![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
insulated gate bipolar transistor with ultrafast soft recovery diode IRGI4062DPBF 1 www.irf.com 10/14/08 e g n-channel c v ces = 600v i c = 12a, t c = 100c t sc 5s, t j(max) = 150c v ce(on) typ. = 1.34v gc e gate collector emitter c features ? low v ce (on) trench igbt technology ? low switching losses ? 5 s short circuit soa ? square rbsoa ? 100% of the parts tested for i lm ? positive v ce (on) temperature co-efficient ? ultra fast soft recovery co-pak diode ? tight parameter distribution ? lead free package benefits ? high efficiency in a wide range of applications ? suitable for a wide range of switching frequencies due to low v ce (on) and low switching losses ? rugged transient performance for increased reliability ? excellent current sharing in parallel operation ? low emi absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 22 i c @ t c = 100c continuous collector current 12 i cm pulse collector current 44 i lm clamped inductive load current 44 a i f @ t c = 25c diode continous forward current 22 i f @ t c = 100c diode continous forward current 12 i fm diode maximum forward current 44 v ge continuous gate-to-emitter voltage 20 v transient gate-to-emitter voltage 30 p d @ t c = 25c maximum power dissipation 48 w p d @ t c = 100c maximum power dissipation 19 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw 10 lbfin (1.1 nm) thermal resistance parameter min. typ. max. units r jc (igbt) thermal resistance junction-to-case-(each igbt) ??? ??? 2.6 c/w r jc (diode) thermal resistance junction-to-case-(each diode) ??? ??? 4.2 r cs thermal resistance, case-to-sink (flat, greased surface) ??? 0.50 ??? r ja thermal resistance, junction-to-ambient (typical socket mount) ??? ??? 65 IRGI4062DPBF 2 www.irf.com notes: v cc = 80% (v ces ), v ge = 15v, l = 28h, r g = 10 ? . pulse width limited by max. junction temperature. refer to an-1086 for guidelines for measuring v (br)ces safely. electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions ref.fig v (br)ces collector-to-emitter breakdown voltage 600??v v ge = 0v, i c = 100a ct6 ? v (br)ces / ? t j temperature coeff. of breakdown voltage ?0.80?v/c v ge = 0v, i c = 1ma (-55c-150c) ct6 ?1.341.58 i c = 12a, v ge = 15v, t j = 25c 5,6,7 v ce(on) collector-to-emitter saturation voltage ? 1.49 ? v i c = 12a, v ge = 15v, t j = 125c 9,10,11 ?1.54? i c = 12a, v ge = 15v, t j = 150c v ge(th) gate threshold voltage 4.0 ? 6.5 v v ce = v ge , i c = 700a 9, 10, ? v ge(th) / ? tj threshold voltage temp. coefficient ? -14 ? mv/c v ce = v ge , i c = 1.0ma (-55c - 150c) 11, 12 gfe forward transconductance ? 13 ? s v ce = 50v, i c = 12a, pw = 80s i ces collector-to-emitter leakage current ? ? 25 a v ge = 0v, v ce = 600v ??250 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ? 1.70 2.05 v i f = 12a 8 ?1.22? i f = 12a, t j = 150c i ges gate-to-emitter leakage current ? ? 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units ref.fig q g total gate charge (turn-on) ? 48 72 i c = 12a 24 q ge gate-to-emitter charge (turn-on) ? 13 20 nc v ge = 15v ct1 q gc gate-to-collector charge (turn-on) ? 18 27 v cc = 400v e on turn-on switching loss ? 31 131 i c = 12a, v cc = 400v, v ge = 15v ct4 e off turn-off switching loss ? 183 283 j r g = 10 ? , l = 0.13mh, t j = 25c e total total switching loss ? 214 414 energy losses include tail & diode reverse recovery t d(on) turn-on delay time ? 41 53 i c = 12a, v cc = 400v, v ge = 15v ct4 t r rise time ? 18 25 ns r g = 10 ? , l = 0.13mh, t j = 25c t d(off) turn-off delay time ? 100 110 t f fall time ? 27 35 e on turn-on switching loss ? 130 ? i c = 12a, v cc = 400v, v ge =15v 13, 15 e off turn-off switching loss ? 275 ? j r g =10 ? , l= 0.13mh, t j = 150c ct4 e total total switching loss ? 405 ? energy losses include tail & diode reverse recovery wf1, wf2 t d(on) turn-on delay time ? 39 ? i c = 12a, v cc = 400v, v ge = 15v 14, 16 t r rise time ? 16 ? ns r g = 10 ? , l = 0.13mh ct4 t d(off) turn-off delay time ? 119 ? t j = 150c wf1 t f fall time ? 39 ? wf2 c ies input capacitance ? 1528 ? pf v ge = 0v 23 c oes output capacitance ? 126 ? v cc = 30v c res reverse transfer capacitance ? 39 ? f = 1.0mhz t j = 150c, i c = 44a 4 rbsoa reverse bias safe operating area full square v cc = 480v, vp =600v ct2 rg = 100 ? , v ge = +15v to 0v scsoa short circuit safe operating area 5 ? ? s v cc = 400v, vp =600v 22, ct3 rg = 100 ? , v ge = +15v to 0v wf4 erec reverse recovery energy of the diode ? 362 ? j t j = 150c 17, 18, 19 t rr diode reverse recovery time ? 56 ? ns v cc = 400v, i f = 12a 20, 21 i rr peak reverse recovery current ? 30 ? a v ge = 15v, rg = 10 ? , l = 0.13mh wf3 conditions IRGI4062DPBF www.irf.com 3 fig. 1 - maximum dc collector current vs. case temperature fig. 2 - power dissipation vs. case temperature fig. 3 - forward soa t c = 25c, t j 150c; v ge =15v fig. 4 - reverse bias soa t j = 150c; v ge =15v fig. 5 - typ. igbt output characteristics t j = -40c; tp = 80s fig. 6 - typ. igbt output characteristics t j = 25c; tp = 80s 0 20 40 60 80 100 120 140 160 t c (c) 0 5 10 15 20 25 i c ( a ) 0 20 40 60 80 100 120 140 160 t c (c) 0 10 20 30 40 50 p t o t ( w ) 0 1 2 3 4 5 6 7 8 9 10 v ce (v) 0 20 40 60 80 100 120 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 1 10 100 1000 v ce (v) 0.1 1 10 100 i c ( a ) 10sec 100sec tc = 25c tj = 150c single pulse dc 1msec 0 1 2 3 4 5 6 7 8 9 10 v ce (v) 0 20 40 60 80 100 120 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 10 100 1000 v ce (v) 1 10 100 i c ( a ) IRGI4062DPBF 4 www.irf.com fig. 7 - typ. igbt output characteristics t j = 150c; tp = 80s fig. 8 - typ. diode forward characteristics tp = 80s fig. 10 - typical v ce vs. v ge t j = 25c fig. 11 - typical v ce vs. v ge t j = 150c fig. 12 - typ. transfer characteristics v ce = 50v; tp = 10s fig. 9 - typical v ce vs. v ge t j = -40c 0 2 4 6 8 10 12 14 v ce (v) 0 20 40 60 80 100 120 140 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 5 101520 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a i ce = 48a 5 101520 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a i ce = 48a 0 5 10 15 20 v ge (v) 0 20 40 60 80 100 120 i c e ( a ) t j = 25c t j = 150c 0.0 1.0 2.0 3.0 4.0 v f (v) 0 20 40 60 80 100 120 i f ( a ) -40c 25c 150c 5 101520 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a i ce = 48a IRGI4062DPBF www.irf.com 5 fig. 13 - typ. energy loss vs. i c t j = 150c; l = 0.13mh; v ce = 400v, r g = 10 ? ; v ge = 15v fig. 14 - typ. switching time vs. i c t j = 150c; l = 0.13mh; v ce = 400v, r g = 10 ? ; v ge = 15v fig. 15 - typ. energy loss vs. r g t j = 150c; l = 0.13mh; v ce = 400v, i ce = 12a; v ge = 15v fig. 16 - typ. switching time vs. r g t j = 150c; l = 0.13mh; v ce = 400v, i ce = 12a; v ge = 15v fig. 17 - typ. diode i rr vs. i f t j = 150c fig. 18 - typ. diode i rr vs. r g t j = 150c 0 5 10 15 20 25 i c (a) 0 100 200 300 400 500 600 e n e r g y ( j ) e off e on 0 5 10 15 20 25 i c (a) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 25 50 75 100 125 rg ( ? ) 100 200 300 400 500 600 e n e r g y ( j ) e off e on 0 25 50 75 100 125 r g ( ? ) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 5 10 15 20 25 i f (a) 5 10 15 20 25 30 35 i r r ( a ) r g = 10 ? r g = 22 ? r g = 47 ? r g = 100 ? 0 25 50 75 100 125 r g ( ?) 5 10 15 20 25 30 i r r ( a ) IRGI4062DPBF 6 www.irf.com fig. 19 - typ. diode i rr vs. di f /dt v cc = 400v; v ge = 15v; i f = 12a; t j = 150c fig. 20 - typ. diode q rr vs. di f /dt v cc = 400v; v ge = 15v; t j = 150c fig. 23 - typ. capacitance vs. v ce v ge = 0v; f = 1mhz fig. 24 - typical gate charge vs. v ge i ce = 12a; l = 1700h fig. 21 - typ. diode e rr vs. i f t j = 150c fig. 22 - v ge vs. short circuit time v cc = 400v; t c = 25c 0 200 400 600 800 1000 di f /dt (a/s) 5 10 15 20 25 30 i r r ( a ) 0 200 400 600 800 1000 di f /dt (a/s) 0 500 1000 1500 2000 2500 3000 3500 q r r ( c ) 10 ? 22 ? 100 ? 47 ? 12a 24a 6.0a 5 10 15 20 25 i f (a) 0 50 100 150 200 250 300 350 400 e n e r g y ( j ) r g = 10 ? r g = 22 ? r g = 47 ? r g = 100 ? 8 1012141618 v ge (v) 4 6 8 10 12 14 16 t i m e ( s ) 40 80 120 160 200 240 280 c u r r e n t ( a ) i sc t sc 0 100 200 300 400 500 v ce (v) 1 10 100 1000 10000 c a p a c i t a n c e ( p f ) cies coes cres 0 5 10 15 20 25 30 35 40 45 50 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e , g a t e - t o - e m i t t e r v o l t a g e ( v ) v ces = 300v v ces = 480v IRGI4062DPBF www.irf.com 7 fig. 24. maximum transient thermal impedance, junction-to-case (diode) fig 23. maximum transient thermal impedance, junction-to-case (igbt) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.167978 0.000080 0.242228 0.000772 0.922659 0.059650 1.268352 1.063 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.231912 0.000145 0.956436 0.001589 1.348286 0.05534 1.663366 1.0859 IRGI4062DPBF 8 www.irf.com 1k vc c dut 0 l l rg 80 v dut 480v dc 4x dut 360v l rg vcc diode clamp / du t du t / driver - 5v rg vcc dut r = v cc i cm fig.c.t.1 - gate charge circuit (turn-off) fig.c.t.2 - rbsoa circuit fig.c.t.3 - s.c. soa circuit fig.c.t.4 - switching loss circuit fig.c.t.5 - resistive load circuit c f orce 400h g f orce dut d1 10k c sen se 0.0075 e sense e force fig.c.t.6 - bvces filter circuit IRGI4062DPBF www.irf.com 9 fig. wf3 - typ. diode recovery waveform @ t j = 150c using fig. ct.4 fig. wf1 - typ. turn-off loss waveform @ t j = 150c using fig. ct.4 fig. wf2 - typ. turn-on loss waveform @ t j = 150c using fig. ct.4 fig. wf4 - typ. s.c. waveform @ t j = 25c using fig. ct.3 0 100 200 300 400 500 600 -0.100.10.20.3 time(s) v ce (v) -4 -2 0 2 4 6 8 10 12 i ce (a) 90% i ce 5% v ce 5% i ce eof f l os s tf -100 -50 0 50 100 150 200 250 300 350 400 450 -0.1 0 0.1 0.2 time (s) v ce (v) -5 0 5 10 15 20 25 30 35 i ce (a) test current 90% test curren t 5% v ce 10% test current tr eon loss -675 -600 -525 -450 -375 -300 -225 -150 -75 0 75 -0.10 0.00 0.10 0.20 time (s) v f (v) -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 i f (a) peak i rr t rr q rr 10% peak irr -100 0 100 200 300 400 500 -5.00 0.00 5.00 10.00 time (s) v ce (v) -50 0 50 100 150 200 250 i ce (a) v c e i ce IRGI4062DPBF 10 www.irf.com ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 10/08 data and specifications subject to change without notice. this product has been designed and qualified for industrial market. qualification standards can be found on ir?s web site. to-220 full-pak package outline dimensions are shown in millimeters (inches) to-220 full-pak part marking information !"#$%&&"'()*)#$"+ !# $ #$,#-%!"& "%,./"" 0 to-220 full-pak package is not recommended for surface mount application. |
Price & Availability of IRGI4062DPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |