo = 0dbm p lo = -3dbm p lo = -6dbm p lo = +3dbm exposed pad temperature (c) supply current (ma) 60 35 10 -15 130 135 140 145 150 155 125 -40 85 supply current vs.temperature (t c ) max2042a toc136 v cc = 4.75v v cc = 5.25v v cc = 5.0v
???????????????????????????????????????????????????????????????? maxim integrated products 30 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 1650mhz to 2250mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) conversion loss vs. rf frequency max2042a toc137 rf frequency (mhz) conversion loss (db) 2050 1850 7 8 9 10 6 1650 2250 t c = -40c t c = +85c t c = +25c conversion loss vs. rf frequency max2042a toc138 conversion loss (db) p lo = -6dbm, -3dbm, 0dbm, +3dbm 7 8 9 10 6 rf frequency (mhz) 2050 1850 1650 2250 conversion loss vs. rf frequency max2042a toc139 v cc = 4.75v, 5.0v, 5.25v conversion loss (db) 7 8 9 10 6 rf frequency (mhz) 2050 1850 1650 2250 input ip3 vs. rf frequency max2042a toc140 input ip3 (dbm) 25 30 35 40 20 rf frequency (mhz) 2050 1850 1650 2250 p rf = 0db m/ tone t c = +25c t c = +85c t c = -40c input ip3 vs. rf frequency max2042a toc141 input ip3 (dbm) 25 30 35 40 20 rf frequency (mhz) 2050 1850 1650 2250 p rf = 0db m/ tone p lo = -6dbm, -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency max2042a toc142 input ip3 (dbm) 25 30 35 40 20 rf frequency (mhz) 2050 1850 1650 2250 p rf = 0db m/ tone v cc = 4.75v, 5.0v, 5.25v 2lo - 2rf response vs. rf frequency max2042a toc143 2lo - 2rf response (dbc) 60 70 80 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 t c = -40c t c = +85c t c = +25c 2lo - 2rf response vs. rf frequency max2042a toc144 2lo - 2rf response (dbc) 60 70 80 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm p lo = +3dbm p lo = 0dbm p lo = -3dbm 2lo - 2rf response vs. rf frequency max2042a toc145 2lo - 2rf response (dbc) 60 70 80 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 v cc = 4.75v, 5.0v, 5.25v
???????????????????????????????????????????????????????????????? maxim integrated products 31 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 1650mhz to 2250mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 3lo - 3rf response vs. rf frequency max2042a toc146 3lo - 3rf response (dbc) 60 70 80 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 t c = -40c t c = +85c t c = +25c 3lo - 3rf response vs. rf frequency max2042a toc147 3lo - 3rf response (dbc) 60 70 80 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm 3lo - 3rf response vs. rf frequency max2042a toc148 3lo - 3rf response (dbc) 60 70 80 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 v cc = 4.75v, 5.0v, 5.25v 6 7 8 9 noise figure vs. rf frequency max2042a toc149 rf frequency (mhz) noise figure (db) 2050 1850 10 5 1650 2250 t c = -40c t c = +85c t c = +25c 6 7 8 9 noise figure vs. rf frequency max2042a toc150 rf frequency (mhz) noise figure (db) 2050 1850 10 5 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm 6 7 8 9 noise figure vs. rf frequency max2042a toc151 rf frequency (mhz) noise figure (db) 2050 1850 10 5 1650 2250 v cc = 4.75v, 5.0v, 5.25v 21 23 input p 1db vs. rf frequency max2042a toc152 p 1d b (dbm) 25 19 t c = -40c t c = +85c t c = +25c rf frequency (mhz) 2050 1850 1650 2250 21 23 input p 1db vs. rf frequency max2042a toc153 p 1d b (dbm) 25 19 rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm 21 23 input p 1db vs. rf frequency max2042a toc154 p 1d b (dbm) 25 19 rf frequency (mhz) 2050 1850 1650 2250 v cc = 5.25v v cc = 5.0v v cc = 4.75v
???????????????????????????????????????????????????????????????? maxim integrated products 32 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 1650mhz to 2250mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) -30 -20 lo leakage at if port vs. lo frequency max2042a toc155 lo leakage at if port (dbm) -10 -40 lo frequency (mhz) 2350 2150 1950 2550 t c = +85c t c = -40c t c = +25c -30 -20 lo leakage at rf port vs. lo frequency max2042a toc163 lo leakage at rf port (dbm) -10 -40 lo frequency (mhz) 2350 2150 1950 2550 v cc = 5.25v v cc = 5.0v v cc = 4.75v -30 -20 lo leakage at if port vs. lo frequency max2042a toc156 lo leakage at if port (dbm) -10 -40 lo frequency (mhz) 2350 2150 1950 2550 p lo = -6dbm, -3dbm, 0dbm, +3dbm -30 -20 lo leakage at if port vs. lo frequency max2042a toc157 lo leakage at if port (dbm) -10 -40 lo frequency (mhz) 2350 2150 1950 2550 v cc = 4.75v, 5.0v, 5.25v rf-to-if isolation vs. rf frequency max2042a toc158 rf-to-if isolation (db) 30 40 50 60 20 t c = +85c t c = -40c t c = +25c rf frequency (mhz) 2050 1850 1650 2250 rf-to-if isolation vs. rf frequency max2042a toc159 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max2042a toc160 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2050 1850 1650 2250 v cc = 5.25v v cc = 5.0v v cc = 4.75v -30 -20 lo leakage at rf port vs. lo frequency max2042a toc161 lo leakage at rf port (dbm) -10 -40 lo frequency (mhz) 2350 2150 1950 2550 t c = -40c, +25c, +85c -30 -20 lo leakage at rf port vs. lo frequency max2042a toc162 lo leakage at rf port (dbm) -10 -40 lo frequency (mhz) 2350 2150 1950 2550 p lo = -6dbm, -3dbm, 0dbm, +3dbm
???????????????????????????????????????????????????????????????? maxim integrated products 33 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 1650mhz to 2250mhz, lo is high-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 2lo leakage at rf port vs. lo frequency max2042a toc164 lo frequency (mhz) 2lo leakage at rf port (dbm) 2350 2150 -40 -30 -20 -10 -50 1950 2550 t c = -40c t c = +85c t c = +25c 2lo leakage at rf port vs. lo frequency max2042a toc165 lo frequency (mhz) 2lo leakage at rf port (dbm) 2350 2150 -40 -30 -20 -10 -50 1950 2550 p lo = -6dbm, -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency max2042a toc166 lo frequency (mhz) 2lo leakage at rf port (dbm) 2350 2150 -40 -30 -20 -10 -50 1950 2550 v cc = 5.25v v cc = 4.75v v cc = 5.0v 2150 1950 1750 rf port return loss vs. rf frequency max2042a toc167 rf frequency (mhz) rf port return loss (db) 25 20 15 10 5 0 30 1550 2350 p lo = -6dbm, -3dbm, 0dbm, +3dbm if = 300mhz if port return loss vs. if frequency max2042a toc168 if frequency (mhz) 410 320 230 140 50 500 if port return loss (db) 25 20 15 10 5 0 30 lo = 2150mhz v cc = 4.75v, 5.0v, 5.25v 2450 2250 2050 lo return loss vs. lo frequency max2042a toc169 lo frequency (mhz) lo return loss (db) 0 50 1850 2650 40 30 20 10 p lo = -3dbm p lo = -6dbm p lo = 0dbm p lo = +3dbm supply current vs. temperature (t c ) max2042a toc170 exposed pad temperature (c) supply current (ma) 60 35 10 -15 130 135 140 145 150 155 125 -40 85 v cc = 5.25v v cc = 5.0v v cc = 4.75v
???????????????????????????????????????????????????????????????? maxim integrated products 34 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 1650mhz to 2250mhz, lo is low-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) conversion loss vs. rf frequency max2042a toc171 conversion loss (db) 7 8 9 10 11 6 rf frequency (mhz) 2050 1850 1650 2250 t c = -40c t c = +85c t c = +25c conversion loss vs. rf frequency max2042a toc172 conversion loss (db) 7 8 9 10 11 6 rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042a toc173 conversion loss (db) 7 8 9 10 11 6 rf frequency (mhz) 2050 1850 1650 2250 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max2042a toc174 input ip3 (dbm) 25 30 35 20 t c = +85c t c = -40c t c = +25c p rf = 0db m/ tone rf frequency (mhz) 2050 1850 1650 2250 input ip3 vs. rf frequency max2042a toc175 input ip3 (dbm) 25 30 35 20 p rf = 0db m/ tone rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency max2042a toc176 input ip3 (dbm) 25 30 35 20 p rf = 0db m/ tone rf frequency (mhz) 2050 1850 1650 2250 v cc = 5.25v v cc = 5.0v v cc = 4.75v 2rf - 2lo response vs. rf frequency max2042a toc177 2rf - 2lo response (dbc) 55 60 65 70 75 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 t c = +85c t c = -40c t c = +25c 2rf - 2lo response vs. rf frequency max2042a toc178 2rf - 2lo response (dbc) 55 60 65 70 75 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 p lo = 0dbm p lo = -6dbm p lo = -3dbm p lo = +3dbm 2rf - 2lo response vs. rf frequency max2042a toc179 2rf - 2lo response (dbc) 55 60 65 70 75 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 v cc = 5.25v v cc = 5.0v v cc = 4.75v
???????????????????????????????????????????????????????????????? maxim integrated products 35 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 1650mhz to 2250mhz, lo is low-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 3rf - 3lo response vs. rf frequency max2042a toc180 3rf - 3lo response (dbc) 60 70 80 50 t c = +85c t c = -40c t c = +25c p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 3rf - 3lo response vs. rf frequency max2042a toc181 3rf - 3lo response (dbc) 60 70 80 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm 3rf - 3lo response vs. rf frequency max2042a toc182 3rf - 3lo response (dbc) 60 70 80 50 p rf = 0dbm rf frequency (mhz) 2050 1850 1650 2250 v cc = 5.25v v cc = 5.0v v cc = 4.75v noise figure vs. rf frequency max2042a toc183 noise figure (db) 7 9 11 13 15 5 t c = +85c t c = -40c t c = +25c rf frequency (mhz) 2050 1850 1650 2250 noise figure vs. rf frequency max2042a toc184 noise figure (db) 7 9 11 13 15 5 rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max2042a toc185 noise figure (db) 7 9 11 13 15 5 rf frequency (mhz) 2050 1850 1650 2250 v cc = 4.75v, 5.0v, 5.25v input p 1db vs. rf frequency max2042a toc186 p 1db (dbm) 16 18 20 22 24 14 rf frequency (mhz) 2050 1850 1650 2250 t c = -40c t c = +85c t c = +25c input p 1db vs. rf frequency max2042a toc187 p 1db (dbm) 16 18 20 22 24 14 rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm, -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency max2042a toc188 p 1db (dbm) 16 18 20 22 24 14 rf frequency (mhz) 2050 1850 1650 2250 v cc = 4.75v, 5.0v, 5.25v
???????????????????????????????????????????????????????????????? maxim integrated products 36 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 1650mhz to 2250mhz, lo is low-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) lo leakage at if port vs. lo frequency max2042a toc189 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 1750 1550 1350 1950 t c = +85c t c = -40c t c = +25c -30 -20 lo leakage at rf port vs. lo frequency max2042a toc197 lo leakage at rf port (dbm) -10 -40 lo frequency (mhz) 1750 1550 1350 1950 v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequency max2042a toc190 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 1750 1550 1350 1950 p lo = -6dbm, -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max2042a toc191 lo leakage at if port (dbm) -30 -20 -10 -40 lo frequency (mhz) 1750 1550 1350 1950 v cc = 4.75v, 5.0v, 5.25v rf-to-if isolation vs. rf frequency max2042a toc192 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2050 1850 1650 2250 t c = +85c t c = -40c t c = +25c rf-to-if isolation vs. rf frequency max2042a toc193 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2050 1850 1650 2250 p lo = -6dbm p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max2042a toc194 rf-to-if isolation (db) 30 40 50 60 20 rf frequency (mhz) 2050 1850 1650 2250 v cc = 4.75v, 5.0v, 5.25v -30 -20 lo leakage at rf port vs. lo frequency max2042a toc195 lo leakage at rf port (dbm) -10 -40 lo frequency (mhz) 1750 1550 1350 1950 t c = -40c, +25c, +85c -30 -20 lo leakage at rf port vs. lo frequency max2042a toc196 lo leakage at rf port (dbm) -10 -40 lo frequency (mhz) 1750 1550 1350 1950 p lo = -6dbm, -3dbm, 0dbm, +3dbm
???????????????????????????????????????????????????????????????? maxim integrated products 37 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = 5.0v, f rf = 1650mhz to 2250mhz, lo is low-side injected for a 300mhz if, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) 2lo leakage at rf port vs. lo frequency max2042a toc198 2lo leakage at rf port (dbm) -40 -30 -20 -10 -50 lo frequency (mhz) 1750 1550 1350 1950 t c = -40c, +25c, +85c 2lo leakage at rf port vs. lo frequency max2042a toc199 2lo leakage at rf port (dbm) -40 -30 -20 -10 -50 lo frequency (mhz) 1750 1550 1350 1950 p lo = -6dbm, -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency max2042a toc200 2lo leakage at rf port (dbm) -40 -30 -20 -10 -50 lo frequency (mhz) 1750 1550 1350 1950 v cc = 4.75v, 5.0v, 5.25v 2150 1950 1750 20 15 10 5 rf port return loss vs. rf frequency max2042a toc201 rf frequency (mhz) rf port return loss (db) 0 25 1550 2350 p lo = -6dbm, -3dbm, 0dbm, +3dbm if = 300mhz if port return loss vs. if frequency max2042a toc202 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 lo = 1950mhz v cc = 4.75v, 5.0v, 5.25v supply current vs. temperature (t c ) max2042a toc204 exposed pad temperature (c) supply current (ma) 60 35 10 -15 130 135 140 145 150 155 125 -40 85 v cc = 5.25v v cc = 5.0v v cc = 4.75v lo return loss vs. lo frequency max2042a toc203 lo frequency (mhz) lo return loss (db) 1850 1650 1450 40 30 20 10 0 50 1250 2050 p lo = -3dbm p lo = 0dbm p lo = -6dbm p lo = +3dbm
???????????????????????????????????????????????????????????????? maxim integrated products 38 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2 , v cc = +5.0v, f rf = f lo - f if , f if = 300mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) conversion loss vs. rf frequency max2042a toc205 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 t c = -40c t c = +85c t c = +25c lo - 2if response vs. rf frequency max2042a toc212 rf frequency (mhz) lo - 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p lo = -6dbm p lo = -3dbm p lo = 0dbm p lo = +3dbm p if = 0dbm conversion loss vs. rf frequency max2042a toc206 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 p lo = -6dbm, 3dbm, 0dbm, +3dbm lo - 2if response vs. rf frequency max2042a toc213 rf frequency (mhz) lo - 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p if = 0dbm v cc = 4.75v, 5.0v, 5.25v conversion loss vs. rf frequency max2042a toc207 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max2042a toc208 input ip3 (dbm) 30 32 34 36 38 40 28 rf frequency (mhz) 2600 2300 2000 2900 t c = -40c t c = +85c t c = +25c p if = 0dbm / tone input ip3 vs. rf frequency max2042a toc209 input ip3 (dbm) 30 32 34 36 38 40 28 rf frequency (mhz) 2600 2300 2000 2900 p if = 0db m/ tone p lo = -3dbm, 0dbm, +3dbm p lo = -6dbm input ip3 vs. rf frequency max2042a toc210 input ip3 (dbm) 30 32 34 36 38 40 28 rf frequency (mhz) 2600 2300 2000 2900 p if = 0db m/ tone v cc = 5.25v v cc = 5.0v v cc = 4.75v lo - 2if response vs. rf frequency max2042a toc211 rf frequency (mhz) lo - 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 t c = -40c t c = +85c t c = +25c p if = 0dbm
???????????????????????????????????????????????????????????????? maxim integrated products 39 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2 , v cc = +5.0v, f rf = f lo - f if , f if = 300mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) lo + 2if response vs. rf frequency max2042a toc214 rf frequency (mhz) lo + 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p if = 0dbm t c = -40c t c = +85c t c = +25c lo + 2if response vs. rf frequency max2042a toc215 rf frequency (mhz) lo + 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p if = 0dbm p lo = -6dbm p lo = -3dbm p lo = +3dbm p lo = 0dbm lo + 2if response vs. rf frequency max2042a toc216 rf frequency (mhz) lo + 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p if = 0dbm v cc = 5.0v v cc = 5.25v v cc = 4.75v lo - 3if response vs. rf frequency max2042a toc217 rf frequency (mhz) lo - 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm t c = -40c, +25c, +85c lo - 3if response vs. rf frequency max2042a toc218 rf frequency (mhz) lo - 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm p lo = -6dbm, -3dbm, 0dbm, +3dbm lo - 3if response vs. rf frequency max2042a toc219 rf frequency (mhz) lo - 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm v cc = 4.75v, 5.0v, 5.25v lo + 3if response vs. rf frequency max2042a toc220 rf frequency (mhz) lo + 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm t c = -40c t c = +85c t c = +25c lo + 3if response vs. rf frequency max2042a toc221 rf frequency (mhz) lo + 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm p lo = -6dbm, -3dbm, 0dbm, +3dbm lo + 3if response vs. rf frequency max2042a toc222 rf frequency (mhz) lo + 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm v cc = 5.25v v cc = 5.0v v cc = 4.75v
???????????????????????????????????????????????????????????????? maxim integrated products 40 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2 , v cc = +5.0v, f rf = f lo - f if , f if = 300mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) if leakage at rf port vs. lo frequency max2042a toc226 if leakage at rf port (dbm) -80 -70 -60 -50 -40 -90 lo frequency (mhz) 2900 2600 2300 3200 t c = -40c t c = +85c t c = +25c if leakage at rf port vs. lo frequency max2042a toc227 if leakage at rf port (dbm) -80 -70 -60 -50 -40 -90 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm p lo = +3dbm p lo = -3dbm p lo = 0dbm if leakage at rf port vs. lo frequency max2042a toc228 if leakage at rf port (dbm) -80 -70 -60 -50 -40 -90 lo frequency (mhz) 2900 2600 2300 3200 v cc = 5.25v v cc = 5.0v v cc = 4.75v lo leakage at rf port vs. lo frequency max2042a toc223 lo leakage at rf port (dbm) -30 -25 -20 -35 lo frequency (mhz) 2900 2600 2300 3200 t c = -40c, +25c, +85c lo leakage at rf port vs. lo frequency max2042a toc224 lo leakage at rf port (dbm) -30 -25 -20 -35 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm, -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max2042a toc225 lo leakage at rf port (dbm) -30 -25 -20 -35 lo frequency (mhz) 2900 2600 2300 3200 v cc = 5.25v v cc = 5.0v v cc = 4.75v
???????????????????????????????????????????????????????????????? maxim integrated products 41 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2 , v cc = +5.0v, f rf = f lo - f if , f if = 300mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) rf port return loss vs. rf frequency max2042a toc229 rf frequency (mhz) rf port return loss (db) 2800 2600 2400 2200 25 20 15 10 5 0 30 2000 3000 if = 300mhz p lo = -6dbm, -3dbm, 0dbm, +3dbm if port return loss vs. if frequency max2042a toc230 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 lo = 2900mhz v cc = 4.75v, 5.0v, 5.25v 40 30 20 10 lo return loss vs. lo frequency max2042a toc231 lo frequency (mhz) lo return loss (db) 0 50 1000 4000 3400 2800 2200 1600 p lo = 0dbm p lo = -3dbm p lo = -6dbm p lo = +3dbm supply current vs. temperature (t c ) max2042a toc232 exposed pad temperature (c) supply current (ma) 60 35 10 -15 130 135 140 145 150 155 125 -40 85 v cc = 5.25v v cc = 5.0v v cc = 4.75v
???????????????????????????????????????????????????????????????? maxim integrated products 42 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2 , v cc = +3.3v, f rf = f lo - f if , f if = 300mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) conversion loss vs. rf frequency max2042a toc233 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 t c = -40c t c = +85c t c = +25c lo - 2if response vs. rf frequency max2042a toc240 rf frequency (mhz) lo - 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p lo = -6dbm p lo = -3dbm p lo = 0dbm p lo = +3dbm p if = 0dbm conversion loss vs. rf frequency max2042a toc234 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 p lo = -6dbm, 3dbm, 0dbm, +3dbm lo - 2if response vs. rf frequency max2042a toc241 rf frequency (mhz) lo - 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p if = 0dbm v cc = 3.0v, 3.3v, 3.6v conversion loss vs. rf frequency max2042a toc235 rf frequency (mhz) conversion loss (db) 2600 2300 6 7 8 9 5 2000 2900 v cc = 3.0v, 3.3v, 3.6v 27 29 31 33 input ip3 vs. rf frequency max2042a toc236 input ip3 (dbm) 35 25 rf frequency (mhz) 2600 2300 2000 2900 t c = -40c t c = +85c t c = +25c p if = 0db m/ tone 27 29 31 33 input ip3 vs. rf frequency max2042a toc237 input ip3 (dbm) 35 25 rf frequency (mhz) 2600 2300 2000 2900 p if = 0db m/ tone p lo = -6dbm, -3dbm, 0dbm, +3dbm 27 29 31 33 input ip3 vs. rf frequency max2042a toc238 input ip3 (dbm) 35 25 rf frequency (mhz) 2600 2300 2000 2900 p if = 0db m/ tone v cc = 3.0v v cc = 3.6v v cc = 3.3v lo - 2if response vs. rf frequency max2042a toc239 rf frequency (mhz) lo - 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 t c = -40c t c = +85c t c = +25c p if = 0dbm
???????????????????????????????????????????????????????????????? maxim integrated products 43 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2 , v cc = +3.3v, f rf = f lo - f if , f if = 300mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) lo + 2if response vs. rf frequency max2042a toc242 rf frequency (mhz) lo + 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p if = 0dbm t c = -40c t c = +85c t c = +25c lo + 2if response vs. rf frequency max2042a toc243 rf frequency (mhz) lo + 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p if = 0dbm p lo = -6dbm p lo = -3dbm p lo = +3dbm p lo = 0dbm lo + 2if response vs. rf frequency max2042a toc244 rf frequency (mhz) lo + 2if response (dbc) 2600 2300 55 65 75 85 45 2000 2900 p if = 0dbm v cc = 3.3v v cc = 3.0v v cc = 3.6v lo - 3if response vs. rf frequency max2042a toc245 rf frequency (mhz) lo - 3if response (dbc) 2600 2300 60 70 80 90 50 2000 2900 p if = 0dbm t c = -40c, +25c, +85c lo - 3if response vs. rf frequency max2042a toc246 rf frequency (mhz) lo - 3if response (dbc) 2600 2300 2000 2900 p if = 0dbm p lo = -6dbm, -3dbm, 0dbm, +3dbm 60 70 80 90 50 lo - 3if response vs. rf frequency max2042a toc247 rf frequency (mhz) lo - 3if response (dbc) 2600 2300 2000 2900 p if = 0dbm 60 70 80 90 50 v cc = 3.6v v cc = 3.3v v cc = 3.0v lo + 3if response vs. rf frequency max2042a toc248 rf frequency (mhz) lo + 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm t c = -40c t c = +85c t c = +25c lo + 3if response vs. rf frequency max2042a toc249 rf frequency (mhz) lo + 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm p lo = -6dbm, -3dbm, 0dbm, +3dbm lo + 3if response vs. rf frequency max2042a toc250 rf frequency (mhz) lo + 3if response (dbc) 2600 2300 70 80 90 100 60 2000 2900 p if = 0dbm v cc = 3.6v v cc = 3.3v v cc = 3.0v
???????????????????????????????????????????????????????????????? maxim integrated products 44 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2 , v cc = +3.3v, f rf = f lo - f if , f if = 300mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) if leakage at rf port vs. lo frequency max2042a toc254 if leakage at rf port (dbm) -80 -70 -60 -50 -40 -90 lo frequency (mhz) 2900 2600 2300 3200 t c = -40c t c = +85c t c = +25c if leakage at rf port vs. lo frequency max2042a toc255 if leakage at rf port (dbm) -80 -70 -60 -50 -40 -90 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm p lo = -3dbm, 0dbm, +3dbm if leakage at rf port vs. lo frequency max2042a toc256 if leakage at rf port (dbm) -80 -70 -60 -50 -40 -90 lo frequency (mhz) 2900 2600 2300 3200 v cc = 3.0v, 3.3v, 3.6v lo leakage at rf port vs. lo frequency max2042a toc251 lo leakage at rf port (dbm) -35 -30 -25 -40 lo frequency (mhz) 2900 2600 2300 3200 t c = -40c, +25c, +85c lo leakage at rf port vs. lo frequency max2042a toc252 lo frequency (mhz) 2900 2600 2300 3200 p lo = -6dbm, -3dbm, 0dbm, +3dbm -35 -30 -25 -40 lo leakage at rf port (dbm) lo leakage at rf port vs. lo frequency max2042a toc253 lo frequency (mhz) 2900 2600 2300 3200 v cc = 3.6v v cc = 3.3v v cc = 3.0v -35 -30 -25 -40 lo leakage at rf port (dbm)
???????????????????????????????????????????????????????????????? maxim integrated products 45 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2 , v cc = +3.3v, f rf = f lo - f if , f if = 300mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) rf port return loss vs. rf frequency max2042a toc257 rf frequency (mhz) rf port return loss (db) 2800 2600 2400 2200 25 20 15 10 5 0 30 2000 3000 if = 300mhz p lo = -6dbm, -3dbm, 0dbm, +3dbm if port return loss vs. if frequency max2042a toc258 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 lo = 2900mhz v cc = 3.0v, 3.3v, 3.6v 40 30 20 10 lo return loss vs. lo frequency max2042a toc259 lo frequency (mhz) lo return loss (db) 0 50 1000 4000 3400 2800 2200 1600 p lo = +3dbm p lo = -6dbm p lo = -3dbm p lo = 0dbm supply current vs. temperature (t c ) max2042a toc260 exposed pad temperature (c) supply current (ma) 60 35 10 -15 115 120 125 130 135 140 110 -40 85 v cc = 3.6v v cc = 3.3v v cc = 3.0v
???????????????????????????????????????????????????????????????? maxim integrated products 46 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer pin description pin configuration pin name function 1, 6, 8,14 v cc power supply. bypass to gnd with 0.01 f f capacitors as close as possible to the pin. 2 rf single-ended 50 i rf input. internally matched and dc shorted to gnd through a balun. provide a dc-blocking capacitor if required. capacitor also provides some rf match tuning. 3, 4, 5, 10, 12, 13, 17 gnd ground. internally connected to the exposed pad. connect all ground pins and the exposed pad (ep) together. 7 lobias lo amplifier bias control. output bias resistor for the lo buffer. connect a 698 i q 1% resistor (nomi nal bias condition) from lobias to ground. the maximum current seen by this resistor is 3ma. 9, 15 gnd ground. not internally connected. ground these pins or leave unconnected. 11 lo local oscillator input. this input is internally matched to 50 i . requires an input dc-blocking capacitor. capacitor also provides some lo match tuning. 16, 20 gnd ground. connect all ground pins and the exposed pad (ep) together. 18, 19 if-, if+ mixer differential if output/input ep exposed pad. internally connected to gnd. solder this exposed pad to a pcb pad that uses multiple ground vias to provide heat transfer out of the device into the pcb ground planes. these multiple via grounds are also required to achieve the noted rf performance (see the layout considerations section). max2042a tqfn 5mm x 5mm top view 19 20 + 18 17 7 6 8 rf gnd gnd 9 v cc v cc gnd lo gnd 1 2 if- 4 5 15 14 12 11 if+ gnd gnd v cc lobias v cc gnd gnd 3 13 gnd 16 10 gnd gnd
???????????????????????????????????????????????????????????????? maxim integrated products 47 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer functional diagram detailed description when used as a high-side lo injection mixer in the 2300mhz to 2900mhz band, the max2042a provides +33dbm of iip3, with typical conversion loss and noise figure values of only 7.2db and 7.25db, respectively. the integrated baluns and matching circuitry allow for 50 i single-ended interfaces to the rf and the lo port. the integrated lo buffer provides a high drive level to the mixer core, reducing the lo drive required at the ics input to a -6dbm to +3dbm range. the if port incor - porates a differential output, which is ideal for providing enhanced 2lo - 2rf performance. specifications are over broad frequency ranges to allow for use in gsm/edge, cdma, td-scdma, wcdma, lte, td-lte, wimax, and mmds base stations. the device is specified to operate over a 1600mhz to 3900mhz rf input range, a 1300mhz to 4000mhz lo range, and a 50mhz to 500mhz if range. the external if components set the lower frequency range (see the typical operating characteristics for details). operation beyond these ranges is possible (see the typical operating cha racteristics for additional information). rf input and balun the ics rf input provides a 50 i match when combined with a series dc-blocking capacitor. this dc-blocking capacitor is required as the input is internally dc shorted to ground through the on-chip balun. when using an 8.2pf dc-blocking capacitor, the rf port input return loss is typically 17db over the 2300mhz to 2900mhz rf frequency range. a return loss of 14db over the 3000mhz to 3900mhz range is achieved by changing the dc-blocking capacitor to 1.5pf. for applications spanning the 1700mhz to 2200mhz frequency range, a 12nh shunt inductor can be used in conjunction with a 1.8pf dc-blocking capacitor to provide a typical return loss of 12db. see the typical application circuit and table 1 for details. lo inputs, buffer, and balun with a broadband lo drive circuit spanning 1300mhz to 4000mhz, the device can be used in either low- or high- side lo injection architectures for virtually all 1.7ghz to 3.5ghz receiver and transmitter applications. the lo input is internally matched to 50 i , requiring only a 2pf dc-blocking capacitor. a two-stage internal lo buffer allows for a -6dbm to +3dbm lo input power range. the on-chip low-loss balun, along with an lo buffer, drives the double-balanced mixer. all interfacing and match - ing components from the lo inputs to the if outputs are integrated on-chip. high-linearity mixer the core of the device is a double-balanced, high- performance passive mixer. exceptional linearity is provided by the large lo swing from the on-chip lo buffer. iip3, 2lo - 2rf rejection, and noise-figure performance are typically 33dbm, 72dbc, and 7.25db, respectively. differential if ports the device has a 50mhz to 500mhz if frequency range, where the low-end frequency depends on the frequency response of the external if components. the devices differential if ports are ideal for providing enhanced 2lo - 2rf performance. the user can connect a differential if amplifier or saw filter to the mixer if port, but a dc block is required on both if+/if- ports to keep external dc from entering the if ports of the mixer. to characterize the part, an external mabact0069 1:1 transformer is used to transform the 50 i differential if interface to 50 i single-ended. its loss is included in the data presented in this data sheet. this transformer also supplies a needed if pin ground return for the on-chip circuitry. if a ground return is not available on the if pins, the return is achievable through some off-chip resistance to ground or large-value inductors. a 1k i to ground on each if pin can be used for such an application. in addition, the if interface directly supports single- ended, ac-coupled signals into or out of if+ by shorting if- to ground and using a 1k i resistor from if+ to ground. rf if rf balun lo balun lo driver lo max2042a
???????????????????????????????????????????????????????????????? maxim integrated products 48 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer applications information input and output matching the rf input provides a 50 i match when combined with a series dc-blocking capacitor. use an 8.2pf capac - itor value for rf frequencies ranging from 2000mhz to 2900mhz. use a 1.5pf capacitor value to match the rf port for the 3000mhz to 3900mhz band. for rf frequencies in the 1650mhz to 2250mhz range, use c1 = 1.8pf and l1 = 12nh. the lo input is internally matched to 50 i , so use a 2pf dc-blocking capacitor to cover operations spanning the 1300mhz to 4000mhz range. the if output impedance is 50 i (differential). for evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50 i single-ended output (see the typical application circuit ). reduced-power mode the device includes a pin (lobias) that allows an exter - nal resistor to set the internal bias current. a nominal value for this resistor is given in tables 1 and 2 . larger- value resistors can be used to reduce power dissipa - tion at the expense of some performance loss. if q 1% resistors are not readily available, substitute with q 5% resistors. significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3v. doing so reduces the overall power consumption by up to 42%. see the 3.3v supply ac electrical characteristics tables and the relevant 3.3v curves in the typical operating characteristics section to evaluate the power vs. performance tradeoffs. layout considerations a properly designed pcb is an essential part of any rf/microwave circuit. keep rf signal lines as short as possible to reduce losses, radiation, and inductance. for the best performance, route the ground pin traces directly to the exposed pad under the package. the pcb exposed pad must be connected to the ground plane of the pcb. it is suggested that multiple vias be used to connect this pad to the lower-level ground planes. this method provides a good rf/thermal conduction path for the device. solder the exposed pad on the bottom of the device package to the pcb. power-supply bypassing proper voltage-supply bypassing is essential for high- frequency circuit stability. bypass each v cc pin with the capacitors shown in the typical application circuit and see table 1 . exposed pad rf/thermal considerations the exposed pad (ep) of the devices 20-pin tqfn package provides a low thermal-resistance path to the die. it is important that the pcb on which the device is mounted be designed to conduct heat from the ep. in addition, provide the ep with a low-inductance path to electrical ground. the ep must be soldered to a ground plane on the pcb, either directly or through an array of plated via holes.
???????????????????????????????????????????????????????????????? maxim integrated products 49 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer table 1. component valuesdownconverter mode table 2. component valuesupconverter mode designation qty description component supplier c1 1 8.2pf microwave capacitor (0402); use for 2000mhz to 2900mhz rf frequencies murata electronics north america, inc. 1.5pf microwave capacitor (0402); use for 3000mhz to 3900mhz rf frequencies murata electronics north america, inc. 1.8pf microwave capacitor (0402); use for 1600mhz to 2000mhz rf frequencies murata electronics north america, inc. c2, c6, c8, c11 4 0.01 f f microwave capacitors (0402) murata electronics north america, inc. c3, c9 0 not installed, capacitors c5 0 not installed, capacitor c10 1 2pf microwave capacitor (0402) murata electronics north america, inc. l1 1 12nh microwave inductor (0402); use for 1600mhz to 2000mhz rf frequencies (this inductor is not used for other rf bands noted above) toko america, inc. r1 1 698 i q 1% resistor (0402) t1 1 1:1 if balun mabact0069 m/a-com, inc. u1 1 max2042a ic (20 tqfn) maxim integrated products, inc. designation qty description component supplier c1 1 8.2pf microwave capacitor (0402); use for 2000mhz to 2900mhz rf frequencies murata electronics north america, inc. 1.5pf microwave capacitor (0402); use for 3000mhz to 3900mhz rf frequencies murata electronics north america, inc. 1.8pf microwave capacitor (0402); use for 1600mhz to 2000mhz rf frequencies murata electronics north america, inc. c2, c6, c8, c11 4 0.01 f f microwave capacitors (0402) murata electronics north america, inc. c3, c9 0 not installed, capacitors c5 0 not installed, capacitor c10 1 2pf microwave capacitor (0402) murata electronics north america, inc. l1 1 12nh microwave inductor (0402); use for 1600mhz to 2000mhz rf frequencies (this inductor is not used for other rf bands noted above) toko america, inc. r1 1 698 i q 1% resistor (0402) t1 1 1:1 if balun mabact0069 m/a-com, inc. u1 1 max2042a ic (20 tqfn) maxim integrated products, inc.
???????????????????????????????????????????????????????????????? maxim integrated products 50 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer typical application circuit notes: pins 3, 4, 5, 10, 12, 13, and 17 are all internally connected to the exposed ground pad . these pins can be externally grounded in an attemp t to im prove isolat ion. pins 9 and 15 have no internal connection but can be externally grounded in an attempt to improve isolation. 7 6 8 rf 9 v cc +5.0v +5.0v 1 2 4 5 15 14 12 11 v cc v cc gnd gnd gnd if- if+ gnd 5 3 if t1 gnd gnd gnd gnd 3 13 10 19 20 18 n.c. 17 16 +5.0v lo r1 lo input c6 rf 1:1 c5 c2 c1 l1 c3 +5.0v c8 c9 c10 c11 ep lobias gnd gnd gn d v cc max2042a 4 1 2
???????????????????????????????????????????????????????????????? maxim integrated products 51 max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer package information for the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages . note that a +, #, or - in the package code indicates rohs status only. package drawings may show a different suffix character, but the drawing pertains to the package regardless of rohs status. chip information process: sige bicmos ordering information + denotes a lead(pb)-free/rohs-compliant package. * ep = exposed pad. t = tape and reel. package type package code outline no. land pattern no. 20 tqfn-ep t2055+3 21-0140 90-0008 part temp range pin-package MAX2042AETP+ -40 n c to +85 n c 20 tqfn-ep* MAX2042AETP+t -40 n c to +85 n c 20 tqfn-ep*
maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circuit patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. the parametric values (min and max limits) shown in the electrical characteristics table are guaranteed. other parametric values quoted in this data sheet are provided for guidance. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 52 ? 2011 maxim integrated products maxim is a registered trademark of maxim integrated products, inc. max2042a sige high-linearity, 1600mhz to 3900mhz upconversion/downconversion mixer with lo buffer revision history revision number revision date description pages changed 0 6/11 initial release


▲Up To Search▲   

 
Price & Availability of MAX2042AETP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X